首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rpoS gene of Serratia entomophila BC4B was cloned and used to create rpoS-mutant strain BC4BRS. Larvae of the New Zealand grass grub Costelytra zealandica infected with BC4BRS became amber colored but continued to feed, albeit to a lesser extent than infected larvae. Subsequently, we found that expression of the antifeeding gene anfA1 in trans was substantially reduced in BC4BRS relative to that in the parental strain BC4B. Our data show that a functional rpoS gene is vital for full expression of anfA1 and for development of the antifeeding component of amber disease.  相似文献   

2.
Serratia entomophila and Serratia proteamaculans (Enterobacteriaceae) cause amber disease in the grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. Larval disease symptoms include cessation of feeding, clearance of the gut, amber coloration, and eventual death. A 155-kb plasmid, pADAP, carries the genes sepA, sepB, and sepC, which are essential for production of amber disease symptoms. Transposon insertions in any of the sep genes in pADAP abolish gut clearance but not cessation of feeding, indicating the presence of an antifeeding gene(s) elsewhere on pADAP. Based on deletion analysis of pADAP and subsequent sequence data, a 47-kb clone was constructed, which when placed in either an Escherichia coli or a Serratia background exerted strong antifeeding activity and often led to rapid death of the infected grass grub larvae. Sequence data show that the antifeeding component is part of a large gene cluster that may form a defective prophage and that six potential members of this prophage are present in Photorhabdus luminescens subsp. laumondii TTO1, a species which also has sep gene homologues.  相似文献   

3.
Two nifA-like genes, designated anfA and vnfA, have been identified in Azotobacter vinelandii. The anfA gene is located upstream from the nitrogenase-3 structural gene cluster (anfHDGK) and is preceded by a sequence that is potentially part of a ntrA-dependent promoter. The product of anfA appears to be required for expression of nitrogenase-3, since cells of the anfA deletion strain CA66 were unable to synthesize this nitrogenase when derepressed in N-free, Mo- and V-deficient medium. The vnfA gene was identified after determination of the nucleotide sequence of DNA flanking the Tn5 insertion in mutant strain CA46. Two open reading frames (ORF1 and ORF2) were found located upstream from the vnfA gene, and a nifE-like ORF, preceded by a possible ntrA-dependent promoter, was found downstream from this gene. It is not known whether vnfA is expressed only under N2-fixing conditions. However, potential ntrA-dependent promoters were found immediately upstream from vnfA (within the 3' end of ORF2) and immediately downstream from ORF1. The region spanning ORF1 and ORF2 contained an A + T-rich sequence that was also found immediately upstream from the potential ntrA-dependent promoter of anfA. The product of vnfA appears to be required for the synthesis of nitrogenase-2, since cells of strain CA46 synthesized only nitrogenase-1 and -3 but not nitrogenase-2 when grown in the presence of vanadium. The product of nifA, which is required for synthesis of nitrogenase-1, is not required for synthesis of either nitrogenase-2 or nitrogenase-3. However, growth data indicate that nifA is required for a factor (or factors) necessary for maximal diazotrophic growth under Mo- and V-deficient conditions.  相似文献   

4.
The homolog of the chromosomally encoded stationary-phase sigma factor RpoS in Borrelia burgdorferi was inactivated using gyrB(r) as a selectable marker. Two-dimensional nonequilibrium pH gradient electrophoresis of stationary-phase cell lysates identified at least 11 differences between the protein profiles of the rpoS mutant and wild-type organisms. Wild-type B. burgdorferi had a growth phase-dependent resistance to 1 N NaCl, similar to the stationary-phase response reported for other bacteria. The B. burgdorferi rpoS mutant strain was less resistant to osmotic stress in stationary phase than the isogenic rpoS wild-type organism. The results indicate that the B. burgdorferi rpoS homolog influences protein composition and participates in stationary-phase-dependent osmotic resistance. This rpoS mutant will be useful for studying regulation of gene expression in response to changing environmental conditions.  相似文献   

5.
Sigma S (sigma(s)) encoded by rpoS in Escherichia coli is a stationary phase specific sigma subunit of the RNA polymerase holoenzyme. Widespread among the E. coli K12 strains is an amber mutation that prematurely terminates sigma(s). These rpoSAm mutants would be expected to show no sigma(s) activity. However, suppressor free rpoSAm mutants retain an intermediate catalase activity, a sigma S controlled function. By analyzing the sequence of the rpoS gene we hypothesize that a 277 amino acids long delta1-53 sigma(s) of about 30 kDa can be translated from an internal secondary translation initiation region (STIR, AGGGAGN11GUG) that is located downstream of the amber codon. By cloning this rpoSAm gene, following the expression, function, and N-terminal sequence of this mutant protein, we report the presence of a functional internal STIR in E. coli rpoS, from where a truncated but nevertheless functional form of sigma(s) can be synthesized.  相似文献   

