首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structures of bacterial nitric oxide reductases (NOR) from Pseudomonas aeruginosa and Geobacillus stearothermophilus were reported. The structural characteristics of these enzymes, especially at the catalytic site and on the pathway that catalytic protons are delivered, are compared, and the corresponding regions of aerobic and micro-aerobic cytochrome oxidases, O(2) reducing enzymes, which are evolutionarily related to NOR are discussed. On the basis of these structural comparisons, a mechanism for the reduction of NO to produce N(2)O by NOR, and the possible molecular evolution of the proton pumping ability of the respiratory enzymes is discussed. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

2.
Nitric oxide, cytochrome-c oxidase and myoglobin   总被引:5,自引:0,他引:5  
Myoglobin, the monomeric haemoprotein expressed in red muscle, is reported in biochemistry and physiology textbooks to function as an intracellular oxygen carrier and oxygen reservoir. Here, Maurizio Brunori argues that myoglobin can also play the role of intracellular scavenger of nitric oxide, an inhibitor of mitochondrial cytochrome-c oxidase, thereby protecting respiration in the skeletal muscle and the heart.  相似文献   

3.
Structure, function, and mechanism of ribonucleotide reductases   总被引:5,自引:0,他引:5  
Ribonucleotide reductase (RNR) is the enzyme responsible for the conversion of ribonucleotides to 2'-deoxyribonucleotides and thereby provides the precursors needed for both synthesis and repair of DNA. In the recent years, many new crystal structures have been obtained of the protein subunits of all three classes of RNR. This review will focus upon recent structural and spectroscopic studies, which have offered deeper insight to the mechanistic properties as well as evolutionary relationship and diversity among the different classes of RNR. Although the three different classes of RNR enzymes depend on different metal cofactors for the catalytic activity, all three classes have a conserved cysteine residue at the active site located on the tip of a protein loop in the centre of an alpha/beta-barrel structural motif. This cysteine residue is believed to be converted into a thiyl radical that initiates the substrate turnover in all three classes of RNR. The functional and structural similarities suggest that the present-day RNRs have all evolved from a common ancestral reductase. Nevertheless, the different cofactors found in the three classes of RNR make the RNR proteins into interesting model systems for quite diverse protein families, such as diiron-oxygen proteins, cobalamin-dependent proteins, and SAM-dependent iron-sulfur proteins. There are also significant variations within each of the three classes of RNR. With new structures available of the R2 protein of class I RNR, we have made a comparison of the diiron centres in R2 from mouse and Escherichia coli. The R2 protein shows dynamic carboxylate, radical, and water shifts in different redox forms, and new radical forms are different from non-radical forms. In mouse R2, the binding of iron(II) or cobalt(II) to the four metal sites shows high cooperativity. A unique situation is found in RNR from baker's yeast, which is made up of heterodimers, in contrast to homodimers, which is the normal case for class I RNR. Since the reduction of ribonucleotides is the rate-limiting step of DNA synthesis, RNR is an important target for cell growth control, and the recent finding of a p53-induced isoform of the R2 protein in mammalian cells has increased the interest for the role of RNR during the different phases of the cell cycle.  相似文献   

4.
Nitric oxide (NO) is generated in biological systems primarily via the activity of NO synthases and nitrate and nitrite reductases. Here we show that Salmonella enterica serovar Typhimurium (S. typhimurium) grown anaerobically with nitrate is capable of generating polarographically detectable NO after nitrite (NO(2)(-)) addition. NO accumulation is sensitive to the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Neither an fnr mutant nor an fnr hmp double mutant produces NO, indicating the involvement in NO evolution from NO(2)(-) of protein(s) positively regulated by FNR. Contrary to previous findings in Escherichia coli, we demonstrate that neither the periplasmic nitrite reductase (NrfA) nor the cytoplasmic nitrite reductase (NirB) is involved in NO production in S. typhimurium. However, mutant cells lacking the membrane-bound nitrate reductase, NarGHI, and membranes derived from these cells are unable to produce NO, demonstrating that, in wild-type S. typhimurium, this enzyme is responsible for NO production. Membrane terminal oxidases cannot account for the NO levels measured. The nitrate reductase inhibitor, azide, abrogates NO evolution by Salmonella, and production of NO occurs only in the absence from the assays of nitrate; both features reveal a marked similarity between the NO-generating activities of this bacterium and plants. Unlike the situation in E. coli, an S. typhimurium hmp mutant produces NO both aerobically and anaerobically. Under aerobic conditions, when a functional flavohemoglobin is present, no NO is detectable. We propose a homeostatic mechanism in S. typhimurium, in which NO produced from NO(2)(-) by nitrate reductase derepresses Hmp expression (via FNR and NsrR) and NorV expression (via NorR) and thus limits NO toxicity.  相似文献   

