首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.  相似文献   

2.
The maximum likelihood and Bayesian methods are based on parametric models of character evolution. They assume that if we know these models as well as distribution of character states in studied organisms, we can infer the probability of different phylogenetic trajectories leading from ancestors to modern forms. In fact, these methods are mathematized variants of the traditional Haeckel’s approach to phylogeny reconstruction. In contrast to classical and parsimonious cladistics, they infer phylogenies without such limitations as necessity of strictly dichotomous evolution, exclusion of plesiomorphic characters, and acceptance of only holophyletic taxa. They assume that evolution may be reticulated, any homologous characters—both apomorphic and plesiomorphic—can be used for inferring phylogenies, and interpretation of evolutionary lineages as taxa is optional. Thus, the main difference between the new and more traditional approaches to phylogeny reconstruction lies not in the characters used (molecular or morphological) but in the methodology of analysis. It must be admitted that a revolution began in phylogenetics 10–20 years ago. However, the fundamental changes in phylogenetics have been carried out so calmly and neatly by the people who started this revolution, that many systematists still do not realize their importance.  相似文献   

3.
Glass sponges (Class Hexactinellida) are important components of deep-sea ecosystems and are of interest from geological and materials science perspectives. The reconstruction of their phylogeny with molecular data has only recently begun and shows a better agreement with morphology-based systematics than is typical for other sponge groups, likely because of a greater number of informative morphological characters. However, inconsistencies remain that have far-reaching implications for hypotheses about the evolution of their major skeletal construction types (body plans). Furthermore, less than half of all described extant genera have been sampled for molecular systematics, and several taxa important for understanding skeletal evolution are still missing. Increased taxon sampling for molecular phylogenetics of this group is therefore urgently needed. However, due to their remote habitat and often poorly preserved museum material, sequencing all 126 currently recognized extant genera will be difficult to achieve. Utilizing morphological data to incorporate unsequenced taxa into an integrative systematics framework therefore holds great promise, but it is unclear which methodological approach best suits this task. Here, we increase the taxon sampling of four previously established molecular markers (18S, 28S, and 16S ribosomal DNA, as well as cytochrome oxidase subunit I) by 12 genera, for the first time including representatives of the order Aulocalycoida and the type genus of Dactylocalycidae, taxa that are key to understanding hexactinellid body plan evolution. Phylogenetic analyses suggest that Aulocalycoida is diphyletic and provide further support for the paraphyly of order Hexactinosida; hence these orders are abolished from the Linnean classification. We further assembled morphological character matrices to integrate so far unsequenced genera into phylogenetic analyses in maximum parsimony (MP), maximum likelihood (ML), Bayesian, and morphology-based binning frameworks. We find that of these four approaches, total-evidence analysis using MP gave the most plausible results concerning congruence with existing phylogenetic and taxonomic hypotheses, whereas the other methods, especially ML and binning, performed more poorly. We use our total-evidence phylogeny of all extant glass sponge genera for ancestral state reconstruction of morphological characters in MP and ML frameworks, gaining new insights into the evolution of major hexactinellid body plans and other characters such as different spicule types. Our study demonstrates how a comprehensive, albeit in some parts provisional, phylogeny of a larger taxon can be achieved with an integrative approach utilizing molecular and morphological data, and how this can be used as a basis for understanding phenotypic evolution. The datasets and associated trees presented here are intended as a resource and starting point for future work on glass sponge evolution.  相似文献   

