首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The galactosylhydroxylysylglucosyltransferase (GGT) specific to collagen is located in the RER (rough endoplasmic reticulum), SER (smooth endoplasmic reticulum) and Golgi apparatus for the chick embryo liver. 2. The UDP-glucose collagen glucosyltransferase activities in chick embryo liver were solubilized by Nonidet P-40. 3. The mechanism of collagen glucosyltransferase reaction was studied with enzyme preparation of Golgi apparatus CF2, smooth endoplasmic reticulum CF4 and rough endoplasmic reticulum CF8. 4. For the three fractions, data obtained in experiments were consistent with a sequential ordered mechanism in which the substrates are bound to the enzyme in the following order: Mn2+, collagen and UDP-glucose substrate, with different values for Km and Vmax.  相似文献   

2.
Kinectin, a major kinesin-binding protein on ER   总被引:27,自引:5,他引:22       下载免费PDF全文
Previous studies have shown that microtubule-based organelle transport requires a membrane receptor but no kinesin-binding membrane proteins have been isolated. Chick embryo brain microsomes have kinesin bound to their surface, and after detergent solubilization, a matrix with an antibody to the kinesin head domain (SUK-4) (Ingold et al., 1988) bound the solubilized kinesin and retained an equal amount of a microsome protein of 160-kD. Similarly, velocity sedimentation of solubilized membranes showed that kinesin and the 160-kD polypeptide cosedimented at 13S. After alkaline treatment to remove kinesin from the microsomes, the same 160-kD polypeptide doublet bound to a kinesin affinity resin and not to other proteins tested. Biochemical characterization localized this protein to the cytoplasmic face of brain microsomes and indicated that it was an integral membrane protein since it was resistant to alkaline washing. mAbs raised to chick 160-kD protein demonstrated that it was absent in the supernatant and concentrated in the dense microsome fraction. The dense microsome fraction also had the greatest amount of microtubule-dependent motility. With immunofluorescence, the antibodies labeled the ER in chick embryo fibroblasts (similar to the pattern of bound kinesin staining in the same cells) (Hollenbeck, P. J. 1989. J. Cell Biol. 108:2335-2342), astroglia, Schwann cells and dorsal root ganglion cells but staining was much less in the Golgi regions of these cells. Because this protein is a major kinesin-binding protein of motile vesicles and would be expected to bind kinesin to the organelle membrane, we have chosen the name, kinectin, for this protein.  相似文献   

3.
Morphological studies were carried out on fibroblasts from chick embryo tendons, cells which have been used in a number of recent studies on collagen biosynthesis. The cells were relatively rich in endoplasmic reticulum and contained a well-developed Golgi complex comprised of small vesicles, stacked membranes, and large vacuoles. Techniques were then devised for preparing cell fragments which were penetrated by ferritin-antibody conjuates but which retained the essential morphological features of the cells. Finally, the new procedures were employed to develop further information as to how collagen is synthesized. As reported elsewhere, preliminary studies with ferritin-labeled antibodies showed that prolyl hydroxylase was found in the endoplasmic reticulum of freshly isolated fibroblasts and that procollagen is found in both the cisternae of the endoplasmic reticulum and the large Golgi vacuoles. In the experiments described here, the cells were manipulated so that amino acids continued to be incorporated into polypeptide chains but assembly of the molecule was not completed because hydroxylation of prolyl and lysyl residues was prevented. The results indicated that these manipulations produced no change in the distribution of prolyl hydroxylase. Examination of the cells with ferritin conjugated to antibodies which reacted with protocollagen, the unhydroxylated form of procollagen, demonstrated that protocollagen was retained in the cisternae of the endoplasmic reticulum during inhibition of the prolyl and lysyl hydroxylases. Assays for prolyl hydroxylase with an immunologic technique demonstrated that although the enzyme is found within the endoplasmic reticulum, it is not secreted along with procollagen. The observations provided further evidence for a special role for prolyl hydroxylase in the control of collagen biosynthesis.  相似文献   

