首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Types of opioid receptors: relation to antinociception   总被引:5,自引:0,他引:5  
The endogenous opioid peptides are derived from three large precursors. Pro-opiocortin and proenkephalin yield [Met]enkephalin, carboxy-extended [Met]enkephalins and [Leu]enkephalin. The fragments of prodynorphin are all carboxy-extended [Leu]enkephalins. Three approaches are of importance for an analysis of the physiological functions of the different endogenous opioid peptides. First, since these peptides interact with more than one of the mu-, delta- and kappa-binding sites and thus with their receptors, it is necessary to synthesize peptides or non-peptides, which bind to only one of the sites. As far as narcotic analgesics are concerned, morphine fulfils these conditions since it interacts almost exclusively with the mu-receptor. Secondly, antagonists are required that are selective for only one of the opioid receptors, even when used in high concentrations. Finally, it is important to find circumscribed areas in the nervous system that possess only one type of opioid receptor. It is now known that in the rabbit cerebellum the opioid receptors are almost exclusively of the mu-type whereas in the guinea-pig cerebellum they are almost exclusively of the kappa-type.  相似文献   

2.
3.
Supraspinal opioid antinociception is mediated by sensitive brain sites capable of supporting this response following microinjection of opioid agonists. These sites include the ventrolateral periaqueductal gray (vIPAG), the rostral ventromedial medulla (RVM), the locus coeruleus and the amygdala. Each of these sites comprise an interconnected anatomical and physiologically relevant system mediating antinociceptive responses through regional interactions. Such interactions have been identified using two pharmacological approaches: (1) the ability of selective antagonists delivered to one site to block antinociception elicited by opioid agonists in a second site, and (2) the presence of synergistic antinociceptive interactions following simultaneous administration of subthreshold doses of opioid agonists into pairs of sites. Thus, the RVM has essential serotonergic, opioid, cholinergic and NMDA synapses that are necessary for the full expression of morphine antinociception elicited from the vIPAG, and the vIPAG has essential opioid synapses that are necessary for the full expression of opioid antinociception elicited from the amygdala. Further, the vIPAG, RVM, locus coeruleus and amygdala interact with each other in synergistically supporting opioid antinociception.  相似文献   

4.
5.
Fentanyl (FEN) and diprenorphine's (DIPR) potentials for analgesia and reinforcement were assayed using rats. Analgesia was measured by the classic tail-flick test. The test germane to opioid reinforcement involved measuring pressing rates for direct electrical stimulation of the lateral hypothalamus and ventral tegmental area. FEN, as does morphine and heroin, produced strong analgesia and enhanced pressing rates for brain stimulation. DIPR produced no analgesia and antagonized FEN's analgesia. DIPR, at doses antagonizing FEN's analgesia, enhanced pressing for brain stimulation. DIPR's enhancement of pressing was antagonized by naloxone (100 micrograms/kg). When FEN and DIPR were given concurrently, pressing for brain stimulation was not reduced and was greater than after FEN alone was given. These data support a conclusion that different types of receptors are associated with opioid analgesia and reinforcement.  相似文献   

6.
Gao L  Yu LC 《Regulatory peptides》2004,120(1-3):53-58
Recent studies showed that oxytocin and opioid peptides play important roles in pain modulation at different levels in the central nervous system. The present study was performed to explore whether opioid system is involved in the oxytocin-induced antinociception in the brain of rats. The results showed that: (1) intracerebroventricular injection of oxytocin induced dose-dependent increases in hindpaw withdrawal latencies (HWL) to noxious thermal and mechanical stimulation in rats. (2) The antinociceptive effect of oxytocin was attenuated dose-dependently by intracerebroventricular injection of naloxone, indicating an involvement of opioid system in the oxytocin-induced antinociception. (3) It is interesting that the antinociceptive effect of oxytocin was attenuated by subsequent intracerebroventricular injection of the μ-opioid antagonist β-funaltrexamine (β-FNA) and the κ-opioid antagonist nor-binaltorphimine (nor-BNI), but not the δ-opioid antagonist naltrindole. The results indicate that oxytocin plays an antinociceptive role in the brain of rats; μ- and κ-opioid receptors, not δ-receptors, are involved in the oxytocin-induced antinociception in the central nervous system of rats.  相似文献   