4.
Cytochrome b and Bayesian inference of whale phylogeny   总被引:2,自引:0,他引:2  
In the mid 1990s cytochrome b and other mitochondrial DNA data reinvigorated cetacean phylogenetics by proposing many novel and provocative hypotheses of cetacean relationships. These results sparked a revision and reanalysis of morphological datasets, and the collection of new nuclear DNA data from numerous loci. Some of the most controversial mitochondrial hypotheses have now become benchmark clades, corroborated with nuclear DNA and morphological data; others have been resolved in favor of more traditional views. That major conflicts in cetacean phylogeny are disappearing is encouraging. However, most recent papers aim specifically to resolve higher-level conflicts by adding characters, at the cost of densely sampling taxa to resolve lower-level relationships. No molecular study to date has included more than 33 cetaceans. More detailed molecular phylogenies will provide better tools for evolutionary studies. Until more genes are available for a high number of taxa, can we rely on readily available single gene mitochondrial data? Here, we estimate the phylogeny of 66 cetacean taxa and 24 outgroups based on Cytb sequences. We judge the reliability of our phylogeny based on the recovery of several deep-level benchmark clades. A Bayesian phylogenetic analysis recovered all benchmark clades and for the first time supported Odontoceti monophyly based exclusively on analysis of a single mitochondrial gene. The results recover the monophyly of all but one family level taxa within Cetacea, and most recently proposed super- and subfamilies. In contrast, parsimony never recovered all benchmark clades and was sensitive to a priori weighting decisions. These results provide the most detailed phylogeny of Cetacea to date and highlight the utility of both Bayesian methodology in general, and of Cytb in cetacean phylogenetics. They furthermore suggest that dense taxon sampling, like dense character sampling, can overcome problems in phylogenetic reconstruction.  相似文献   

5.
Fossil tip‐dating allows for the inclusion of morphological data in divergence time estimates based on both extant and extinct taxa. Neoselachii have a cartilaginous skeleton, which is less prone to fossilization compared to skeletons of Osteichthyans. Therefore, the majority of the neoselachian fossil record is comprised of single teeth, which fossilize more easily. Neoselachian teeth can be found in large numbers as they are continuously replaced. Tooth morphologies are of major importance on multiple taxonomic levels for identification of shark and ray taxa. Here, we review dental morphological characters of squalomorph sharks and test these for their phylogenetic signal. Subsequently, we combine DNA sequence data (concatenated exon sequences) with dental morphological characters from 85 fossil and extant taxa to simultaneously infer the phylogeny and re‐estimate divergence times using information of 61 fossil tip‐dates as well as eight node age calibrations of squalomorph sharks. Our findings show that the phylogenetic placement of fossil taxa is mostly in accordance with their previous taxonomic allocation. An exception is the phylogenetic placement of the extinct genus ?Protospinax , which remains unclear. We conclude that the high number of fossil taxa as well as the comprehensive DNA sequence data for extant taxa may compensate for the limited number of morphological characters identifiable on teeth, serving as a backbone for reliably estimating the phylogeny of both extinct and extant taxa. In general, tip‐dating mostly estimates older node ages compared to previous studies based on calibrated molecular clocks.  相似文献   

6.
Model‐based approaches (e.g. maximum likelihood, Bayesian inference) are widely used with molecular data, where they might be more appropriate than maximum parsimony for estimating phylogenies under various models of molecular evolution. Recently, there has been an increase in the application of model‐based approaches with morphological (mainly fossil) data; however, there is some doubt as to the effectiveness of the model of morphological evolution. The input parameters (prior probabilities) for the model are unclear, particularly when concerned with unobserved character states. Despite this, some systematists are suggesting superiority of these model‐based methods over maximum parsimony based on, for example, increased resolution or, in the current study, the preferred phylogenetic placement of an iconic taxon. Here, we revisit a recently published analysis implying such superiority and document the discrepancies between parsimony‐based and model‐based approaches to phylogeny estimation. We find that although some taxa are shifted back to their “traditional” phylogenetic placement, other clades are disturbed. The model‐based phylogenies are better resolved; however, due to the lack of an appropriate model of morphological evolution, the increase in resolving power is probably not meaningful. Similarly, some of the preferred phylogenetic positions of taxa, particularly of labile taxa such as Archaeopteryx, are based solely on analyses employing maximum parsimony as the optimality criterion. Poor resolution and labile taxa indicate a need for further examination of the morphology and not a change in method.  相似文献   

