首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Lang SL  Iverson SJ  Bowen WD 《PloS one》2011,6(5):e19487
Although evidence from domestic and laboratory species suggests that reproductive experience plays a critical role in the development of aspects of lactation performance, whether reproductive experience may have a significant influence on milk energy transfer to neonates in wild populations has not been directly investigated. We compared maternal energy expenditures and pup growth and energy deposition over the course of lactation between primiparous and fully-grown, multiparous grey seal (Halichoerus grypus) females to test whether reproductive experience has a significant influence on lactation performance. Although there was no difference between primiparous females in milk composition and, thus, milk energy content at either early or peak lactation primiparous females had a significantly lower daily milk energy output than multiparous females indicating a reduced physiological capacity for milk secretion. Primiparous females appeared to effectively compensate for lower rates of milk production through an increased nursing effort and, thus, achieved the same relative rate of milk energy transfer to pups as multiparous females. There was no difference between primiparous and multiparous females in the proportion of initial body energy stores mobilised to support the costs of lactation. Although primiparous females allocated a greater proportion of energy stores to maternal maintenance versus milk production than multiparous females, the difference was not sufficient to result in significant differences in the efficiency of energy transfer to pups. Thus, despite a lower physiological capacity for milk production, primiparous females weaned pups of the same relative size and condition as multiparous females without expending proportionally more energy. Although reproductive experience does not significantly affect the overall lactation performance of grey seals, our results suggest that increases in mammary gland capacity with reproductive experience may play a significant role in the age-related increases in neonatal growth rates and weaning masses observed in other free-ranging mammals.  相似文献   

2.
Phocid seals are one of the few groups of mammals capable of sustaining the energetic demands of lactation entirely through body nutrient stores while fasting. Lactation performance of the female in turn influences the rate and pattern of pup growth. We examined variation in and patterns of milk composition and production, maternal energy output, and pup growth and energy deposition over the entire lactation period in 18 grey seal mother-pup pairs using hydrogen isotope (3H2O and D2O) dilution. Milk composition was independent of maternal mass and nutrient stores, indicating dependence on other physiological and genetic factors. Heavier females lactated longer (r2=0.653, P<0.001), had higher total milk outputs (r2=0.652, P<0.001), and produced larger pups at weaning (r2=0.417, P=0.005). While fatter females lactated for longer periods of time (r2=0.595, P<0.001), females with a larger lean body mass at parturition produced more milk (r2=0.579, P<0.001). Total milk energy output was the strongest predictor of pup weaning mass, which, along with the pup's efficiency of energy storage, accounted for 91% of the variation in weaning mass. Nevertheless, there was sufficient plasticity in milk composition and energy output that some smaller females produced relatively large pups. Few females appeared to deplete body nutrients to the point where it might limit the duration of lactation.  相似文献   

3.
In this study we document growth, milk intake and energy consumption in nursing pups of icebreeding grey seals (Halichoerus grypus). Change in body composition of the pups, change in milk composition as lactation progresses, and mass transfer efficiency between nursing mothers and pups are also measured. Mass transfer efficiency between mother-pup pairs (n=8) was 42.5±8.4%. Pups were gaining a daily average of 2.0±0.7 kg (n=12), of which 75% was fat, 3% protein and 22% water. The total water influx was measured to be 43.23±8.07 ml·kg-1·day-1. Average CO2 production was 0.85±0.20 ml·g-1·h-1, which corresponds to a field metabolic rate of 0.55±0.13 MJ·kg-1·day-1, or 4.5±0.9 times the predicted basal metabolic rate based on body size (Kleiber 1975). Water and fat content in the milk changed dramatically as lacation progressed. At day 2 of nursing, fat and water content were 39.5±1.9% and 47.3±1.5%, respectively, while the corresponding figures for day 15 were 59.6±3.6% fat and 28.4±2.6% water. Protein content of the milk remained relatively stable during the lactation period with a value of 11.0±0.8% at day 2 and 10.4±0.3% at day 15. Pups drank an average of 3.5±0.9 kg of milk daily, corresponding to a milk intake of 1.75 kg per kg body mass gained. The average daily energy intake of pups was 82.58±19.80 MJ, while the energy built up daily in the tissue averaged 61.72±22.22 MJ. Thus, pups assimilated 74.7% of the energy they received via milk into body tissue. The lactation energetics of ice-breeding grey seals is very similar to that of their land-breeding counterparts.Abbreviations bm body mass - BMR basal metabolic rate - FMR field metabolic rate - IU international unit - RQ respiration quotient - HTO tritiated water - HT18O doubly labeled water - TBW total body water - VHF very high frequency  相似文献   