4.
Glycoproteins of the lysosomal membrane   总被引:51,自引:30,他引:21       下载免费PDF全文
Three glycoprotein antigens (120, 100, and 80 kD) were detected by mono- and/or polyclonal antibodies generated by immunization with highly purified rat liver lysosomal membranes. All of the antigens were judged to be integral membrane proteins based on the binding of Triton X-114. By immunofluorescence on normal rat kidney cells, a mouse monoclonal antibody to the 120-kD antigen co-stained with a polyclonal rabbit antibody that detected the 100- and 80-kD antigens as well as with antibodies to acid phosphatase, indicating that these antigens are preferentially localized in lysosomes. Few 120-kD-positive structures were found to be negative for acid phosphatase, suggesting that the antigen was not concentrated in organelles such as endosomes, which lack acid phosphatase. Immunoperoxidase cytochemistry also showed little reactivity in Golgi cisternae, coated vesicles, or on the plasma membrane. Digestion with endo-beta-N-acetylglucosaminidase H (Endo H) and endo-beta-N-acetylglucosaminidase F (Endo F) demonstrated that each of the antigens contained multiple N-linked oligosaccharide chains, most of which were of the complex (Endo H-resistant) type. The 120-kD protein was very heavily glycosylated, having at least 18 N-linked chains. It was also rich in sialic acid, since neuraminidase digestion increased the pI of the 120-kD protein from less than 4 to greater than 8. Taken together, these results strongly suggest that the glycoprotein components of the lysosomal membrane are synthesized in the rough endoplasmic reticulum and terminally glycosylated in the Golgi before delivery to lysosomes. We have provisionally designated these antigens lysosomal membrane glycoproteins lgp120, lgp100, lgp80.  相似文献   

5.
N L Kedersha  J S Tkacz  R A Berg 《Biochemistry》1985,24(21):5952-5960
Prolyl hydroxylase is a tetrameric glycoprotein that catalyzes a vital posttranslational modification in the biosynthesis of collagen. The enzyme purified from whole chick embryos (WCE) possesses two nonidentical subunits, alpha and beta, and has been shown by several techniques to reside in the endoplasmic reticulum of chick embryo fibroblasts. The studies described here demonstrate that the larger of the two subunits (alpha) exists in two forms in chick embryo fibroblasts (CEF); these two forms differ in carbohydrate content. The larger alpha subunit, alpha', contains two N-linked high mannose oligosaccharides, each containing eight mannose units; the smaller subunit, alpha, contains a single seven-mannose N-linked oligosaccharide. Both oligosaccharides could be cleaved by endo-beta-N-acetylglucosaminidase H and completely digested with alpha-mannosidase to yield mannosyl-N-acetylglucosamine.  相似文献   

6.
We have prepared polyclonal antibodies to the cytoplasmic portion of the envelope glycoprotein G of vesicular stomatitis virus (VSV) by using synthetic peptides corresponding to either the 22 or 11 ultimate carboxy-terminal residues of the G as immunogens. When antibodies to the 22 residue peptide are microinjected into monolayer baby hamster kidney cells before or shortly after infection with wild-type VSV, G protein accumulates in large intracellular patches and little G is observed in the Golgi complex or at the cell surface. In contrast, when antibodies to the 11 residue peptide are injected, no such patches are observed and G protein is seen colocalized with the injected antibody at the endoplasmic reticulum, in the Golgi complex, in transport vesicles, and at the plasma membrane. Microinjection of these antibodies does not disturb the pathway or kinetics of G-protein transport. In cells infected with a temperature-sensitive mutant of VSV, 045, the glycoprotein accumulates in the endoplasmic reticulum at 39.8 degrees C, but rapidly moves through the Golgi apparatus and then to the cell surface after a temperature shift-down to 32 degrees C. Using rhodamine-coupled antibodies to the 11 residue peptide, a microscope stage equipped for precise temperature control, and a silicon intensifier target video camera, we can visualize by video light microscopy the synchronized exocytotic transport of the G protein directly in the living cell.  相似文献   