7.
Evolutionary idea is the core of the modern biology. Due to this, phylogenetics dealing with historical reconstructions in biology takes a priority position among biological disciplines. The second half of the 20th century witnessed growth of a great interest to phylogenetic reconstructions at macrotaxonomic level which replaced microevolutionary studies dominating during the 30s-60s. This meant shift from population thinking to phylogenetic one but it was not revival of the classical phylogenetics; rather, a new approach emerged that was baptized The New Phylogenetics. It arose as a result of merging of three disciplines which were developing independently during 60s-70s, namely cladistics, numerical phyletics, and molecular phylogenetics (now basically genophyletics). Thus, the new phylogenetics could be defined as a branch of evolutionary biology aimed at elaboration of "parsimonious" cladistic hypotheses by means of numerical methods on the basis of mostly molecular data. Classical phylogenetics, as a historical predecessor of the new one, emerged on the basis of the naturphilosophical worldview which included a superorganismal idea of biota. Accordingly to that view, historical development (the phylogeny) was thought an analogy of individual one (the ontogeny) so its most basical features were progressive parallel developments of "parts" (taxa), supplemented with Darwinian concept of monophyly. Two predominating traditions were diverged within classical phylogenetics according to a particular interpretation of relation between these concepts. One of them (Cope, Severtzow) belittled monophyly and paid most attention to progressive parallel developments of morphological traits. Such an attitude turned this kind of phylogenetics to be rather the semogenetics dealing primarily with evolution of structures and not of taxa. Another tradition (Haeckel) considered both monophyletic and parallel origins of taxa jointly: in the middle of 20th century it was split into phylistics (Rasnitsyn's term; close to Simpsonian evolutionary taxonomy) belonging rather to the classical realm, and Hennigian cladistics that pays attention to origin of monophyletic taxa exclusively. In early of the 20th century, microevolutionary doctrine became predominating in evolutionary studies. Its core is the population thinking accompanied by the phenetic one based on equation of kinship to overall similarity. They were connected to positivist philosophy and hence were characterized by reductionism at both ontological and epistemological levels. It led to fall of classical phylogenetics but created the prerequisites for the new phylogenetics which also appeared to be full of reductionism. The new rise of phylogenetic (rather than tree) thinking during the last third of the 20th century was caused by lost of explanatory power of population one and by development of the new worldview and new epistemological premises. That new worldview is based on the synergetic (Prigoginian) model of development of non-equilibrium systems: evolution of the biota, a part of which is phylogeny, is considered as such a development. At epistemological level, the principal premise appeared to be fall of positivism which was replaced by post-positivism argumentation schemes. Input of cladistics into new phylogenetics is twofold. On the one hand, it reduced phylogeny to cladistic history lacking any adaptivist interpretation and presuming minimal evolution model. From this it followed reduction of kinship relation to sister-group relation lacking any reference to real time scale and to ancestor-descendant relation. On the other hand, cladistics elaborated methodology of phylogenetic reconstructions based on the synapomorphy principle, the outgroup concept became its part. The both inputs served as premises of incorporation of both numerical techniques and molecular data into phylogenetic reconstruction. Numerical phyletics provided the new phylogenetics with easily manipulated algorithms of cladogram construing and thus made phylogenetic reconstructions operational and repetitive. The above phenetic formula "kinship = similarity" appeared to be a keystone for development of the genophyletics. Within numerical phyletics, a lot of computer programs were elaborated which allow to manipulate with evolutionary scenario during phylogenetic reconstructions. They make it possible to reconstruct both clado- and semogeneses based on the same formalized methods. Multiplicity of numerical approaches indicates that, just as in the case of numerical phenetics, choice of adequate method(s) should be based on biologically sound theory. The main input of genophyletics (= molecular phylogenetics) into the new phylogenetics was due to completely new factology which makes it possible to compare directly such far distant taxa as prokaryotes and higher eukaryotes. Genophyletics is based on the theory of neutral evolution borrowed from microevolutionary theory and on the molecular clock hypothesis which is now considered largely inadequate. The future developments of genophyletics will be aimed at clarification of such fundamental (and "classical" by origin) problems as application of character and homology concepts to molecular structures. The new phylogenetics itself is differentiated into several schools caused basically by diversity of various approaches existing within each of its "roots". Cladistics makes new phylogenetics splitted into evolutionary and parsimonious ontological viewpoints. Numerical phyletics divides it into statistical and (again) parsimonious methodologies. Molecular phylogenetics is opposite by its factological basis to morphological one. The new phylogenetics has significance impact onto the "newest" systematics. From one side, it gives ontological status back to macrotaxa they have lost due to "new" systematics based on population thinking. From another side, it rejects some basical principles of classical phylogenetic (originally Linnean) taxonomy such as recognitions of fixed taxonomic ranks designated by respective terms and definition of taxic names not by the diagnostic characters but by reference to the ancestor. The latter makes the PhyloCode overburdened ideologically and the "newest" systematics self-controversial, as concept of ancestor has been acknowledged non-operational from the very beginning of cladistics. Relation between classical and new phylogenetics is twofold. At the one hand, general phylogenetic hypothesis (in its classical sense) can be treated as a combination of cladogenetic and semogenetic reconstructions. Such a consideration is bound to pay close attention to the uncertainty relation principle which, in case of the phylogenetics, means that the general phylogenetic hypothesis cannot be more certain than any of initial cladogenetic or semogenetic hypotheses. From this standpoint, the new phylogenetics makes it possible to reconstruct phylogeny following epistemological principle "from simple to complex". It elaborates a kind of null hypotheses about evolutionary history which are more easy to test as compared to classical hypotheses. Afterward, such hypotheses are possible to be completed toward the classical, more content-wise ones by adding anagenetic information to the cladogenetic one. At another hand, reconstructions elaborated within the new phylogenetics could be considered as specific null hypotheses about both clado- and semogeneses. They are to be tested subsequently by mean of various models, including those borrowed from "classical" morphology. The future development of the new phylogenetics is supposed to be connected with getting out of plethora of reductionism inherited by it from population thinking and specification of object domain of the phylogenetics. As the latter is a part of an evolutionary theory, its future developments will be adjusted with the latter. Lately predominating neodarwinism is now being replaced by the epigenetic evolutionary theory to which phylistics (one of the modern versions of classical phylogenetics) seems to be more correspondent.  相似文献   