4.
S. A. Munks  B. Green 《Oecologia》1995,101(1):94-104
This study examines the annual energetics of a small folivorous marsupial, Pseudocheirus peregrinus. Particular attention was given to the energy and time allocated to reproduction by the females. Daily energy expenditure was measured directly using the doubly labelled water technique. Energy transferred to the young via the milk was estimated from information on milk composition and production. There was no significant seasonal variation in the energy expenditure or water influx of males or females. The mean daily energy expenditure of a 1-kg non-lactating adult ringtail possum was 615 kJ day–1 or 2.2 times standard metabolic rate. Females showed significant changes in daily energy expenditure according to their reproductive status. Without the burden of lactation the total annual energy expenditure of an adult female was estimated as 212.4 MJ kg–1 year–1. The total annual energy expenditure of a female rearing two young was 247.5 MJ kg–1 year–1, with the late stage of lactation constituting the most energetically expensive period accounting for 30% of the total yearly energy expenditure during 24% of the time. Total metabolisable energy allocation during reproduction (22 MJ kg) was similar to estimates available for other herbivores, although, the peak metabolisable energy allocation during lactation (759 kJ day–1) was lower than values available for other herbivores. The total energy requirement for reproduction (metabolisable energy plus potential energy exported to young via milk) suggests that the ringtail possum also has a relatively low overall energy investment in reproduction. It is suggested that the lactational strategy of the ringtail possum has been selected in order to spread the energy demands of reproduction over time due to constraints on the rate of energy intake imposed by a leaf diet and/or to prolong the mother-young bond. The strategies a female ringtail possum may employ to achieve energy balance when faced with the energy demands of reproduction are discussed.  相似文献   

5.
S. J. Cork    H. Dove 《Journal of Zoology》1989,219(3):399-409
The intake of milk components (total solids, carbohydrate, protein, lipid, energy) by suckling tammar wallabies ( Macropus eugenii ), from peak lactation to independence, was measured using a double-isotope dilution technique and chemical analysis of milk samples. The time of peak intake of milk solids (day 256 of lactation or 1126 g of offspring weight) was similar to that for whole milk. Peak intake of carbohydrate occurred earlier than this (235 days) and peak intakes of protein and lipid occurred later (262 days and 266 days, respectively). Intake of gross energy peaked at 262 days and represented a maternal yield of about 207 KJ.Kg-0.75.d-1. This is much lower than peak lactational energy yields in most other mammals, but the duration of lactation is longer in tammars than in other mammals. Total output of energy in milk by tammar mothers was 63 MJ, and this would require an intake of about 98 MJ of metabolizable energy in food. This requirement, which is equivalent to 21 MJ/kg of maternal weight, is similar to those calculated for sheep and cattle, suggesting that there are not large differences between marsupial and placental herbivores in terms of weight-related allocation of energy to reproduction. We suggest that a strategy of minimizing the peak energetic demand of lactation may be an important adaptation for a small, primarily grazing mammal due to size-related physiological constraints on elevating herbage intake and the increasing risk from predators when grazing time is increased.  相似文献   

6.
Milk ingested by mammalian offspring, coupled with offspring's utilization of this energetic investment, influences survival and growth. A number of studies have examined milk intake in otariids, but few have examined milk intake over the entire lactation period, and none has independently measured energy expenditure concurrent with milk intake. We concurrently examined milk intake, field metabolic rate (FMR), and body composition of 41 pups over the entire lactation interval in 1995 and 1996 on St. Paul Island, Alaska. One hundred two metabolic measurements were obtained with isotope dilution methods. Mean milk intake did not differ annually but increased with age and mass, ranging from 3,400+/-239 to 6,780+/-449 (+/-SE) mL per suckling bout. Milk energy consumption did not vary with age on a mass-specific basis. No differences were detected in milk volume consumed by male and female pups, either absolutely or on a mass-specific basis. Mass-specific FMR peaked during molting, was lowest postmolt, and did not vary by sex. Pups in 1995 had lower FMR than pups in 1996 and were also fatter. Mean milk energy utilized for maintenance metabolism decreased over time from 77% to 43% in 1995 and remained at 71% in 1996. Pup body mass was negatively correlated with the percentage of total body water and positively correlated with the percentage of total body lipid (TBL). Pups increased the percentage of TBL from 16% to 37%. Northern fur seal pups increased energy intake over lactation, while concurrent changes in body composition and pelage condition resulted in mass-specific metabolic savings after the molt.  相似文献   

