首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The unidirectional Ca2+ fluxes across the plasma membrane andtonoplast were determined in both excised roots and roots ofintact seedlings of rye (Secale cereale L. cv. Rheidol). Theunidirectional Ca2+ fluxes across the plasma membrane and tonoplastmeasured in excised roots were of a similar order of magnitudeto those determined in roots of intact plants. Influx and effluxof Ca2+ across the root plasma membrane were similar (estimatedto be between 0·7 and 3·4 µmol g  相似文献   

2.
Rye (Secale cereale cv. Rheidol) and wheat (Triticum aestivumcv. Mardler) were grown at shoot/root temperatures of 20/20°C (warm grown, WG plants), 8/8 °C (cold grown, CG plants)and 20/8 °C (differential grown, DG plants). Plants fromcontrasting growth temperature regimes were standardized andcompared using a developmental timescale based on accumulatedthermal time (°C d) at the shoot meristem. Accumulationof dry matter, nitrogen and potassium were exponential overthe time period studied (150–550 °C d). In rye, therates of plant dry matter and f. wt accumulation were linearlyrelated to the temperature of the shoot meristem. However, inwheat, although the rates of plant dry matter and f. wt accumulationwere temperature dependent, the linear relationship with shootmeristem temperature was weaker than in rye. The shoot/rootratio of rye was stable irrespective of growth temperature treatment,but the shoot/root ratio of wheat varied with growth temperaturetreatment. The shoot/root ratio of DG wheat was 50% greaterthan WG wheat. In both cereals, nutrient concentrations anddry matter content tended to be greater in organs exposed directlyto low temperatures. The mean specific absorption rates of nutrientswere calculated for the whole period studied for each species/temperaturecombination and were positively correlated with both plant shoot/rootratio and relative growth rate. The data suggest that nutrientuptake rates were influenced primarily by plant demand, withno indication of specific nutrient limitations at low temperatures. Nutrient accumulation, relative growth rate (RGR), rye, Secale cereale cv. Rheidol, temperature, thermal time, Triticum aestivum cv. Mardler, wheat  相似文献   

3.
Freezing injury in protoplasts isolated from leaves of nonaccli-mated rye (Secale cereale cv Puma) is associated with the formation of the inverted hexagonal (HII) phase. However, in protoplasts from cold-acclimated rye, injury is associated with the occurrence of localized deviations in the fracture plane, a lesion referred to as the "fracture-jump lesion." To establish that these ultrastructural consequences of freezing are not unique to protoplasts, we have examined the manifestations of freezing injury in leaves of non-acclimated and cold-acclimated rye by freeze-fracture electron microscopy. At -10[deg]C, injury in nonacclimated leaves was manifested by the appearance of aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and by the frequent occurrence of the HII phase. The HII phase was not observed in leaves of cold-acclimated rye frozen to -35[deg]C. Rather, injury was associated with the occurrence of the fracture-jump lesion between the plasma membrane and closely appressed cytoplasmic membranes. Studies of the time dependence of HII phase formation in nonacclimated leaves indicated that freeze-induced dehydration requires longer times in leaves than in isolated protoplasts. These results demonstrate that the freeze-induced formation of the HII phase in nonacclimated rye and the fracture-jump lesion in cold-acclimated rye are not unique to protoplasts but also occur in the leaves from which the protoplasts are isolated.  相似文献   

4.
在对黑麦染色体银染过程的盐酸解离条件进行探索的同时,对黑麦染色体的银染正反应区进行了研究,首次发现经短时间空气干燥(4~24 h)的黑麦染色体制片,随着盐酸解离强度的递增,分别出现了核仁组织区(NOR)、NOR和端粒以及NOR和着丝点的银染正反应,就此现象讨论了端粒和着丝点的银染机理。  相似文献   

5.
在对黑麦染色体银染过程的盐酸解离条件进行探索的同时,对黑麦染色体的银染正反应区进行了研究,首次发现经短时间空气干燥(4-24h)的黑麦染色体制片,随着盐酸解离强度的递增,分别出现了核仁组织区(NOR)、NOR和端粒以及NOR和着丝点的银染正反应,就此现象讨论了端粒和着丝点的银染机理。  相似文献   