8.
Given that most species that have ever existed on Earth are extinct, no evolutionary history can ever be complete without the inclusion of fossil taxa. Bovids (antelopes and relatives) are one of the most diverse clades of large mammals alive today, with over a hundred living species and hundreds of documented fossil species. With the advent of molecular phylogenetics, major advances have been made in the phylogeny of this clade; however, there has been little attempt to integrate the fossil record into the developing phylogenetic picture. We here describe a new large fossil caprin species from ca. 1.9-Ma deposits from the Middle Awash, Ethiopia. To place the new species phylogenetically, we perform a Bayesian analysis of a combined molecular (cytochrome b) and morphological (osteological) character supermatrix. We include all living species of Caprini, the new fossil species, a fossil takin from the Pliocene of Ethiopia (Budorcas churcheri), and the insular subfossil Myotragus balearicus. The combined analysis demonstrates successful incorporation of both living and fossil species within a single phylogeny based on both molecular and morphological evidence. Analysis of the combined supermatrix produces superior resolution than with either the molecular or morphological data sets considered alone. Parsimony and Bayesian analyses of the data set are also compared and shown to produce similar results. The combined phylogenetic analysis indicates that the new fossil species is nested within Capra, making it one of the earliest representatives of this clade, with implications for molecular clock calibration. Geographical optimization indicates no less than four independent dispersals into Africa by caprins since the Pliocene.  相似文献   