7.
In this study we measure energy intake via milk in nursing bearded seal (Erignathus barbatus) pups and determine how this energy is allocated into metabolism and storage of new tissues. This was accomplished using longitudinal mass gain records and the doubly labelled water technique on nursing pups in combination with cross-sectional data on changes in milk composition from bearded seal mothers. The pups (n=3) were all less than a week old at the start of the experiments. Pups gained 3.3±0.4 kg·day-1 of which 50% was fat, 14% protein and 36% water. Average daily water influx for the pups was 69.5±9.0 ml · kg-1· day-1. Average CO2 production during the study period was 0.99±0.10 ml·g-1·h-1, which corresponds to a field metabolic rate of 642±67 kJ·kg-1· day-1, or 6.0±0.5 times the predicted basal metabolic rate according to Kleiber (1975). The pups drank an average of 7.6±0.5 kg of milk daily. This corresponds to a daily energy intake of 154±8 MJ, 47±14% of which was stored as new body tissue. Despite this high energy intake bearded seal pups do not get as fat as do other nursing phocids. This is in part due to their larger body size but also due to their very active aquatic lifestyle and the lower and more consistent fat content of the milk compared to other phocid species. Bearded seal mothers forage during lactation and may also be involved in teaching their pups to feed independently. All these data suggest that the lactation strategy of bearded seals differs from the phocid norm.  相似文献   

8.
Isotope-based techniques for the measurement of water turnover, energy expenditure, and milk intake often assume that there is no recycling of isotopes once they have left the labeled animal. In experiments involving lactating females or their suckling offspring, there are several possible routes of isotope recycling. These include the consumption of labeled milk by offspring, the ingestion of labeled excreta, and the rebreathing of exhaled labeled CO(2) or water vapor by both mother and offspring. Isotope recycling might be especially important during lactation because the offspring are in close contact with each other and their mother for prolonged periods. We show here in 24- to 30-day-old domestic dog Canis familiaris puppies that there was no detectable transfer of (18)O or (2)H from labeled to unlabeled pups in two litters (16 pups, 8 labeled, 8 unlabeled) that were weaned early and independent of their mother. However, there was a significant transfer of both isotopes from labeled to unlabeled pups and from labeled pups to their mothers in nine equivalent nursing litters of the same age (27 labeled, 26 unlabeled pups). The increases in enrichment of isotopes in unlabeled offspring were greater than the increases in enrichment of the mothers. This indicates that maternal ingestion of offspring excreta and subsequent transfer of isotope in milk is not the sole pathway of recycling. Additional routes must also be important, such as exchange of isotope between pups on saliva-coated nipples and perhaps direct ingestion of excreta by unweaned young. Recycling is unlikely to be an important factor when determining maternal metabolic rate during peak lactation in domestic dogs. However, experiments that are designed to assess the energy demands of pups and isotope-based estimates of water turnover in offspring may need to take into account any effects of isotope recycling. In a theoretical example, removing the effects of recycling increased the measured energy expenditure in pups by up to 7% and increased the calculated elimination rates of both isotopes by up to 11.1% in (18)oxygen and 10.9% in (2)hydrogen.  相似文献   

9.
The water and energy metabolism of free-living male common seals ( Phoca vitulina ) during the mating season was investigated using labelled water methods. All three seals, which were captured on two occasions, were in negative energy balance during the study. The daily energy expenditure of one animal, estimated using doubly-labelled water was 52·5 MJ. This is equivalent to six times the basal metabolic rate predicted from Kleiber's (1975) allometric equation. Rates of water turnover were slightly lower than predicted from the allometric equation of Richmond, Langham & Trujillo (1962). The observed rates of water turnover and energy expenditure are considerably higher than those of seals which fast during the mating season, and are consistent with the observed differences in behaviour between males of the common seal and other pinniped males during mating.  相似文献   