7.
Purified Golgi membranes of the human intestinal adenocarcinoma cell line Caco-2 were used as an antigen to produce a monoclonal antibody, G1/93, which specifically labels a tubulovesicular compartment near the cis side of the Golgi apparatus, including the first cis-cisterna itself, as visualized by single and double immunoelectron microscopy with antibodies against galactosyltransferase. The antigen recognized by G1/93 was identified as a protein with a subunit size of 53 kD. Pulse-chase experiments revealed that the 53-kD protein dimerizes immediately after synthesis followed by formation of oligomers of approximately 310 kD, probably homohexamers. The protein has a transmembrane topology with only a short cytoplasmic segment as assessed by protease protection experiments. Glycosidase digestion studies indicated that the protein is probably not glycosylated. The unique subcellular distribution of the G1/93 antigen in close vicinity to the cis-Golgi is in line with the notion that this protein may delineate the biosynthetic transport pathway from the endoplasmic reticulum to the Golgi apparatus. Moreover, G1/93 is a useful marker to identify the cis side of the Golgi apparatus in a variety of human cells.  相似文献   

8.
Rotavirus, a non-enveloped reovirus, buds into the rough endoplasmic reticulum and transiently acquires a membrane. The structural glycoprotein, VP7, a 38-kD integral membrane protein of the endoplasmic reticulum (ER), presumably transfers to virus in this process. The gene for VP7 potentially encodes a protein of 326 amino acids which has two tandem hydrophobic domains at the NH2-terminal, each preceded by an in-frame ATG codon. A series of deletion mutants constructed from a full-length cDNA clone of the Simian 11 rotavirus VP7 gene were expressed in COS 7 cells. Products from wild-type, and mutants which did not affect the second hydrophobic domain of VP7, were localized by immunofluorescence to elements of the ER only. However, deletions affecting the second hydrophobic domain (mutants 42-61, 43-61, 47-61) showed immunofluorescent localization of VP7 which coincided with that of wheat germ agglutinin, indicating transport to the Golgi apparatus. Immunoprecipitable wild-type protein, or an altered protein lacking the first hydrophobic sequence, remained intracellular and endo-beta-N-acetylglucosaminidase H sensitive. In contrast, products of mutants 42-61, 43-61, and 47-61 were transported from the ER, and secreted. Glycosylation of the secreted molecules was inhibited by tunicamycin, resistant to endo-beta-N-acetylglucosaminidase H digestion and therefore of the N-linked complex type. An unglycosylated version of VP7 was also secreted. We suggest that the second hydrophobic domain contributes to a positive signal for ER location and a membrane anchor function. Secretion of the mutant glycoprotein implies that transport can be constitutive with the destination being dictated by an overriding compartmentalization signal.  相似文献   

9.
During infection of sac- cells by murine coronavirus MHV A59 the intracellular sites at which progeny virions bud correlate with the distribution of the viral glycoprotein E1. Budding is first detectable by electron microscopy at 6 to 7 hours post infection in small, smooth, perinuclear vesicles and tubules in a region transitional between the rough endoplasmic reticulum and the Golgi apparatus. At later times the rough endoplasmic reticulum becomes the major site of budding and accumulation of progeny virus particles. Indirect immunofluorescence microscopy shows that E1 is confined at 6 hours post infection to the perinuclear region while at later times it also accumulates in the endoplasmic reticulum. At 6 hours post infection the second viral glycoprotein, E2, is distributed throughout the endoplasmic reticulum and is not restricted to the site at which budding begins. Core protein, the third protein in virions, can be detected 2 hours before E1 is detectable and budding begins, and at 6 hours post infection it is distributed throughout the cytosol. We conclude that the time and the site at which the maturation of progeny virions occurs is determined by the accumulation of glycoprotein E1 in intracellular membranes. Only rarely do progeny virions bud directly into the cisternae of the Golgi apparatus but at least some already budded virions are transported to the Golgi apparatus where they occur in structures some of which also contain TPPase, a trans Golgi marker.  相似文献   

