首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The yeast Saccharomyces cerevisiae has two inorganic pyrophosphatases that are structurally related. One, PPA1, is a cytoplasmic enzyme. The other, PPA2, is located in the mitochondria and appears to be energy-linked. The sequence similarity of PPA1 and PPA2 is about 66% and the identity is about 50%. All amino acids known to be important for catalysis are conserved, except one glutamate which is substituted by an aspartate in PPA2. The structures of PPA2 and the cytoplasmic PPase from Schizosaccharomyces pombe were modeled based on the three dimensional structure of PPA1. Two cysteines in PPA2 and one in the S. pombe enzyme are located at the catalytic cleft. Four residues form an unique insertion near the entrance of the catalytic cleft in the mitochondrial enzyme.  相似文献   

2.
This paper describes the algorithm of a program used to simulate three dimensional models of molecules. In addition to open ended molecules the program also enables simulation of structures with constraints in the form of cyclic regions or fixed location of particular atoms. Several molecules can be handled in a single run and each molecule can have any number of contraints. Further, any number of conformations can be obtained for each constrained region. The program can be used for research in several areas of molecular biology, e.g., structure determination, conformational analysis and topographic comparisons.  相似文献   

3.
The substrate-binding sites of the triacyl glyceride lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa were studied by means of computer modeling methods. The space around the active site was mapped by different probes. These calculations suggested 2 separate regions within the binding site. One region showed high affinity for aliphatic groups, whereas the other region was hydrophilic. The aliphatic site should be a binding cavity for fatty acid chains. Water molecules are required for the hydrolysis of the acyl enzyme, but are probably not readily accessible in the hydrophobic interface, in which lipases are acting. Therefore, the hydrophilic site should be important for the hydrolytic activity of the enzyme. Lipases from R. miehei and H. lanuginosa are excellent catalysts for enantioselective resolutions of many secondary alcohols. We used molecular mechanics and dynamics calculations of enzyme-substrate transition-state complexes, which provided information about molecular interactions important for the enantioselectivities of these reactions.  相似文献   

4.
Mezentseva LV 《Biofizika》2012,57(2):350-355
Electrical activity of a heart in ventricular fibrillation was modeled as a sum of independent pulse streams with various amplitude-frequency and phase characteristics. Results of computer experiments were compared with those of real physiological experiments on rabbits. Identification of the model was carried out by means of the least-squares procedure. The offered technique allows a computer model investigation of internal structure of irregularities of ventricular fibrillation.  相似文献   

5.
Mezentseva  L. V. 《Biophysics》2012,57(2):247-252
Electrical activity of a heart in ventricular fibrillation was modeled as a sum of independent pulse streams with various amplitude-frequency and phase characteristics. Results of computer experiments were compared with those of real physiological experiments on rabbits. Identification of the model was carried out by means of the least-squares procedure. The offered technique allows a computer model investigation of internal structure of irregularities of ventricular fibrillation.  相似文献   

6.
7.
A dynamic model for studying man's movements is proposed. Lagrange equations of the second order are used. Differential equations of the model are presented in the matrix form, and all the coefficients involved are calculated from recurrent formulae. The dynamic model described is easily algorythmized. Differentiating operations can be thus avoided which are realized on electron computers with difficulities.  相似文献   

8.
A computer model of vector-Brownian processes is proposed, which can be applied to some biophysical problems including the problem of search efficiency. The results obtained suggest that the changes in the ratio of two components (the vector and the Brownian ones) in any process essentially improve the efficiency of search.  相似文献   

9.
The kinetics of the phosphofructokinase reaction were studied by computer modeling. A general random order, two-state allosteric model, of which the Monod--Wyman--Changeux model is a limiting case, was found to most accurately reproduce the experimental observations of Pettigrew & Frieden (1979 a,b). A simplified model with Hill coefficients was found to fit almost as well. In these models substrates bind preferentially to and stabilize the enzyme in the R state, and ATPH3-, the inhibitory species, binds preferentially to and stabilizes the enzyme in the T state. Enzymatic activity is regulated by conversion from the R to the T state, which is effected by protonation, especially of the uncomplexed enzyme, but the experimental data are inadequate for accurate estimation of the pKa of the enzyme. Random order binding of substrates is an important cause of sigmoidal kinetics. Additional experiments that would aid in the discrimination among rival models are described.  相似文献   