10.
In capital breeders, individual differences in body size and condition can impact mating effort and success. In addition to the collateral advantages of large body size in competition, large nutrient reserves may offer advantages in endurance rivalry and enable the high rates of energy expenditure associated with mating success. We examined the impacts of body reserves and dominance rank on energy expenditure, water flux, mating success, and breeding tenure in the adult male northern elephant seal, a polygynous, capital breeder. Adult males expended energy at a rate of 159 ± 49 MJ d (-1), which is equivalent to 3.1 times the standard metabolic rate predicted by Kleiber's equation. Despite high rates of energy expenditure and a long fasting duration, males spared lean tissue effectively, deriving a mean of 7% of their metabolism from protein catabolism. Body composition had a strong impact on the ability to spare lean tissue during breeding. When controlling for body size, energy expenditure, depletion of blubber reserves, and water efflux were significantly greater in alpha males than in subordinate males. Large body size was associated with increased reproductive effort, tenure on shore, dominance rank, and reproductive success. Terrestrial locomotion and topography appeared to strongly influence energy expenditure. Comparisons with conspecific females suggest greater total seasonal reproductive effort in male northern elephant seals when controlling for the effects of body mass. In polygynous capital breeding systems, male effort may be strongly influenced by physiological state and exceed that of females.  相似文献   

11.
 This study reports the findings of an integrated, comprehensive analysis of lactation energetics in harp seals conducted using longitudinal measurements of mass, body composition and milk composition from mother-pup pairs in conjunction with water flux measurements in pups. The nursing period of harp seals is a short, intense and relatively efficient period of energy transfer from mothers to pups. The average daily milk intake for pups was 3.65±0.24 kg which is equivalent to 79.5 MJ of energy. Eighty-one per cent of the energy received in the milk was metabolisable and 66% of the energy was stored by the pups as body tissue. The field metabolic rate of pups was 3.9±0.4 time basal metabolic rate. The pups were growing at a rate of 2.2 kg per day during the nursing period. The distribution of this mass gain varied in terms of tissue composition, depending on the age of the pups, but over the whole nursing period approximately half of the tissue was stored as fat. Harp seal mothers lost an average of 3.1 kg per day during lactation which was composed of 37% water, 50% fat, 11% protein and 2% ash. Mothers spent half of their time during the lactation period actively diving and only one-third of their time on the surface of the ice. Milk compositional changes followed the normal phocid pattern with increasing fat content and decreasing water content as lactation progressed. The mean mass transfer efficiency was 73%. However, this value cannot be used without qualification because female harp seals in this study fed to varying degrees, consuming an estimated 0–4.8 kg of fish per day. Feeding does not appear to be required in order to achieve the energy requirements for lactation, given the energy stores possessed by females, and some females do fast through the entire period so feeding may be considered opportunistic in nature. Accepted: 25 April 1996  相似文献   

12.
1. Environmental variation influences food abundance and availability, which is reflected in the reproductive success of top predators. We examined maternal expenditure, offspring mass and condition for Weddell seals in 2 years when individuals exhibited marked differences in these traits. 2. For females weighing > or = 355 kg there was a positive relationship between maternal post-partum mass (MPPM) and lactation length, but below this there was no relationship, suggesting that heavier females were able to increase lactation length but lighter females were restricted to a minimum lactation period of 33 days. 3. Overall, females were heavier in 2002, but in 2003 shorter females were lighter than similar-sized females in 2002 suggesting that the effects of environmental variability on foraging success and condition are more pronounced in smaller individuals. 4. There was no relationship between MPPM and pup birth mass, indicating pre-partum investment did not differ between years. However, there was a positive relationship between MPPM and pup mass gain. Mass and energy transfer efficiency were 10.2 and 5.4% higher in 2002 than 2003, which suggests costs associated with a putatively poor-resource year were delayed until lactation. 5. Heavier females lost a higher proportion of mass during lactation in both years, so smaller females may not have been able to provide more to their offspring to wean a pup of similar size to larger females. 6. MPPM had only a small influence on total body lipid; therefore, regardless of mass, females had the same relative body composition. Females with male pups lost a higher percentage of lipid than those with female pups, but by the end of lactation female pups had 4.5% higher lipid content than males. 7. It appears that for Weddell seals the consequences of environmentally induced variation in food availability are manifested in differences in maternal mass and expenditure during lactation. These differences translate to changes in pup mass and condition at weaning with potential consequences for future survival and recruitment.  相似文献   