5.
Giuffrè A  Forte E  Brunori M  Sarti P 《FEBS letters》2005,579(11):2528-2532
It is relevant to cell physiology that nitric oxide (NO) reacts with both cytochrome oxidase (CcOX) and oxygenated myoglobin (MbO(2)). In this respect, it has been proposed [Pearce, L.L., et al. (2002) J. Biol. Chem. 277, 13556-13562] that (i) CcOX in turnover out-competes MbO(2) for NO, and (ii) NO bound to reduced CcOX is "metabolized" in the active site to nitrite by reacting with O(2). In contrast, rapid kinetics experiments reported in this study show that (i) upon mixing NO with MbO(2) and CcOX in turnover, MbO(2) out-competes the oxidase for NO and (ii) after mixing nitrosylated CcOX with O(2) in the presence of MbO(2), NO (and not nitrite) dissociates from the enzyme causing myoglobin oxidation.  相似文献   

6.
Nitric oxide and cardiac function   总被引:6,自引:0,他引:6  
Nitric oxide (NO) participates in the control of contractility and heart rate, limits cardiac remodeling after an infarction and contributes to the protective effect of ischemic pre- and postconditioning. Low concentrations of NO, with production of small amounts of cGMP, inhibit phosphodiesterase III, thus preventing the hydrolysis of cAMP. The subsequent activation of a protein-kinase A causes the opening of sarcolemmal voltage-operated and sarcoplasmic ryanodin receptor Ca(2+) channels, thus increasing myocardial contractility. High concentrations of NO induce the production of larger amounts of cGMP which are responsible for a cardiodepression in response to an activation of protein kinase G (PKG) with blockade of sarcolemmal Ca(2+) channels. NO is also involved in reduced contractile response to adrenergic stimulation in heart failure. A reduction of heart rate is an evident effect of NO-synthase (NOS) inhibition. It is noteworthy that the direct effect of NOS inhibition can be altered if baroreceptors are stimulated by increases in blood pressure. Finally, NO can limit the deleterious effects of cardiac remodeling after myocardial infarction possibly via the cGMP pathway. The protective effect of NO is mainly mediated by the guanylyl cyclase-cGMP pathway resulting in activation of PKG with opening of mitochondrial ATP-sensitive potassium channels and inhibition of the mitochondrial permeability transition pores. NO acting on heart is produced by vascular and endocardial endothelial NOS, as well as neuronal and inducible synthases. In particular, while in the basal control of contractility, endothelial synthase has a predominant role, the inducible isoform is mainly responsible for the cardiodepression in septic shock.  相似文献   

7.
The structure of the ferrous nitric oxide form of native sperm whale myoglobin has been determined by X-ray crystallography to 1.7 Å resolution. The nitric oxide ligand is bent with respect to the heme plane: the Fe-N-O angle is 112°. This angle is smaller than those observed in model compounds and in lupin leghemoglobin. The exact angle appears to be influenced by the strength of the proximal bond and hydrogen bonding interactions between the distal histidine and the bound ligand. Specifically, the Nϵ atom of histidine64 is located 2.8 Å away from the nitrogen atom of the bound ligand, implying electrostatic stabilization of the FeNO complex. This interpretation is supported by mutagenesis studies. When histidine64 is replaced with apolar amino acids, the rate of nitric oxide dissociation from myoglobin increases tenfold. Proteins 30:352–356, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
9.
As an endothelium-derived relaxing factor, nitric oxide (NO) maintains blood flow and O2 transport to tissues. Under normal conditions a delicate balance exists in the vascular system between endothelium-derived NO, an antioxidant, and the pro-oxidant elements of the vascular system, O-2, and peroxynitrite (a by-product of the reaction of NO and superoxide); in addition there is a balance between neurogenic tonic contraction and NO-mediated relaxation. The former balance can be disrupted in favor of peroxynitrite and hydrogen peroxide under the conditions of ischemia/reperfusion. This review suggests that NO may be beneficial, not only in terms of its new potential in improving O2 transport without accompanying significant increase in tissue blood flow, but also in its ability to suppress the prooxidative reagents of the vascular systems. These include NO-mediated inhibition of transendothelial migration by leukocyte and the antioxidative effects of NO with regard to ischemia/reperfusion; the relevance of these hypotheses to systemic administration of NO donors is discussed.  相似文献   