10.
There is increasing evidence localizes the mitochondrial chaperone heat shock protein (HSP)60, outside the cell, where it mediates interactions between immune cells and other body tissues. However, the mechanisms by which HSP60 is secreted into the extracellular environment are not fully understood. Recent studies have shown that HSP60 is actively released by a nonconventional secretion mechanism, the lipid raft-exosome pathway. In the present study, we show for the first time that HSP60, produced by 3-methylcholantrene-induced fibrosarcoma tumour cells, is secreted through the conventional endoplasmic reticulum-Golgi secretory pathway. Confocal microscopy using anti-TGN38 and anti-HSP60 antibodies together with monensin, a Golgi transport inhibitor, demonstrated the relocation of HSP60 to the Golgi of malignant cells but not primary fibroblast cells subjected to heat shock or fibroblast cell lines. Transmission electron microscopy, flow cytometry and cell fractionation of cell treated with brefeldin A, an inhibitor of endoplasmic reticulum to Golgi protein transport, further indicated that HSP60 is present both in the endoplasmic reticulum and the Golgi complex of malignant cells. We found a single mRNA with a mitochondrial targeting sequence encoding for HSP60 in the malignant cells but two HSP60 translation products, namely the native unmodified protein and a protein post-translationally modified by N-glycosylation. The N-glycans observed were composed of high-mannose structures and bi-, tri- and tetra-antennary complex type structures occupying sites of the three potential glycosylation sites present on HSP60. Accordingly, we propose that HSP60 in malignant cells is transported through the endoplasmic reticulum-Golgi secretion pathway, where it acquires N-glycans, and thus can affect the immunological properties of the proteins in the tumour microenvironment.  相似文献   

11.
Victorin-binding proteins (VBPs) in oat (Avena sativa) cells were identified using native victorin and anti-victorin polyclonal antibodies. Homogenates of oat tissues were fractionated in continuous or discontinuous sucrose density gradients or with an aqueous two-phase method, and covalent binding sites of victorin were detected by western blotting. In a 20 to 45% (w/w) sucrose continuous density gradient, the 100-kD VBP was located in fractions of 37 to 44% sucrose, with a peak at 39% sucrose. Based on marker enzyme assays, plasma membranes peaked at 39 to 41% sucrose, mitochondria peaked at 41%, but Golgi and endoplasmic reticulum were in lower density fractions, peaking at 28 to 29% and 22 to 24% sucrose, respectively. The 100-kD VBP was not found in plasma membranes purified by the aqueous two-phase method or in mitochondria purified by discontinuous density gradient centrifugation. Victorin binding to 65- and 45-kD proteins was detected in all fractions in the continuous sucrose density gradients. The 65- and 45-kD proteins were both detected in purified plasma membranes, but only the 65-kD protein was detected in purified mitochondria. The subcellular location of VBPs was the same in sensitive and resistant oat cells.  相似文献   

12.
We have previously reported the production of monoclonal antibodies directed against phosphotyrosine, which is the modification induced by many oncogene products and growth factor receptors. One of these antiphosphotyrosine antibodies (py20) was used in affinity chromatography to isolate phosphotyrosine (PY)-containing proteins from Rous sarcoma virus-transformed chick embryo fibroblasts (RSV-CEFs). Mice were immunized with these PY-proteins for the production of monoclonal antibodies to individual substrates. Fifteen antibodies were generated in this way to antigens with molecular masses of 215, 76, 60, and 22 kD. Antibodies to individual substrates were used to analyze the subcellular location in normal and RSV-CEFs. Antibodies to the 215- and 76-kD antigen stained focal contacts when used in immunofluorescence microscopy while anti-22-kD protein antibodies resulted in punctate staining concentrated in the margins of cells and in parallel arrays. Both distributions were altered in transformed cells. When cells were extracted with nonionic detergent under conditions that stabilize the cytoskeleton, 50% of the 76-kD protein and greater than 90% of the 22-kD protein fractionated with the cytoskeleton. This study offers a new approach to both the identification of membrane skeletal proteins in fibroblasts and changes that occur upon transformation by an activated tyrosine kinase.  相似文献   