9.
Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement.  相似文献   

10.
Natural selection is expected to cause convergence of life histories among taxa as well as correlated evolution of different life‐history traits. Here, we quantify the extent of convergence of five key life‐history traits (adult fire survival, seed storage, degree of sexual dimorphism, pollination mode, and seed‐dispersal mode) and test hypotheses about their correlated evolution in the genus Leucadendron (Proteaceae) from the fire‐prone South African fynbos. We reconstructed a new molecular phylogeny of this highly diverse genus that involves more taxa and molecular markers than previously. This reconstruction identifies new clades that were not detected by previous molecular study and morphological classifications. Using this new phylogeny and robust methods that account for phylogenetic uncertainty, we show that the five life‐history traits studied were labile during the evolutionary history of the genus. This diversity allowed us to tackle major questions about the correlated evolution of life‐history strategies. We found that species with longer seed‐dispersal distances tended to evolve lower pollen‐dispersal distance, that insect‐pollinated species evolved decreased sexual dimorphism, and that species with a persistent soil seed‐bank evolved toward reduced fire‐survival ability of adults.  相似文献   

11.
The phylogenetic relationships among major evolutionary lineages of the sea spiders (subphylum Pycnogonida) were investigated using partial sequences of nuclear DNA, 18S, and 28S ribosomal genes. Topological differences were obtained with separate analyses of 18S and 28S, and estimates of phylogeny were found to be significantly different between a combined molecular data set (18S and 28S) and a subset of a morphological data matrix analyzed elsewhere. Colossendeidae played a major role in the conflicts; it was closely related to Callipallenidae or Nymphonidae with 18S or 28S, respectively, but related to Ammotheidae according to morphological characters. Austrodecidae was defined as a basal taxon for Pycnogonida by these molecular data. The 18S sequences were surprisingly conserved among pycnogonid taxa, suggesting either an unusual case of slow evolution of the gene, or an unexpected recent divergence of pycnogonid lineages. Notwithstanding difficulties such as non-optimal taxon sampling, this is the first attempt to reconstruct the pycnogonid phylogeny based on DNA. Continued studies of sequences and other characters should increase the reliability of the analyses and our understanding of the phylogenetics of sea spiders.  相似文献   

12.
Analyses of living and fossil taxa are crucial for understanding biodiversity through time. The total evidence method allows living and fossil taxa to be combined in phylogenies, using molecular data for living taxa and morphological data for living and fossil taxa. With this method, substantial overlap of coded anatomical characters among living and fossil taxa is vital for accurately inferring topology. However, although molecular data for living species are widely available, scientists generating morphological data mainly focus on fossils. Therefore, there are fewer coded anatomical characters in living taxa, even in well-studied groups such as mammals. We investigated the number of coded anatomical characters available in phylogenetic matrices for living mammals and how these were phylogenetically distributed across orders. Eleven of 28 mammalian orders have less than 25% species with available characters; this has implications for the accurate placement of fossils, although the issue is less pronounced at higher taxonomic levels. In most orders, species with available characters are randomly distributed across the phylogeny, which may reduce the impact of the problem. We suggest that increased morphological data collection efforts for living taxa are needed to produce accurate total evidence phylogenies.  相似文献   

13.
In the onrush of molecular-based phylogenetic hypotheses, previous morphological-based phylogenies are being ignored, discarded, or even treated with disdain. Coupled with this implicit superiority of molecular data is the sometimes tendency to construct a phylogeny from the molecular data with less than analytical rigor. This paper examines the phylogenetic relationships within the lizard family Xantusiidae employing both molecular and morphological data. The analysis focuses on four analytical points of the molecular data and on the phylogenetics synthesis of the two data sets. We conclude that the phylogeny of xantusiid lizards is not yet a robust hypothesis.  相似文献   

14.
In the late 1980s, researchers began applying molecular sequencing tools to questions of deep animal phylogeny. These advances in sequencing were accompanied with improvements in computation and phylogenetic methods, and served to significantly reshape our understanding of metazoan evolution. Prior to this time, researchers asserted phylogenetic hypotheses based on their experience with taxa and to some degree, their authority. Molecular phylogenetic tools provided discrete methods and objective characters for reconstructing phylogeny. Nonetheless, major changes to widely accepted views, such as animal phylogeny, take time to be accepted. Development and acceptance of our current understanding of animal evolution occurred in three main phases: initial hypotheses based on 18S data, confirmation with additional molecular markers, and continued refinement with phylogenomics. With the advent of ideas such as Lophotrochozoa and Ecdysozoa, flaws in the traditional view became apparent. We now understand that complex morphological and embryological features (e.g., segmentation, coelom formation, development of body cavities) are much more evolutionarily plastic than previously recognized. Here, I explore how the transition from the traditional to the modern phylogenetic understanding of animal phylogeny occurred and examine some implications of this change in understanding. As the field moves forward, the utility of morphological and embryological characters for reconstruction of deep animal phylogeny should be discouraged. Instead, these characters should be interpreted in the light of independent phylogeny.  相似文献   