10.
CD and fluorescence spectroscopic measurements show that calmodulin (CaM) binds to purothionins (alpha 1-purothionin: alpha 1-PT; beta-purothionin: beta-PT) in 1:1 stoichiometry with an affinity similar to that exhibited with the tightest binding CaM-binding peptides. Using the available crystal structures of CaM and alpha 1-PT, a model has been built for the interaction of CaM and alpha 1-PT and subjected to potential energy minimization. In the model, there is a bend in the central helix of CaM similar to that suggested by Persechini and Kretsinger (J. Card. Pharm. 12:501-512, 1988). alpha 1-PT fits snugly into the cavity formed by the bent CaM molecule with each of its two helices making apolar interactions with each of the two hydrophobic clefts situated at the terminal domains of CaM. The complex is further stabilized by numerous polar and electrostatic interactions on the rims of the clefts. Our model is compared with two other similar models previously reported for the CaM complexes with other helical peptides and generalizations about the mode of CaM binding to target proteins are made, which have wide relevance to the function of CaM. By analogy, a similar model is predicted for a CaM-beta-PT complex.  相似文献   

11.
The algorithm for the arrangement of hydrogen atoms in twist-hexacycle parametric structures of bound water is developed. The calculation of energetic properties is carried out using the TIP3P and Poltev-Malenkov potentials. Optimization of energy for these structures is fulfilled.  相似文献   

12.
A Monte Carlo algorithm that searches for the optimal docking configuration of hen egg white lysozyme to an antibody is developed. Both the lysozyme and the antibody are kept rigid. Unlike the work of other authors, our algorithm does not attempt to explicitly maximize surface contact, but minimizes the energy computed using coarse-grained pair potentials. The final refinement of our best solutions using all-atom OPLS potentials (Jorgensen and Tirado-Rives8) consistently yields the native conformation as the preferred solution for three different antibodies. We find that the use of an exponential distance-dependent dielectric function is an improvement over the more commonly used linear form. © 1993 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
Computer modeling 16 S ribosomal RNA   总被引:3,自引:0,他引:3  
A three-dimensional structure for 16 S RNA has been produced with a computer protocol that is not dependent on human intervention. This protocol improves upon traditional modeling techniques by using distance geometry to fold the molecule in an objective and reproducible fashion. The method is based on the secondary structure of RNA and treats the molecule as a set of double-stranded helices that are linked by flexible single-strands of variable length. Data derived from chemical cross-linking studies of 16 S RNA and tertiary phylogenetic relationships provide the constraints used to fold the molecule into a compact three-dimensional form. Possibly subjective evaluation of the input data are transformed into verifiable quantitative parameters. Relationships based on general locations within the 30 S subunit or on protein-RNA interactions have been specifically excluded. The resolution of the model exceeds that of electron micrographs and approaches that obtained in preliminary X-ray crystal structures. The model size of 245 x 190 x 140 A is compatible with that of the 30 S subunit as determined by electron microscopy. The volume of the model is 1.87 x 10(6) A which is similar to that of the small subunit in a preliminary X-ray crystal structure. The radius of gyration of the model structure of 76 A is intermediate to that seen for partially denatured and fully folded 16 S RNA. Computer graphics are used to display the results in a manner that maximizes the opportunities for human visual interpretation of the models. A format for displaying the structures has been developed that will make it possible for researchers who have not devoted themselves to ribosomal modeling to comprehend and make use of the information that the models embody. On this basis the computer-generated models are compared with models developed by other researchers and with structural data not included in the folding parameter data set.  相似文献   