10.
Nitric oxide (NO) is a key signaling and defense molecule in biological systems. The bactericidal effects of NO produced, for example, by macrophages are resisted by various bacterial NO-detoxifying enzymes, the best understood being the flavohemoglobins exemplified by Escherichia coli Hmp. However, many bacteria, including E. coli, are reported to produce NO by processes that are independent of denitrification in which NO is an obligatory intermediate. We demonstrate using an NO-specific electrode that E. coli cells, grown anaerobically with nitrate as terminal electron acceptor, generate significant NO on adding nitrite. The periplasmic cytochrome c nitrite reductase (Nrf) is shown, by comparing Nrf+ and Nrf- mutants, to be largely responsible for NO generation. Surprisingly, an hmp mutant did not accumulate more NO but, rather, failed to produce detectable NO. Anaerobic growth of the hmp mutant was not stimulated by nitrate, and the mutant failed to produce periplasmic cytochrome(s) c, leading to the hypothesis that accumulating NO in the absence of Hmp inactivates the global anaerobic regulator Fnr by reaction with the [4Fe-4S]2+ cluster (Cruz-Ramos, H., Crack, J., Wu, G., Hughes, M. N., Scott, C., Thomson, A. J., Green, J., and Poole, R. K. (2002) EMBO J. 21, 3235-3244). Fnr thus failed to up-regulate nitrite reductase. The model is supported by the inability of an fnr mutant to generate NO and by the restoration of NO accumulation to hmp mutants upon introducing a plasmid encoding Fnr* (D154A) known to confer activity in the presence of oxygen. A cytochrome bd-deficient mutant retained NO-generating activity. The present study reveals a critical balance between NO-generating and -detoxifying activities during anaerobic growth.  相似文献   

11.
12.
We reported previously that endothelium-intact superior mesenteric arteries (SMA) from N(omega)-nitro-L-arginine (L-NNA)-treated hypertensive rats (LHR) contract more to norepinephrine (NE) than SMA from control rats. Others have shown that nitric oxide (NO) synthase (NOS) inhibition increases cyclooxygenase (COX) function and expression. We hypothesized that augmented vascular sensitivity to NE in LHR arteries is caused by decreased NOS-induced dilation and increased COX product-induced constriction. We observed that the EC50 for NE is lower in LHR SMA compared with control SMA (control -6.37 +/- 0.04, LHR -7.89 +/- 0.09 log mol/l; P <0.05). Endothelium removal lowered the EC50 (control -7.95 +/- 0.11, LHR -8.44 +/- 0.13 log mol/l; P <0.05) and increased maximum tension in control (control 1,036 +/- 38 vs. 893 +/- 21 mg; P <0.05) but not LHR (928 +/- 30 vs. 1,066 +/- 31 mg) SMA. Thus augmented NE sensitivity in LHR SMA depends largely on decreased endothelial dilation. NOS inhibition (L-NNA, 10(-4) mol/l) increased maximum tension and EC50 in control arteries but not in LHR arteries. In contrast, COX inhibition decreased maximum tension in control arteries, suggesting that COX products augment contraction. Indomethacin did not affect NE-induced contraction in L-NNA-treated or denuded arteries. In control SMA loaded with the fluorescent NO indicator 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, indomethacin increased and L-NNA decreased NO release. Therefore, COX products appear to inhibit NO production to augment NE-induced contraction. With chronic NOS inhibition, this modulating influence is greatly diminished. Thus, in NOS-inhibition hypertension, decreased activity of both COX and NOS pathways profoundly disrupts endothelial modulation of contraction.  相似文献   