13.
14.
The Golgi apparatus is important for the transport of secretory cargo. Glycosylation is a major post-translational event. Recognition of O-glycans on proteins is necessary for glycoprotein trafficking. In this study, specific inhibition of O-glycosylation (Golgi stress) induced the expression of endoplasmic reticulum (ER)-resident heat shock protein (HSP) 47 in NIH3T3 cells, although cell death was not induced by Golgi stress alone. When HSP47 expression was downregulated by siRNA, inhibition of O-glycosylation caused cell death. Three days after the induction of Golgi stress, the Golgi apparatus was disassembled, many vacuoles appeared near the Golgi apparatus and extended into the cytoplasm, the nuclei had split, and cell death assay-positive cells appeared. Six hours after the induction of Golgi stress, HSP47-knockdown cells exhibited increased cleavage of Golgi-resident caspase-2. Furthermore, activation of mitochondrial caspase-9 and ER-resident unfolded protein response (UPR)-related molecules and efflux of cytochrome c from the mitochondria to the cytoplasm was observed in HSP47-knockdown cells 24 h after the induction of Golgi stress. These findings indicate that (i) the ER-resident chaperon HSP47 protected cells from Golgi stress, and (ii) Golgi stress-induced cell death caused by the inhibition of HSP47 expression resulted from caspase-2 activation in the Golgi apparatus, extending to the ER and mitochondria.  相似文献   

15.
Three distinct antiprocollagen preparations were characterized and used in immunocytochemical staining of chick embryo corneal and tendon cells. The several ferritin-conjugated antibody preparations permitted similar location of procollagen in the cisternae of the rough endoplasmic reticulum and in Golgi elements in both cell types. The ability to demonstrate and interpret specific ferritin staining was dependent on the extent of membrane breakage in each of those organelles, coupled with adequate retention of cell morphology. Corneal fibroblasts appeared to suffer more extensive intracellular membrane damage under controlled conditions of homogenization than tendon fibroblasts, facilitating the identification of procollagen in Golgi vacuoles of these cells. None of the labeled material appeared to by cytoplasmic in origin since ferritin was observed in the cytoplasm only in the vicinity of Golgi elements that were extensively broken. This study extends previous immunological evidence for the presence of procollagen in the Golgi complex and calls attention to the problems to be encountered in locating the antigen in small Golgi vesicles and lamellae.  相似文献   

16.
In a previous communication we reported that the newly synthesized membrane glycoprotein of vesicular stomatitis virus could be transported in crude extracts of CHO cells from endoplasmic reticulum-derived membranes to membranes of the Golgi complex. This conclusion was an indirect one, based on the terminal glycosylation of this glycoprotein, a reaction that was dependent upon a Golgi-specific enzyme, UDP-GlcNAc transferase I. We show here that the Golgi fraction of rat liver will substitute for members of CHO cells as a source of transferase I in this reaction. The use of highly purified fractions of liver Golgi membranes, coupled with the ability to recover these membranes from incubations, has now permitted a direct demonstration of net transport of G protein to these heterologous Golgi membranes. This transport reaction is specific, in that the smooth endoplasmic reticulum fraction will not substitute for the Golgi fraction, is quantitatively significant, involving at least 30% of the viral glycoprotein, and is sustained only in the presence of both ATP and a soluble, cytosol fraction of liver cells.  相似文献   

17.
To determine whether antibodies would interfere with the folding of glycoprotein antigens in the endoplasmic reticulum lumen of living cells, hybridoma cells producing monoclonal anti-hemagglutinin (HA) antibodies were infected with influenza virus. The fate of the newly synthesized HA was determined using an established pulse-chase approach. When the monoclonal antibodies were against epitopes present on early folding intermediates, folding and intracellular transport of HA to the Golgi complex were severely disturbed. On the other hand, when the antibodies were specific for the native HA trimers, immune complexes were formed, but folding or transport of HA was not affected. The use of antibodies in this way provided in situ information about the protein folding process inside the endoplasmic reticulum lumen of cells without external perturbation of the folding chains or the folding compartment.  相似文献   