6.
Blackleg, caused by Leptosphaeria maculans, is one of the most economically important diseases of Brassica napus worldwide. Two blackleg resistance genes, LepR1 and LepR2, from B. rapa subsp. sylvestris (BRS) were previously identified. To transfer LepR1 and LepR2 from BRS into B. napus, interspecific hybridizations were made between the two species to form allotriploids. Analysis of microsatellite markers in two BC1 populations, WT3BC1 and WT4BC1, indicated that segregation fit a 1:1 ratio for BRS and non-BRS alleles on the A-genome linkage groups N2 and N10, the locations of LepR1 and LepR2, respectively. However, recombination frequencies in the allotriploid BC1 populations were at least twice those in the amphidiploid. The number of C-genome chromosomes in the BC1 plants was determined through marker analysis, which indicated averages of 5.9 and 5.0 per plant in the WT3BC1 and WT4BC1 populations, respectively. Two L. maculans isolates, WA51 and pl87-41, were used to differentiate plants carrying resistance genes LepR1 and LepR2. Surprisingly, only 4.0 and 16.6 % of the plants were resistant to isolates WA51 and pl87-41, respectively, in the WT3BC1 population, while 17.9 and 33.3 % of the plants were resistant to these isolates, respectively, in the WT4BC1 population. No association of resistance to isolate WA51 or pl87-41 with linkage group N2 or N10 was found. Based on cotyledon resistance and marker-assisted selection (MAS), BC1 plant WT4-4, which carried a resistance gene similar to LepR1, herein designated LepR1′, and BC2S1 plant WT3-21-25-9, which carried LepR2′, were identified. These plants were successively backcrossed with B. napus and MAS was employed in each generation to reduce non-resistance alleles associated with the BRS genome and to recover the full complement of C-genome chromosomes, resulting in highly blackleg-resistant B. napus lines.  相似文献   

7.
The basis of the bactericidal action of antibiotics and the mechanisms of antibiotic tolerance are largely unknown. To elucidate one of the mechanisms of antibiotic tolerance, the present study investigated the role of Pseudomonas aeruginosa quorum sensing (QS) and the rpoS gene in antibiotic tolerance. The survival rates of the lasR and lasI mutants were observed to be lower than that of the parental strain in time-dependent killing studies with 8 μg mL−1 ofloxacin, but the survival rates of the rhlR and rhlI mutants were not different from that of the parental strain. Moreover, a lasR -overexpressing strain was more tolerant to ofloxacin than the parental strain, but this was not the case for an rhlR -overexpressing strain. The mRNA expression levels of lasR , lasI , and rpoS in the wild-type strain in the presence of bactericidal concentration of ofloxacin were lower than that in the absence of ofloxacin. In addition, the significant loss of antibiotic tolerance in the lasR mutant was recovered by the overexpression of rpoS . These results suggest that the Las QS system in P. aeruginosa is involved in the development of ofloxacin tolerance, and the tolerance induced by the Las-system is regulated by rpoS gene.  相似文献   

8.
[背景]苯乙醇(2-Phenylethanol,2-PE)是一种具有玫瑰香气味的高级香料添加剂,被广泛应用于香水、化妆品、食品和医药等领域.目前,利用工程菌合成苯乙醇有很好的应用前景.我们分离到一株肠杆菌(Enterobactersp.)CGMCC 5087,其可以通过苯丙酮酸途径合成2-PE.然而该菌的生长受到不同环...  相似文献   

9.
通过菌落原位杂交和Southern杂交,从假单胞菌M18基因组文库中克隆了rpoS基因及相邻序列。为了深入研究影响rpoS基因表达的调控因素,运用同源重组技术,将无启动子β-半乳糖苷酶基因(-′lacZ)插入并融合于rpoS基因中,构建了假单胞菌M18rpoS基因突变株M18SZ。Miller法测定显示,突变株M18SZ的β-半乳糖苷酶可高达480U,而野生株检测不到β-半乳糖苷酶活性。表明,突变株中的rpoS基因与无启动子β-半乳糖苷酶基因已融合并且表达。在KMB培养基中生长量测定(OD600)的结果表明,突变株与野生株生长存在显著差异。  相似文献   

10.
11.
Mutations in coliphage p1 affecting host cell lysis   总被引:6,自引:1,他引:5       下载免费PDF全文
A total of 103 amber mutants of coliphage P1 were tested for lysis of nonpermissive cells. Of these, 83 caused cell lysis at the normal lysis time and have defects in particle morphogenesis. Five amber mutants, with mutations in the same gene (gene 2), caused premature lysis and may have a defect in a lysis regulator. Fifteen amber mutants were unable to cause cell lysis. Artificially lysed cells infected with five of these mutants produced viable phage particles, and phage particles were seen in thin sections of unlysed, infected cells. However, phage production by these mutants was not continued after the normal lysis time. We conclude that the defect of these five mutants is in a lysis function. The five mutations were found to be in the same gene (designated gene 17). The remaining 10 amber mutants, whose mutations were found to be in the same gene (gene 10), were also unable to cause cell lysis. They differed from those in gene 17 in that no viable phage particles were produced from artificially lysed cells, and no phage particles were seen in thin sections of unlysed, infected cells. We conclude that the gene 10 mutants cannot synthesize late proteins, and it is possible that gene 10 may code for a regulator of late gene expression for P1.  相似文献   