13.
Escherichia coli possesses a soluble flavohemoglobin, with an unknown function, encoded by the hmp gene. A monolysogen containing an hmp-lacZ operon fusion was constructed to determine how the hmp promoter is regulated in response to heme ligands (O2, NO) or the presence of anaerobically utilized electron acceptors (nitrate, nitrite). Expression of the phi (hmp-lacZ)1 fusion was similar during aerobic growth in minimal medium containing glucose, glycerol, maltose, or sorbitol as a carbon source. Mutations in cya (encoding adenylate cyclase) or changes in medium pH between 5 and 9 were without effect on aerobic expression. Levels of aerobic and anaerobic expression in glucose-containing minimal media were similar; both were unaffected by an arcA mutation. Anaerobic, but not aerobic, expression of phi (hmp-lacZ)1 was stimulated three- to four-fold by an fnr mutation; an apparent Fnr-binding site is present in the hmp promoter. Iron depletion of rich broth medium by the chelator 2'2'-dipyridyl (0.1 mM) enhanced hmp expression 40-fold under anaerobic conditions, tentatively attributed to effects on Fnr. At a higher chelator concentration (0.4 mM), hmp expression was also stimulated aerobically. Anaerobic expression was stimulated 6-fold by the presence of nitrate and 25-fold by the presence of nitrite. Induction by nitrate or nitrite was unaffected by narL and/or narP mutations, demonstrating regulation of hmp by these ions via mechanisms alternative to those implicated in the regulation of other respiratory genes. Nitric oxide (10 to 20 microM) stimulated aerobic phi (hmp-lacZ)1 activity by up to 19-fold; soxS and soxR mutations only slightly reduced the NO effect. We conclude that hmp expression is negatively regulated by Fnr under anaerobic conditions and that additional regulatory mechanisms are involved in the responses to oxygen, nitrogen compounds, and iron availability. Hmp is implicated in reactions with small nitrogen compounds.  相似文献   

14.
The presence of a cholinergic vasodilator innervation to cerebral circulation is well established. Despite its high endogenous concentration in cerebral blood vessels, acetylcholine (ACh) is not the transmitter for vasodilation. This finding has led to the discovery that nitric oxide (NO), which is coreleased with ACh and neural peptides such as vasoactive intestinal polypeptide (VIP) from the respective cholinergic-nitrergic (nitric oxidergic) nerves and the VIPergic-nitrergic nerves, is the primary transmitter in relaxing smooth muscle. ACh and VIP act presynaptically to inhibit and facilitate, respectively, the release of NO. Release of NO from cerebral vascular endothelial cells is also well established. A similar system for recycling L-citrulline to L-arginine for synthesizing more NO has been demonstrated in both cerebral perivascular nerves and endothelial cells. Neuronal and endothelial NO appears to play an important role in controlling cerebral vascular tone and circulation in health and disease.  相似文献   

15.
16.
Nitric oxide hemoglobin in mice and rats in endotoxic shock.   总被引:1,自引:0,他引:1  
Mice given ip bacterial endotoxin (LPS) at 10 mg/kg showed a statistically significant decrease in plasma glucose and an increase in hematocrit at 2 h after injection. Glucose was still decreased at 4 h, but the hematocrit had returned to control values. Nitrosylated hemoglobin (HbNO) was detected at 3, but not at 2 h. By 4 h it had increased 5-fold. When N-monomethylarginine (NMMA) at 100 mg/kg, ip was given 2 h after LPS in mice, the HbNO concentration at 4 h was significantly reduced, but the hypoglycemia was worsened because NMMA itself produced a significant hypoglycemia. Rats given iv LPS, 20 mg/kg, showed a fleeting, transient rise in mean arterial pressure (MAP) lasting only a few min. Thereafter, the MAP tended to drift slowly downward over 4 h, but when the MAP at 30 min intervals was compared to the pre-LPS MAP, there were no significant differences. Plasma glucose in unanesthetized rats was significantly elevated at 1 h, back to control at 2 h, and significantly decreased at 3 h. HbNO was detected as early as 1 h after injection. By 2 h the HbNO concentrations exceeded the highest levels found in mice, and they were still increasing as late as 5 h after injection. Unanesthetized rats showed toxic signs and 3/12 rats died within 4 hours of LPS administration. These results are consistent with a model for endotoxic shock in which LPS stimulates an inducible pathway for NO synthesis.  相似文献   

17.
18.
19.
The kinetics of the reaction of hydroxyurea (HU) with myoglobin (Mb), hemin, sickle cell hemoglobin (HbS), and normal adult hemoglobin (HbA) were determined using optical absorption spectroscopy as a function of time, wavelength, and temperature. Each reaction appeared to follow pseudo-first order kinetics. Electron paramagnetic resonance spectroscopy (EPR) experiments indicated that each reaction produced an FeNO product. Reactions of hemin and the ferric forms of HbA, HbS, and myoglobin with HU also formed the NO adduct. The formation of methemoglobin and nitric oxide-hemoglobin from these reactions may provide further insight into the mechanism of how HU benefits sickle cell patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号