6.
The technique of mieromanipulaion has been used to establish a system of single chromosome mierodissection. According to the standard karyotype of rye ( Secale cereale L. ), 1R chromosome carrying disease-resistant gene has been identified, microdissected and transferred into Ep-pendorf tube using mieromanipulator. The results showed that IR chromosome in cells pretreated with α-bromonaphthalene could be identified quickly and the efficiency of microdissection was greatly improved when the technique of wall degradation and hypotonic treatment was applied.  相似文献   

7.
Opaline Silica Deposition in Rye (Secale cereale L.)   总被引:1,自引:0,他引:1  
The types of opaline silica-bodies (opal phytoliths) which occurin the mature prophylls, radical and culm leaves, culms, andinflorescence bracts of rye (Secale cereale L.) are describedand figured. Silica-bodies are absent from the coleoptile, andthe adaxial epidermis of the prophylls, leaf sheaths, and inflorescencebracts. The stages of silica-body formation in young radicalleaf sheaths are also described. Alternative hypotheses forthe origin of silica-bodies are discussed.  相似文献   

8.
黑麦染色体银染的初步研究   总被引:3,自引:0,他引:3  
本文对黑麦染色体的银染条件进行了探索,并对黑麦染色体上银染正反应分布区进行了研究。首次发现黑麦染色体的核仁组成中心区、着丝点和端粒均能用硝酸银染色。对此现象的原因进行了讨论。  相似文献   

9.
The site of synthesis of the plastid membrane-located enzyme, protochlorophyllide reductase, has been determined. Plastid ribosome-deficient and normal rye (Secale cereale L., cv Rheidol) plants were grown in darkness at 33°C and 22°C, respectively. Extracts from these plants were analyzed for the levels of different ribosomal RNAs and cytochrome f and the activity of a number of enzymes with well-established sites of synthesis. The results confirmed that the higher temperature had induced a specific inhibition of protein synthesis in the plastids. The activity and level of protochlorophyllide reductase was unaffected by growth at the higher temperature, suggesting it to be a cytoplasmically synthesized enzyme.  相似文献   

10.
Seedlings of Secale cereale cv. Rheidol and Triticum aestivumcv. Mardler were grown at shoot/root temperatures of 20/20 °C,20/8 °C and 8/8 °C. During vegetative growth both cerealsproduced leaves, tillers and roots in a defined pattern, ata species-specific rate which was linearly related to the temperatureof the shoot meristem. Thus, plant development could be standardizedon a temperature x time (°C d) basis despite contrastinggrowth-temperature treatments. When compared at a similar developmentalstage, the cooling of whole plants or of plant roots resultedin an increase in the d. wt: f. wt ratio of both shoot and roottissues, a decrease in the length of both the longest shootand root, and the development of broader and thicker leaves.Although the effects of temperature on developmental characteristicscould be accurately predicted by an empirical relationship,the effects on morphological characteristics could not. Development, phyllochron, rye, Secale cereale cv. Rheidol, temperature, thermal time, Triticum aestivum cv. Mardler, wheat  相似文献   

11.
Extracellular ice formation in frost-tolerant organisms is often initiated at specific sites by ice nucleators. In this study, we examined ice nucleation activity (INA) in the frost-tolerant plant winter rye (Secale cereale). Plants were grown at 20[deg]C, at 5[deg]C with a long day, and at 5[deg]C with a short day (5[deg]C-SD). The threshold temperature for INA was -5 to -12[deg]C in winter rye leaves from all three growth treatments. Epiphytic ice nucleation-active bacteria could not account for INA observed in the leaves. Therefore, the INA must have been produced endogenously. Intrinsic rye ice nucleators were quantified and characterized using single mesophyll cell suspensions obtained by pectolytic degradation of the leaves. The most active ice nucleators in mesophyll cell suspensions exhibited a threshold ice nucleation temperature of -7[deg]C and occurred infrequently at the rate of one nucleator per 105 cells. Rye cells were treated with chemicals and enzymes to characterize the ice nucleators, which proved to be complexes of proteins, carbohydrates, and phospholipids, in which both disulfide bonds and free sulfhydryl groups were important for activity. Carbohydrates and phospholipids were important components of ice nucleators derived from 20[deg]C leaves, whereas the protein component was more important in 5[deg]C-SD leaves. This difference in composition or structure of the ice nucleators, combined with a tendency for more frequent INA, suggests that more ice nucleators are produced in 5[deg]C-SD leaves. These additional ice nucleators may be a component of the mechanism for freezing tolerance observed in winter rye.  相似文献   