13.
Milk composition was investigated throughout the 10-mo pup-rearing period in subantarctic fur seals (Arctocephalus tropicalis) breeding on Amsterdam Island. The mean milk composition was 42.8% +/- 5.7% lipid, 12.1% +/- 1.5% protein, and 42.6% +/- 7.3% water. Subantarctic fur seals breeding on Amsterdam Island produced one of the richest milks ever reported in otariids (20.4 +/- 2.9 kJ/g), with lipid content contributing 85% of total gross energy. The high lipid levels measured in the milk of subantarctic fur seals breeding on Amsterdam Island is consistent (i) with the relatively long time lactating females spend at sea, due to the relatively poor local trophic conditions near the colony that necessitate that they travel long distances to reach the foraging grounds, and (ii) with the consequently short time mothers spend with their pups ashore. Milk composition changed according to the time mothers were fasting ashore: milk produced during the first 2 d spent ashore, when more than 80% of milk transfer occurred, had higher levels of lipids, proteins, and gross energy than milk produced later during the visit ashore, suggesting that the pups were fed with two types of milk during a suckling period. Throughout the year, mothers in good condition produced milk of higher lipid content than others, suggesting that individual foraging skills contribute to enhance milk quality. Milk lipid and gross energy content varied with pup age, according to quadratic relationships, increasing during the earlier stages of lactation before reaching asymptotic values when pups were 180 d old. The stage of lactation appears to be a better predictor of milk lipid content than the duration of the preceding foraging trip, suggesting that either changes in the nutritional requirements of the pup and/or seasonal changes in trophic conditions act on milk composition. These changes in milk quality may also be related to changes in maternal care; lactating subantarctic fur seals apparently reallocate their body reserves toward gestation rather than lactation at the end of the pup-rearing period.  相似文献   

14.
黑线仓鼠繁殖输出与基础代谢率的关系   总被引:2,自引:1,他引:2  
赵志军 《兽类学报》2011,31(1):69-78
为了解黑线仓鼠繁殖输出与基础代谢率(BMR)的关系,阐明最大持续能量收支(SusMR)的限制水平, 揭示哺乳期能量收支对策,本文测定了哺乳期黑线仓鼠的体重、摄食量、BMR 和身体组成,以及哺乳期的胎仔数、胎仔重和泌乳能量支出(MEO)。结果显示,黑线仓鼠哺乳期体重降低了15.0 ± 0.8% , 摄食量显著增加, 哺乳高峰期平均摄食量为13.9 ± 0.3 g /d, 摄入能为222.1 ± 5.3 kJ/ d, 比哺乳初期增加121% , 比对照组高288% ;哺乳高峰期MEO 为62.4 ± 2.3 kJ/ d, 哺乳末期BMR 为49.7 ± 1.1 kJ/ d; 断乳时平均胎仔数4.7 ± 0.2、窝胎仔重50.5 ±1.6 g; 哺乳末期BMR 比对照组增加48% ,BMR 与消化系统各器官的相关性高于对照组; BMR 与胎仔数、胎仔重、乳腺重量和MEO 显著正相关。结果表明:初次繁殖的黑线仓鼠哺乳期SusMR 限制为4.47 ×BMR, 在自身维持和繁殖输出之间采取了“权衡分配”的原则,通过体重降低以减少BMR 的增加幅度, 从而有利于繁殖输出。  相似文献   