16.
Brownian dynamics simulations are performed to investigate the role of long-range electrostatic forces in the association of the monoclonal antibody HyHEL-5 with hen egg lysozyme. The electrostatic field of the antibody is obtained from a solution of the nonlinear Poisson-Boltzmann using the x-ray crystal coordinates of this protein. The lysozyme is represented as an asymmetric dumbell consisting of two spheres of unequal size, an arrangement that allows for the modeling of the orientational requirements for docking. Calculations are done with the wild-type antibody and several point mutants at different ionic strengths. Changes in the charge distribution of the lysozyme are also considered. Results are compared with experiment and a simpler model in which the lysozyme is approximately by a single charged sphere.  相似文献   

17.
Structures of substrate bound human angiogenin complexes have been obtained for the first time by computer modeling. The dinucleotides CpA and UpA have been docked onto human angiogenin using a systematic grid search procedure in torsion and Eulerian angle space. The docking was guided throughout by the similarity of angiogenin-substrate interactions with interactions of RNase A and its substrate. The models were subjected to 1 nanosecond of molecular dynamics to access their stability. Structures extracted from MD simulations were refined by simulated annealing. Stable hydrogen bonds that bridged protein and ligand residues during the MD simulations were taken as restraints for simulated annealing. Our analysis on the MD structures and annealed models explains the substrate specificity of human angiogenin and is in agreement with experimental results. This study also predicts the B2 binding site residues of angiogenin, for which no experimental information is available so far. In the case of one of the substrates, CpA, we have also identified the presence of a water molecule that invariantly bridges the B2 base with the protein. We have compared our results to the RNase A-substrate complex and highlight the similarities and differences.  相似文献   

18.
The modes of binding of pGp,ApG,CpG and UpG to the enzyme ribonuclease T1 were determined by computer modeling. Essentially two binding modes are possible for all the four ligands--one with the 3'-phosphate group occupying the phosphate binding site (substrate mode of binding) and the second with the 5'-phosphate group occupying the phosphate binding site (inhibitor mode of binding). The latter binding mode is energetically favoured over the former and in this mode the base (G) and the 5'-phosphate moieties occupy the same sites on the enzyme as 5'-GMP when bound to RNase T1. The ribose moiety of pGp adopts a C3'-endo pucker form when bound to the enzyme and the glycosyl torsion angle will be in -syn range as 5'-GMP in the RNase T1-5'-GMP complex. Based on these results, a mechanism for the release of the product subsequent to cleavage of the substrate by the enzyme has been proposed. The amino acid residues Asn98 and Tyr45 are shown to form the subsites for the phosphate and the base respectively on the 5'-side of the guanine occupying the primary binding site. These studies also provide a stereochemical explanation for the specificity of the 1N subsite for adenine.  相似文献   

19.
In the context of simplified models of globular proteins, the requirements for the unique folding to a four-helix bundle have been addressed through a new Monte Carlo procedure. In particular, the relative importance of secondary versus tertiary interactions in determining the nature of the folded structure is examined. Various cases spanning the extremes where tertiary interactions completely dominate to that where tertiary interactions are negligible have been explored. Not surprisingly, the folding to unique four-helix bundles is found to depend on an adequate balance of the secondary and tertiary interactions. Moreover, because the simplified model is composed of spheres representing α-carbons and side chains, the geometry of the latter being based on small real amino acids, the role played by the side chains, and the problems associated with packing and hard-core repulsions, are considered. Also, possible folding intermediates and their relationship with the experimentally observed molten globule state are explored. From these studies, a general set of rules is extracted which should aid in the further design of more detailed protein models adequate to more fully investigate the protein folding problem. Finally, the relationship between our conclusions and experimental work with specifically designed sequences is briefly discussed. © 1993 Wiley-Liss, Inc.  相似文献   

20.
A computer program SAINT has been developed for the investigation of the structure and for the prediction of minimum-energy structure of polysaccharide-polysaccharide complexes. The energy minimization is carried out on internal geometrical parameters--namely bond angles, torsional angles, and five parameters describing the mutual orientations of polysaccharide chains. For this purpose, the nonderivative method of conjugated directions is used. This procedure was applied to computer modeling of an idealized model of the binary gelling kappa-carrageenan and galactomannan system. It is shown that the interaction between two chains influences the structure of the individual polysaccharide molecule and that in the minimum-energy structures of the complex, the conformation of the chains does not correspond to the lowest energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号