15.
基因序列在蚜虫分子系统发育研究中的应用   总被引:6,自引:1,他引:5  
张合彩  乔格侠 《昆虫学报》2006,49(3):521-527
总结了核基因和线粒体基因在半翅目蚜虫分子系统发育研究中的应用。核基因中EF-1α应用最广泛,适用于探讨属级及属以上的问题; 核rDNA在蚜虫中应用较少,18S rDNA适用于探讨科级以上高级阶元的问题;LWO是新近在蚜虫中开发使用的一个新基因。线粒体基因中,COⅠ/COⅡ使用最多,12S rDNA/16S rDNA、ND1、Cyt b以及F-ATP6均有应用,探讨的问题从属、种级到科级不等。核基因和线粒体基因间以及不同线粒体基因间的联合分析在解决不同层次的问题中均有应用。建议不断尝试新基因以找出适合蚜虫类群的“标准基因”。并对未来蚜虫分子系统发育研究趋势进行了展望。  相似文献   

16.
Taxa missing large amounts of data pose challenges that may hinder the recovery of a well‐resolved, accurate phylogeny and leave questions surrounding their phylogenetic position. Systematists commonly have to contend with one or two species in a group for which there is little or no material available suitable for recovering molecular data. It is unclear whether these taxa can be better placed using analyses based on morphological data only, or should be included in broader analyses based on both morphological and molecular data. The extinct madtom catfish Noturus trautmani is known from few specimens for which molecular data are unavailable. We included this taxon in parsimony and Bayesian analyses of relationships of madtom catfishes based on a combination of morphological and molecular data. Results indicate that using a combination of morphological and molecular data does a better job at providing a phylogenetic placement for N. trautmani than morphology alone, even though it is missing all of its molecular characters. We provide a novel hypothesis of relationships among Noturus species and recommendations for classification within the group. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 60–75.  相似文献   

17.
Klopfstein, S., Quicke, D. L. J., Kropf, C. & Frick, H. (2011) Molecular and morphological phylogeny of Diplazontinae (Hymenoptera, Ichneumonidae). —Zoologica Scripta, 40, 379–402. Parasitoid wasps are among the most species rich and at the same time most understudied of all metazoan taxa. To understand their diversification and test hypotheses about their evolution, we need robust phylogenetic hypotheses. Here, we reconstruct the phylogeny of the subfamily Diplazontinae using four genes and 66 morphological characters both in separate analyses and in a total evidence approach. The resulting phylogeny is highly resolved, with most clades supported by multiple independent data partitions. It contains three highly supported genus groups, for which we suggest morphological and behavioural synapomorphies. The placement of some of the genera, especially Xestopelta Dasch, is unexpected, but also supported by morphology. Most of the genera are retrieved as monophyletic, with the exception of the morphologically diverse genus Syrphoctonus Förster. We split this genus into three genera, including Fossatyloides gen. n., to restore the phylogeny–classification link. Conflict between the morphological and the molecular topology was mostly resolved in favour of the molecular partition in the total evidence approach. We discuss reasons for this finding, and suggest strategies for future taxon and character sampling in Diplazontinae.  相似文献   