12.
13.
Escherichia coli K1 strains are predominant in causing neonatal meningitis. We have shown that invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for E. coli K1 crossing of the blood-brain barrier. BMEC invasion by E. coli K1 strain RS218, however, has been shown to be significantly greater with stationary-phase cultures than with exponential-phase cultures. Since RpoS participates in regulating stationary-phase gene expression, the present study examined a possible involvement of RpoS in E. coli K1 invasion of BMEC. We found that the cerebrospinal fluid isolates of E. coli K1 strains RS218 and IHE3034 have a nonsense mutation in their rpoS gene. Complementation with the E. coli K12 rpoS gene significantly increased the BMEC invasion of E. coli K1 strain IHE3034, but failed to significantly increase the invasion of another E. coli K1 strain RS218. Of interest, the recovery of E. coli K1 strains following environmental insults was 10-100-fold greater on Columbia blood agar than on LB agar, indicating that growing medium is important for viability of rpoS mutants after environmental insults. Taken together, our data suggest that the growth-phase-dependent E. coli K1 invasion of BMEC is affected by RpoS and other growth-phase-dependent regulatory mechanisms.  相似文献   

14.
To investigate regulatory networks in Legionella pneumophila, the gene encoding the homolog of the Escherichia coli stress and stationary-phase sigma factor RpoS was identified by complementation of an E. coli rpoS mutation. An open reading frame that is approximately 60% identical to the E. coli rpoS gene was identified. Western blot analysis showed that the level of L. pneumophila RpoS increased in stationary phase. An insertion mutation was constructed in the rpoS gene on the chromosome of L. pneumophila, and the ability of this mutant strain to survive various stress conditions was assayed and compared with results for the wild-type strain. Both the mutant and wild-type strains were more resistant to stress when in stationary phase than when in the logarithmic phase of growth. This finding indicates that L. pneumophila RpoS is not required for a stationary-phase-dependent resistance to stress. Although the mutant strain was able to kill HL-60- and THP-1-derived macrophages, it could not replicate within a protozoan host, Acanthamoeba castellanii. These data suggest that L. pneumophila possesses a growth phase-dependent resistance to stress that is independent of RpoS control and that RpoS likely regulates genes that enable it to survive in the environment within protozoa. Our data indicate that the role of rpoS in L. pneumophila is very different from what has previously been reported for E. coli rpoS.  相似文献   

15.
Though RpoS, an alternative sigma factor, is required for survival and adaptation of Escherichia coli under stress conditions, many strains have acquired independent mutations in the rpoS gene. The reasons for this apparent selective loss and the nature of the selective agent are not well understood. In this study, we found that some wild type strains grow poorly in succinate minimal media compared with isogenic strains carrying defined RpoS null mutations. Using an rpoS+ strain harboring an operon lacZ fusion to the highly-RpoS dependent osmY promoter as an indicator strain, we tested if this differential growth characteristic could be used to selectively isolate mutants that have lost RpoS function. All isolated (Suc+) mutants exhibited attenuated beta-galactosidase expression on indicator media suggesting a loss in either RpoS or osmY promoter function. Because all Suc+ mutants were also defective in catalase activity, an OsmY-independent, RpoS-regulated function, it was likely that RpoS activity was affected. To confirm this, we sequenced PCR-amplified products containing the rpoS gene from 20 independent mutants using chromosomal DNA as a template. Sequencing and alignment analyses confirmed that all isolated mutants possessed mutated alleles of the rpoS gene. Types of mutations detected included single or multiple base deletions, insertions, and transversions. No transition mutations were identified. All identified point mutations could, under selection for restoration of beta-galactosidase, revert to rpoS+. Revertible mutation of the rpoS gene can thus function as a genetic switch that controls expression of the regulon at the population level. These results may also help to explain why independent laboratory strains have acquired mutations in this important regulatory gene.  相似文献   