12.
The Giemsa C-banding technique has been used in this paper for analysis of chromosome banding pattern, and the changes of the chromosome structures of irradiated rye and wheat-rye were identified preliminarily. Heterochromatin polymorphism of rye was also discussed.  相似文献   

13.
14.
In order to understand a physiological role of chitinases in rye, the localization and accumulation of rye seed chitinase-a and -c (RSC-a and -c) in the seeds were studied by immunochemical methods. An antiserum specific to the chitin-binding domain (CB-domain), which is an N-terminal part of RSC-a, and an antiserum specific to the catalytic region of RSC-a and RSC-c were used. An immunoblot analysis detected both RSC-a and RSC-c in the endosperm of the rye seed. Immunohistochemical staining indicated that RSC-a was localized in only the aleurone cells, whereas RSC-c existed at least in the starchy endosperm and was also likely to exist in the aleurone cells. It was found by ELISA and an immunoblot analysis that RSC-a and -c accumulated in the seed during the later stage of development. Both chitinases and the Cat-domain exhibited antifungal activity toward Trichoderma species, while the CB-domain did not. Observation of the inhibition of hyphal growth of the T. species suggests that the two chitinases acted in different ways.  相似文献   

15.
White  P. J. 《Annals of botany》1993,72(4):349-358
The development and growth of rye (Secale cereale L. cv. Rheidol)was studied in seedlings grown hydroponically in complete nutrientsolutions containing between 10 and 600 µM K+. The phyllochron(defined as the interval between the appearance of successiveleaves) was used as a developmental timescale to compare plants.The pattern of both shoot and root development was strictlyordered on a phyllochron basis and was unaffected by solutionK+ concentration, with the exception that tillers in plantsgrown at the lowest K+ concentrations were occasionally eithernot initiated or aborted at an early stage of development. However,both the rate of leaf appearance on the main stem and successivetillers and the rate of tiller appearance were slower in plantsgrown at lower K+ concentrations. The rate of leaf appearanceon the main stem was reduced to below 90% of its maximal valueat solution concentrations below about 50 µM K+. Plantrelative growth rate (RGR) was also reduced by lowering theK+ concentration of the nutrient solution and fell to below90% of its maximal value at solution concentrations below about200 µM K+. There was a complex relationship between tissueK+ concentration and the K+ concentration of the nutrient solution,which differed between leaves and root. Leaf K+ concentrationincreased steadily from about 50 µmol g-1 f. wt to about200 µmol g-1 f. wt as solution K+ concentration was increasedfrom 10 to 400 µM. In contrast, root K+ concentrationexhibited a sigmoidal dependence on solution K+ concentration,maintaining a minimal value of approximately 20 µmol g-1f. wt at concentration below 100 µM K+, then increasingprogressively to about 120 µmol g-1 f. wt at a solutionconcentration of 600 µM K+. The 'critical' leaf K+ concentration,i.e. the concentration at which either plant RGR or plant developmentwas reduced 90% of its maximal value, was 86 µmol g-1f. wt for plant RGR and 150 µmol g-1 f. wt for plant development.The 'critical' root K+ concentration was 24 µmol g-1 f.wt K+ for both RGR and development. A decline in tissue K+ concentrationbelow these thresholds reduced plant growth considerably. RootK+ concentration was a sensitive indicator of the K+ statusof the plant with respect to potential growth since plant growthdeclined abruptly as root K+ concentration approached its 'critical'value, whereas plant growth showed a less defined relationshipwith shoot K+ concentration.Copyright 1993, 1999 Academic Press Critical K+ concentration, development, potassium, relative growth rate (RGR), rye, Secale cereale L. cv. Rheidol  相似文献   

16.
Anther culture in solid and liquid medium and isolated microspore culture were compared in rye genotypes with potential agronomic characteristics. Some important factors influencing androgenic capacity were optimised. Three weeks cold pre-treatment of spikes and two days mannitol pre-treatment of anthers maximized callus and green plant yield in both culture methods. Intensity order of the culture methods in callus and green plant production was: isolated microspore culture, anther culture in liquid medium and anther culture in solid medium. Genotype ability of embryogenesis followed the same pattern in both cultivation methods. Kinetin (BA) with genotype dependent concentrations created the most effective regeneration conditions.  相似文献   