7.
8.
Z H Song  A E Takemori 《Life sciences》1991,48(15):1447-1453
The modulatory effects of intrathecally (i.t.) administered dynorphin A(1-17) and dynorphin A(1-13) on morphine antinociception have been studied previously in rats by other investigators. However, both potentiating and attenuating effects have been reported. In this study, the modulatory effects of i.t. administered dynorphin A(1-17) as well as the smaller fragment, dynorphin A(1-8), were studied in mice. In addition, nor-binaltorphimine (nor-BNI), a highly selective kappa opioid receptor antagonist, and naltrindole (NTI), a highly selective delta opioid receptor antagonist, were used to characterize the possible involvement of spinal kappa and delta opioid receptors in the modulatory effects of the dynorphins. Dynorphin A(1-17) and dynorphin A(1-8) administered i.t. at doses that did not alter tail-flick latencies, were both able to antagonize in a dose-dependent manner, the antinociceptive action of s.c. administered morphine sulfate. The antinociceptive ED50 of morphine sulfate was increased 3.9- and 5.3-fold by 0.4 nmol/mouse of dynorphin A(1-17) and dynorphin A(1-8), respectively. Injections of 0.4 and 0.8 nmol/mouse of nor-BNI i.t., but not its inactive enantiomer (+)-1-nor-BNI, inhibited dose-dependently the antagonistic effects of the dynorphins. These doses of nor-BNI alone did not affect the antinociceptive action of morphine sulfate. Intrathecal administration of 5 nmol/mouse of NTI also did not affect the modulatory effects of dynorphins. These observations that dynorphins exert their antagonistic effects on morphine-induced antinociception stereoselectively through spinal kappa opioid receptors may suggest a coupling between spinal kappa and mu opioid receptors.  相似文献   

9.
Hruby VJ  Agnes RS 《Biopolymers》1999,51(6):391-410
The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors. In turn, this had led to insights into the three-dimensional pharmacophore for opioid receptors. In this article we review and discuss some of the developments that have led to potent, selective, and stable peptide and peptidomimetic ligands that are highly potent and selective, and that have delta agonist, mu antagonist, and kappa agonist biological activities (other authors in this issue will discuss the development of other types of activities and selectivities). These have led to ligands that provide unique insight into opioid pharmacophores and the critical roles opioid ligands and receptor scan play in pain, addiction, and other human maladies.  相似文献   

10.
A series of carbamate analogues were synthesized from levorphanol (1a), cyclorphan (2a) or butorphan (3a) and evaluated in vitro for their binding affinity at mu, delta, and kappa opioid receptors. Functional activities of these compounds were measured in the [(35)S]GTPgammaS binding assay. Phenyl carbamate derivatives 2d and 3d showed the highest binding affinity for kappa receptor (K(i)=0.046 and 0.051 nM) and for mu receptor (K(i)=0.11 and 0.12 nM). Compound 1c showed the highest mu selectivity. The preliminary assay for agonist and antagonist properties of these ligands in stimulating [(35)S]GTPgammaS binding mediated by the kappa opioid receptor illustrated that all of these ligands were kappa agonists. At the mu receptor, compounds 1b, 1c, 2b, and 3b were agonists, while compounds 2c-e and 3c-e were mu agonists/antagonists.  相似文献   

11.
The three types of IgG FcR (Fc gamma RI, Fc gamma RII, Fc gamma RIII) on human leukocytes play an important role in elimination of antibody-coated infectious agents. To further understand the role of the different Fc gamma R in mediating this killing, we examined the ability of human myeloid and lymphoid cells to kill the protozoan Toxoplasma gondii in the presence of antitoxoplasma IgG or bispecific antibodies. Although human myeloid cells (monocytes, macrophages, neutrophils, and eosinophils) all lysed unsensitized T. gondii, killing by these cells was significantly enhanced by opsonization with antitoxoplasma rabbit IgG. Human lymphocytes, however, did not lyse T. gondii unless the parasites were coated with antibody. The role of antibody and Fc gamma R in mediating ADCC of T. gondii was then examined using bispecific antibodies made by chemically cross-linking Fab fragments of antitoxoplasma antibodies to Fab fragments of antibodies specific for human leukocyte surface Ag, including Fc gamma R. Thus, simultaneous binding of these bispecifics to parasites and effector cells allowed an evaluation of killing when T. gondii were targeted to each Ag independently. Bispecifics which targeted T. gondii to Fc gamma RI, II or III enhanced lysis by monocytes. However, similar results were obtained with bispecifics targeting T. gondii to non-Fc gamma R Ag (CD11b or beta 2-microglobulin) on monocytes. Likewise, polymorphonuclear leukocytes mediated significantly more lysis in the presence of bispecifics linking T. gondii to Fc gamma RII, Fc gamma RIII, or the two non-Fc gamma R Ag CD11b and beta 2-microglobulin. Thus, although human myeloid cells did not require antibody-Fc gamma R triggering to kill T. gondii, antibody appeared to enhance lysis by capturing and directing the parasites to the effector cell surface. Human lymphocytes, in contrast, mediated significant lysis of T. gondii only in the presence of bispecifics targeting T. gondii to Fc gamma RIII, indicating a requirement for specific triggering of Fc gamma RIII for killing by large granular lymphocytes. Consequently, using bispecifics to compare targeting to specific Ag, both non-Fc gamma R and Fc gamma R, allowed determination of the role of antibody-Fc gamma R interactions in T. gondii killing. In addition, these studies demonstrate the potential of bispecifics in determining the role of specific Ag in killing of or infection by pathogens.  相似文献   