18.
The phylogeny of Crocodylia offers an unusual twist on the usual molecules versus morphology story. The true gharial (Gavialis gangeticus) and the false gharial (Tomistoma schlegelii), as their common names imply, have appeared in all cladistic morphological analyses as distantly related species, convergent upon a similar morphology. In contrast, all previous molecular studies have shown them to be sister taxa. We present the first phylogenetic study of Crocodylia using a nuclear gene. We cloned and sequenced the c-myc proto-oncogene from Alligator mississippiensis to facilitate primer design and then sequenced an 1,100-base pair fragment that includes both coding and noncoding regions and informative indels for one species in each extant crocodylian genus and six avian outgroups. Phylogenetic analyses using parsimony, maximum likelihood, and Bayesian inference all strongly agreed on the same tree, which is identical to the tree found in previous molecular analyses: Gavialis and Tomistoma are sister taxa and together are the sister group of Crocodylidae. Kishino-Hasegawa tests rejected the morphological tree in favor of the molecular tree. We excluded long-branch attraction and variation in base composition among taxa as explanations for this topology. To explore the causes of discrepancy between molecular and morphological estimates of crocodylian phylogeny, we examined puzzling features of the morphological data using a priori partitions of the data based on anatomical regions and investigated the effects of different coding schemes for two obvious morphological similarities of the two gharials.  相似文献   

19.
A phylogenetic analysis of the sugeonfish family Acanthuridae was conducted to investigate: (a) the pattern of divergences among outgroup and basal ingroup taxa, (b) the pattern of species divergences within acanthurid genera, (c) monophyly in the genus Acanthurus, and (d) the evolution of thick-walled stomach morphology in the genera Acanthurus and Ctenochaetus. Fragments of the 12S, 16S, t-Pro, and control region mitochondrial genes were sequenced for 21 acanthurid taxa (representing all extant genera) and four outgroup taxa. Unweighted parsimony analysis produced two optimal trees. Both of these were highly incongruent with a previous morphological phylogeny, especially with regard to the placement of the monotypic outgroups Zanclus and Luvarus. The maximum likelihood tree and the morphological phylogeny were not significantly different and the conflicting branches were very short. Split decomposition analysis identified conflict in the placement of long basal branches separated by short internodes, providing further evidence that long branch attraction is an important cause of disagreement between molecular and morphological trees. Parametric bootstrapping rejected hypotheses of monophyly of: (a) the genus Acanthurus and (b) a group containing representatives of Acanthurus/Ctenochaetus with thick-walled stomachs. The branching pattern of the likelihood and split decomposition trees indicates that evolution in the acanthurid clade has involved at least three periods of intense speciation.  相似文献   

20.
Only relatively recently have researchers turned to molecular methods for nematode phylogeny reconstruction. Thus, we lack the extensive literature on evolutionary patterns and phylogenetic usefulness of different DNA regions for nematodes that exists for other taxa. Here, we examine the usefulness of mtDNA for nematode phylogeny reconstruction and provide data that can be used for a priori character weighting or for parameter specification in models of sequence evolution. We estimated the substitution pattern for the mitochondrial ND4 gene from intraspecific comparisons in four species of parasitic nematodes from the family Trichostrongylidae (38-50 sequences per species). The resulting pattern suggests a strong mutational bias toward A and T, and a lower transition/transversion ratio than is typically observed in other taxa. We also present information on the relative rates of substitution at first, second, and third codon positions and on relative rates of saturation of different types of substitutions in comparisons ranging from intraspecific to interordinal. Silent sites saturate extremely quickly, presumably owing to the substitution bias and, perhaps, to an accelerated mutation rate. Results emphasize the importance of using only the most closely related sequences in order to infer patterns of substitution accurately for nematodes or for other taxa having strongly composition-biased DNA. ND4 also shows high amino acid polymorphism at both the intra- and interspecific levels, and in higher level comparisons, there is evidence of saturation at variable amino acid sites. In general, we recommend using mtDNA coding genes only for phylogenetics of relatively closely related nematode species and, even then, using only nonsynonymous substitutions and the more conserved mitochondrial genes (e.g., cytochrome oxidases). On the other hand, the high substitution rate in genes such as ND4 should make them excellent for population genetics studies, identifying cryptic species, and resolving relationships among closely related congeners when other markers show insufficient variation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号