17.
Glucocerebrosides of whole rye (Secale cerale L. cv Puma) leaf and plasma membrane were analyzed using gas chromatography-mass spectrometry and gas chromatography following hydrolysis or as intact molecules purified by reverse-phase high performance liquid chromatography. Fatty acids of acid-hydrolyzed leaf and plasma membrane glucocerebrosides consisted of >98 weight percent saturated and monounsaturated 2-hydroxy fatty acids which contained 16 to 26 carbon atoms. The major fatty acids detected were 2-hydroxynervonic acid (24:1h), 2-hydroxylignoceric acid (24:0h), 2-hydroxyerucic acid (22:1h), and 2-hydroxybehenic acid (22:0h). Long-chain bases of alkaline-hydrolyzed glucocerebrosides consisted primarily of cis-trans isomers of the trihydroxy base 4-hydroxysphingenine (t18:1) and the dihydroxy base sphingadienine (d18:2) with lesser amounts of 4-hydroxysphinganine (t18:0) and isomers of sphingenine (d18:1). Intact, underivatized glucocerebroside molecular species of rye leaf and plasma membrane were separated into more than 30 molecular species using reverse-phase HPLC. The molecular species composition of leaf and plasma membrane were quantitatively and qualitatively similar. The major molecular species was 24:1h-t18:1 which constituted nearly 40 weight percent of leaf and plasma membrane extracts. Several other species including 22:1h-t18:1, 24:1h-t18:1 (isomer), 22:0h-t18:1, 24:1h-d18:2, and 24:0h-t18:1 each comprised 4 to 8% of the total. It is anticipated that the high performance liquid chromatography procedure developed in this study to separate intact, underivatized lipid molecular species will be useful in future studies of the physical properties and biosynthesis of plant glucocerebrosides.  相似文献   

18.
After mechanical spraygun inoculation barley mild mosaic virus (BaMMV) was detected in barley cv. ‘Gerbel’ (control) as well as in rye cv. ‘Somro’, but not in wheat cv. ‘Kanzler’ and oat cv. ‘Alfred’. ELISA values of infected barley and rye were similar. Furthermore, infected rye plants developed symptoms typical for barley yellow mosaic virus infection.  相似文献   

19.
The pattern of opaline silica deposition in the leaves and internodesof rye (Secale cereale L.) has been studied by means of countsof silica-bodies in cleared epidermal preparations. Silica depositionoccurs during the maturation process when the leaves are fullyexpanded. The increase in total silica content and changes inthe ‘free’ and residual silica fractions of theleaves during their growth period have been determined usinga colorimetric estimation.  相似文献   

20.
Hon WC  Griffith M  Chong P  Yang D 《Plant physiology》1994,104(3):971-980
Apoplastic extracts of cold-acclimated winter rye (Secale cereale L. cv Musketeer) leaves were previously shown to exhibit antifreeze activity. The objectives of the present study were to identify and characterize individual antifreeze proteins present in the apoplastic extracts. The highest protein concentrations and antifreeze activity were obtained when the leaf apoplast was extracted with ascorbic acid and either CaCl2 or MgSO4. Seven major polypeptides were purified from these extracts by one-dimensional sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis under nonreducing conditions. The five larger polypeptides, of 19, 26, 32, 34, and 36 kD, exhibited significant levels of antifreeze activity, whereas the 11- and 13-kD polypeptides showed only weak activity. Five of these polypeptides migrated with higher apparent molecular masses on SDS gels after treatment with 0.1 M dithiothreitol, which indicated the presence of intramolecular disulfide bonds. The apparent reduction of the disulfide bonds did not eliminate antifreeze activity in four of the polypeptides that contained intramolecular disulfide bonds and exhibited significant levels of antifreeze activity. The amino acid compositions of these polypeptides were similar in that they were all relatively enriched in the residues Asp/Asn, Glu/Gln, Ser, Thr, Gly, and Ala; they all lacked His, except for the 26-kD polypeptide, and they contained up to 5% Cys residues. These polypeptides were examined with antisera to other cystine-containing antifreeze proteins from fish and insects, and no common epitopes were detected. We conclude that cold-acclimated winter rye leaves produce multiple polypeptides with antifreeze activity that appear to be distinct from antifreezes produced by fish and insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号