12.
Zhu JX  Tang JS  Jia H 《生理学报》2004,56(6):697-702
本文旨在研究阿片受体是否参与丘脑中央下核(nucleus submedius,Sm)和顶盖前区前核(anterior pretectal nucleus,APtN)所介导的不同强度电针的镇痛作用。以辐射热诱发甩尾(tail flick,TF)反射潜伏期为伤害性反应的指标,观察了Sm和APtN微量注射阿片受体拮抗剂纳洛酮对不同强度电针“足三里”穴(St.36)抑制大鼠TF反射的效应。结果表明,Sm给予纳洛酮(1.0μg,0.5μl)阻断强电针(5mA)对TF反射的抑制效应,而对弱电针(0.5mA)的效应无明显影响;相反,APtN给予纳洛酮阻断弱电针对TF反射的抑制效应,而对强电针的效应无明显影响;纳洛酮供给到Sm或APtN邻近其它脑区对强、弱电针的效应均无影响。这些结果提示,Sm内的阿片受体参与介导强电针兴奋细传入纤维(A-δ和C类)产生的镇痛,而APtN内的阿片受体则介导弱电针兴奋粗传入纤维(A-β类)产生的镇痛。  相似文献   

13.
We investigated the pharmacological properties of a newly synthesised delta agonist AR-M1000390, derived from SNC-80 ((+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethyl-benzamide), in the neuroblastoma cell line SK-N-BE expressing only human delta-opioid receptors. Binding and functional experiments showed a weak affinity (K(i) = 106 +/- 34 nM) correlated with a weak potency (EC(50) = 111 +/- 31 nM) to inhibit the forskolin-stimulated cAMP accumulation. Sustained activation of opioid receptors in the presence of the maximal inhibitory concentration of AR-M1000390 produced a rapid and strong desensitization. In order to examine the contribution of internalization and down-regulation in the desensitization processes, binding and functional experiments were conducted in the presence or in the absence of hypertonic sucrose solution to block clathrin-dependent opioid receptor endocytosis. We observed both the inability of AR-M1000390 to down-regulate opioid receptors and the absence of any effect of sucrose on desensitization. The lack of delta-opioid receptor internalization by AR-M1000390 was further corroborated by confocal microscopy using antibodies directed either against the endogenous delta-opioid receptors or the FLAG-tagged delta-opioid receptors stably expressed in the SK-N-BE cells. These data suggest that uncoupling rather than internalization is responsible for delta-opioid receptors desensitization by AR-M1000390.  相似文献   

14.
Opioid receptors belong to the family of G-protein-coupled receptors characterized by their seven transmembrane domains. The activation of these receptors by agonists such as morphine and endogenous opioid peptides leads to the activation of inhibitory G-proteins followed by a decrease in the levels of intracellular cAMP. Opioid receptor activation is also associated with the opening of K(+) channels and the inhibition of Ca(2+) channels. A number of investigations, prior to the development of opioid receptor cDNAs, suggested that opioid receptor types interacted with each other. Early pharmacological studies provided evidence for the probable interaction between opioid receptors. More recent studies using receptor selective antagonists, antisense oligonucleotides, or animals lacking opioid receptors further suggested that interactions between opioid receptor types could modulate their activity. We examined opioid receptor interactions using biochemical, biophysical, and pharmacological techniques. We used differential epitope tagging and selective immunoisolation of receptor complexes to demonstrate homotypic and heterotypic interactions between opioid receptor types. We also used the proximity-based bioluminescence resonance energy transfer assay to explore opioid receptor-receptor interactions in living cells. In this article we describe the biochemical and biophysical methods involved in the detection of receptor dimers. We also address some of the concerns and suggest precautions to be taken in studies examining receptor-receptor interactions.  相似文献   