16.
灰葡萄孢分生孢子产生相关基因的克隆及功能分析   总被引:3,自引:0,他引:3  
[目的]克隆灰葡萄孢分生孢子产生相关基因,并研究其功能,为进一步研究灰葡萄孢分生孢子产生机理和灰葡萄孢侵染及致病机理奠定基础.[方法]通过筛选灰葡萄孢ATMT突变体库,获得一株不能产生分生孢子的突变菌株BCt78,采用PCR和Southern Blotting技术,对突变菌株BCt78进行分子鉴定.利用TAIL-PCR技术获得T-DNA插入位点的侧翼序列;将所获得侧翼序列与灰葡萄孢基因组数据库中的已知基因序列进行BLAST分析,推测出T-DNA的插入位点;通过PCR进一步验证T-DNA的插入位点,利用RT-PCR技术确定突变基因;最后对突变菌株的菌落形态、生长速度、胞壁降解酶活力、粗毒素的生物活性、对番茄叶片的致病能力及部分致病相关基因的表达情况进行研究.[结果]TAIL-PCR结果证实T-DNA插入到灰葡萄孢BCIG 12707.1基因的ATG起始密码子区;RT-PCR结果证实突变基因为BCIG_12707.1,该基因DNA全长为135 bp,编码一个44个氨基酸的假定蛋白(Hypothetical protein).突变菌株在PDA培养基上菌落呈灰白色,生长速度减慢,不能产生分生孢子及菌核;对番茄叶片的致病性增强,且胞壁降解酶(PG、PMG和Cx)活力增强;突变菌株中参与细胞壁降解的角质酶基因cutA和多聚半乳糖醛酸酶基因Bepg1,信号转导途径基因(PKA1、PKA2、Bac、Bmp3),产毒素基因BcBOT2(Sesquiterpene synthase),漆酶基因Lac1,跨膜蛋白基因Btp1表达都增强.[结论]BC1G_ 12707.1基因在灰葡萄孢分生孢子产生、菌核形成及致病力等方面起重要作用.  相似文献   

17.
Sixteen conditional lethal mutants of bacteriophage T4D have been isolated which grow on Escherichia coli CR63 (a su+ streptomycin-sensitive K12 strain) but are restricted by CR/s (a streptomycin-resistant derivative of CR63). These mutants have been given the prefix str. Four of these mutants are amber and 12 appear to be missense. Eleven of the 12 missense mutants appear to be "pseudo-amber" (i.e. they are restricted by a su- E. coli B strain but not by a su- K12 strain); the other missense mutant was not restricted by either B or K12. The str mutations mapped in 12 different genes. Most were clustered in a region of early genes (gene 56 to gene 47). Fifty-eight amber and 10 "pseudo-amber" mutants isolated previously for their inability to grow on E. coli B were tested for restriction by CR/s. All the amber mutants grew normally on CR/s, whereas all 10 "pseudo-amber" mutants were restricted by CR/s. This implies that the phenotype of the "pseudo-amber" mutants is the result of a ribosomal difference between the permissive host CR63 and the restrictive hosts B and CR/s. These str mutants should prove to be useful alternatives to amber mutants for genetic and biochemical studies of bacteriophage T4 and for studies of the E. coli ribosome. It should be possible ot isolate similar mutants in other bacteriophages provided that streptomycin resistant hosts are available.  相似文献   

18.
The alternative sigma factor, RpoS has been described as a central regulator of many stationary phase-inducible genes and a master stress-response regulator under various stress conditions. We constructed an rpoS mutant in Pseudomonas aeruginosa and investigated the role of rpoS gene in antibiotic tolerance. The survival of the rpoS mutant cells in stationary phase was approximately 70 times lower when compared with that of the parental strain at 37 degrees C for 2 h after the addition of biapenem. For imipenem, the survival was approximately 40 times lower. Heat stress promoted an increase in the survival of the parental strain to biapenem, but the same was not found to be the case for the rpoS mutant. Our results indicate that rpoS gene is involved in tolerance to antibiotics in P. aeruginosa during the stationary phase and heat stress. However, under osmotic stress, tolerance to biapenem was not dependent on the rpoS gene.  相似文献   

19.
To investigate the regulatory mechanism governing antifungal metabolite biosynthesis, two kinds of global regulator genes in Pseudomonas sp. M18, an rpoS and an rsmA gene, were cloned and mutated by inserting with an aacC1 cassette, respectively. Two mutants showed the same regulatory mode with repression of phenazine-1-carboxylic acid and remarkable enhancement of pyoluteorin. In the rpoS-mutant, a translational rsmA'-'lacZ fusion was expressed at the same level corresponding to that in the wild-type strain. In the rsmA-mutant, however, expression of the translational rpoS'-'lacZ fusion was only about 30% of that in the wild-type strain. The results indicated that the absence of RsmA leads to repression of the rpoS gene expression, which has further been confirmed with construction of chromosomal rpoS-lacZ fusion in the rsmA-mutant and the wild-type strain, respectively. The findings showed a new regulatory cascade controlling antifungal metabolite production in Pseudomonas sp. M18, suggesting that RpoS may serve as a mediator in RsmA-dependent regulation of secondary metabolite biosynthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号