18.
Reichert's membrane and the endodermal cells of the parietal yolk sac were examined for the presence of laminin antigenicity using anti-laminin antibodies and the peroxidase-antiperoxidase sequence. Immunostaining was observed through the full width of Reichert's membrane and within endodermal cells. In these cells immunostaining was observed in rough endoplasmic reticulum (rER) cisternae and Golgi apparatus. The Golgi staining could occur in any saccule, but predominated in components interpreted as the last saccule of the stack, the GERL element, and associated prosecretory granules. The secretory granules found in the ectoplasm were also immunostained. Finally, multivesicular bodies showed some staining. The immunostaining of Reichert's membrane indicates the presence of laminin itself, while that of rER cisternae and the Golgi apparatus is attributed to laminin precursors. Presumably the biosynthesis of laminin occurs along the usual protein pathway, that is, from rER through Golgi saccules and the GERL element to secretory granules, which release their content into Reichert's membrane. The laminin immunostaining of Reichert's membrane and endodermal cells is similar to that of type IV collagen. It is, therefore, likely that the two substances are processed and secreted simultaneously.  相似文献   

19.
We report the reconstitution of the transfer of a membrane glycoprotein (vesicular stomatitis virus glycoprotein, VSV-G protein) from endoplasmic reticulum to Golgi apparatus and its subsequent Man8-9GlcNAc2 to Man5GlcNAc2 processing in a completely cell-free system. The acceptor was Golgi apparatus from rat liver immobilized on nitrocellulose. The endoplasmic reticulum donor was from homogenates of VSV-G-infected BHK cells. Nucleoside triphosphate plus cytosol-dependent transfer and processing of radiolabeled VSV-G protein was observed with donor from BHK cells infected at 37 degrees C with wild-type VSV or at the permissive temperature of 34 degrees C with the ts045 mutant. With Golgi apparatus as acceptor, specific transfer at 37 degrees C in the presence of nucleoside triphosphate was eightfold that at 4 degrees C or in the absence of ATP. About 40% of the VSV-G protein transferred was processed to the Man5GlcNAc2 form. Processing was specific for cis Golgi apparatus fractions purified by preparative free-flow electrophoresis. Fractions derived from the trans Golgi apparatus were inactive in processing. With the ts045 temperature-sensitive mutant, transfer and processing were much reduced even in the complete system when microsomes were from cells infected with mutant virus and incubated at the restrictive temperature of 39.5 degrees C but were able to proceed at the permissive temperature of 34 degrees C. Thus, Man8-9GlcNAc2 to Man5GlcNAc2 processing of VSV-G protein occurs following transfer in a completely cell-free system using immobilized intact Golgi apparatus or cis Golgi apparatus cisternae as the acceptor and shows temperature sensitivity, donor specificity, requirement for ATP, and response to inhibitors similar to those exhibited by transfer and processing of VSV-G protein in vivo.  相似文献   

20.
Antibodies prepared against enzymatically deglycosylated porcine submaxillary gland mucin (apomucin), which were unreactive with native mucin and its partially deglycosylated derivatives, were used to immunolocalize apomucin in situ. Electron microscopy of sections of Lowicryl K4M-embedded tissue reacted successively with antibodies and protein A-gold complexes showed apomucin exclusively in mucous cells within the rough endoplasmic reticulum, transitional elements of the endoplasmic reticulum, and vesicles at the cis side of the Golgi apparatus. The Golgi apparatus, forming mucous droplets, and mucous droplets contained no apomucin. Although the rough endoplasmic reticulum contained most of the apomucin in mucous cells, some cisternae of the endoplasmic reticulum and the nuclear envelope were devoid of apomucin. Examination of tissue sections treated with the glycosidases used to prepare apomucin revealed immunolabel for apomucin throughout the secretory pathway. Colloidal gold coated with Helix pomatia lectin was used to detect nonreducing N-acetylgalactosamine residues. In mucin-producing cells lectin-gold was found in the mucous droplets, the forming mucous droplets, and throughout the Golgi apparatus but mostly in the cis portion of this organelle. In tissue sections reacted successively with lectin-gold and anti-apomucin/protein A-gold, both types of gold complex could be found in the cis side of the Golgi apparatus. These data indicate that the O-glycosylation of mucin is a posttranslational event that occurs in the Golgi apparatus and begins in the cis side of the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号