15.
Morphine releases endogenous opioids into the circulation of dogs. To test the stereospecificity of this effect, as well as to determine whether morphine also releases endogenous opioids centrally, which might be involved in its antinociceptive action, the effects of (-)-morphine sulfate (10 mg/kg, sc) or (+)-morphine hydrobromide on antinociception in a dog tail-flick test, on semi-quantified morphine-induced signs of salivation, emesis, defecation and ataxia, and on the plasma and cerebrospinal fluid (CSF) levels of endogenous opioid peptides were studied. Plasma and CSF levels of immunoreactive beta-endorphin (i-BE), met-enkephalin (i-ME), leu-enkephalin (i-LE), and dynorphin (i-DY) were quantified by radioimmunoassay in octadecylsilyl-silica cartridge extracts. Immunoreactive morphine (i-M) levels were measured in unextracted samples. (-)-Morphine treatment significantly increased antinociception, morphine-induced signs, i-M levels in plasma and CSF, and i-BE, i-ME, and i-LE levels in plasma, but not CSF. Levels of i-DY remained constant in plasma and CSF. (+)-Morphine treatment did not alter any of these parameters, indicating that the effects of morphine on nociception, behavioral signs, and plasma endogenous opioids in dogs were stereoselective. It is concluded that morphine does not cause an increase in immunoreactive endogenous opioid peptides in the CSF at the time of its peak antinociceptive effect.  相似文献   

16.
A series of 2-amino-oxazole (7 and 8) analogs and 2-one-oxazole analogs (9 and 10) were synthesized from cyclorphan (1) or butorphan (2) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors and compared with their 2-aminothiozole analogs 5 and 6. Ligands 7-10 showed decreased affinities at kappa and mu receptors. Urea analogs (11-14) were also prepared from 2-aminocyclorphan (3) or 2-aminobutorphan (4) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors. The urea derived opioids retained their affinities at mu receptors while showing increased affinities at delta receptors and decreased affinities at kappa receptors. Functional activities of these compounds were measured in the [35S]GTPgammaS binding assay, illustrating that all of these ligands were kappa agonists. At the mu receptor, compounds 11 and 12 were mu agonist/antagonists.  相似文献   

17.
Significant advances have been made in understanding the structure, function, and regulation of opioid receptors and endogenous opioid peptides since their discovery approximately 25 years ago. This review summarizes recent studies aimed at identifying key amino acids that confer ligand selectivity to the opioid receptors and that are critical constituents of the ligand binding sites. A molecular model of the delta receptor based on the crystal structure of rhodopsin is presented. Agonist-induced down regulation of opioid receptors is discussed, highlighting recent evidence for the involvement of the ubiquitin/proteasome system in this process.  相似文献   

18.
Narita M  Imai S  Itou Y  Yajima Y  Suzuki T 《Life sciences》2002,70(20):2341-2354
Fentanyl has been shown to be a potent analgesic with a lower propensity to produce tolerance and physical dependence in the clinical setting. The present study was designed to investigate the mechanisms of fentanyl- or morphine-induced antinociception at both supraspinal and spinal sites. In the mouse tail-flick test, the antinociceptive effects induced by both fentanyl and morphine were blocked by either the mu1-opioid receptor antagonist naloxonazine or the mu1/mu2-opioid receptor antagonist beta-funaltrexamine (beta-FNA) after s.c., i.c.v. or i.t. injection. In contrast, both fentanyl and morphine given i.c.v. or i.t. failed to produce antinociception in mu1-deficient CXBK mice. These findings indicate that like morphine, the antinociception induced by fentanyl may be mediated predominantly through mu1-opioid receptors at both supraspinal and spinal sites in mice. We also determined the ED50 values for s.c.-, i.c.v.- and i.t.-administered fentanyl- or morphine-induced antinociception in mice. The ED50 values for s.c.-, i.c.v.- and i.t.-administered fentanyl-induced antinociception were 73.7, 18.5 and 1.2-fold lower than that of morphine, respectively. The present data clearly suggest the usefulness of peripheral treatment with fentanyl for the control of pain.  相似文献   

19.
20.
We synthesized several hydrophobic esters and ethers of butorphanol and assessed their affinities at opioid receptors in CHO cell membranes. Tested compounds displayed moderate to high affinities to the mu and kappa receptors. The findings accord with previous evidence of a lipophilic binding pocket in the opioid receptors that can be accessed to afford good binding affinity without the need for a phenolic hydrogen-bond donor group. The most potent (K(i)=61 pM at mu and 48 pM at kappa) novel agent was (-)-N-cyclobutylmethylmorphinan-3-yl-14-ol phenoxyacetate (4d).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号