15.
We compared the behaviors of primiparous and multiparous gray seal (Halichoerus grypus) females over the course of lactation to examine whether poorly developed maternal behaviors may play a role in the reduced lactation performance observed in primiparous females. Overall, primiparous females spent as much time interacting with their pups as multiparous females. The proportion of time spent nursing their pup increased significantly between early and peak lactation in both primiparous and multiparous females. Although there was no significant difference in the duration of nursing bouts as a function of reproductive status, primiparous females nursed significantly more frequently (bouts/hour) and, therefore, spent a significantly greater proportion of time nursing than multiparous females throughout lactation. Primiparous gray seal females were also significantly more active than multiparous females, however, the difference in activity represented only a small proportion of the overall time budget. We conclude that poorly developed maternal behaviors resulting from a lack of prior reproductive experience are unlikely to account for lower levels of milk energy transfer to pups in primiparous gray seals.  相似文献   

16.
Summary We have analyzed seasonal shifts of energy and time allocation in a population of golden-mantled ground squirrels (Spermophilus saturatus) by directly measuring total daily energy expenditure (DEE) with an isotopic technique (doubly labeled water=dlw), and by estimating components of total DEE through an integration of field behavioral observations with laboratory-measured rates of energy expenditure (oxygen consumption) associated with major behavioral and physiological states. Hibernation laster about 7 1/2 months, and the 4 1/2-month activity season consisted of mating, a 28-d gestation of 3–5 young, 5 1/2 weeks of postnatal growth building to a peak in lactation just before the young emerged above ground, an additional 2–3-week period of maternal care before dispersal, and finally restoration of body mass preceding hibernation. Although the hibernation season comprised nearly two-thirds of the year, it involved only 13–17% of annual energy expenditure, leaving about 85% of energy expenditure for the active season. Ground squirrels were actually present on the surface for only about 11% of the year's time, and the foraging time required to obtain the total annual energy supply amounted to only about 2% of the year's time. The squirrels fed mainly on herbs in the early season and hypogeous fungi later; both were used extensively during peak lactation when female energy expenditure and demand were maximal. Average daily foraging time increased steadily throughout the season to a maximum of 28% of aboveground time as availability of greens diminished and fungus predominated in the diet; time availability did not limit foraging since the animals sat on average for 65% of the daily surface time of about 7 h. Timing of reproduction is apparently optimized such that peak reproductive energy demands are matched with maximal food availability and moderate thermal conditions that minimize energy demand. Despite the greater body mass of males, the greatest total DEE (measured by dlw) of any squirrels at any time of year was that of females during peak lactation. For production of young and lactation through above-ground emergence of an average litter of 2.7, females required a total energy increase of 24% above annual nonreproductive metabolism. Yearling females all bred and performed similarly to older females, yet some costs were greater because the yearlings began and ended hibernation at smaller mass, compensated by giving birth later, and finally showed a greater absolute increase in body mass over the active season than older females. Annual metabolic energy expenditure of breeding males was about 18% greater than that of females, due to greater male body mass. Yet the annual energy intake requirement for both sexes was essentially identical (about 42MJ) due to the greater reproductive export by females in the form of newborn and milk. During the mating season males showed wide-ranging exploratory behavior and social interactions, including aggression, that involved considerable locomotory energy expenditures. Although we did not directly account for the energetics of these specific reproductive behaviors, they are critical to male reproductive success and on a daily basis they probably involved much greater energy expenditure than sperm production. Some yearling males avoided these costs by foregoing testicular development, yet they allocated four times as much energy to growth as older males, thereby increasing somatic condition for the future.  相似文献   

17.
Understanding the costs and regulation of reproduction in primates requires understanding the separate but linked effects of energy availability and total energy expenditure (TEE). We compared variation in TEE and energy intake (EI) between two periods, early lactation and after the resumption of sexual cycling, for eight females from two groups of normally reproducing colony-living baboons (Papio h. anubis). Total energy expenditure was assessed using the doubly labeled water method. TEE was correlated with maternal mass both during early lactation and after the resumption of cycling. TEE after the resumption of cycling was positively related to infant growth rates; mothers with rapidly growing infants had higher energy expenditure. TEE was however unrelated to maternal rank and only weakly associated with reproductive parameters such as delay to conception. EI in early lactation was related to infant mass and interbirth intervals, but unrelated to infant growth or reproductive parameters once cycling had resumed. Energy availability (EA; the difference between intake and expenditure) differed significantly between subordinate and dominant females during early lactation, was highly variable among individuals as a function of body composition, and is suggested to follow a nonlinear relationship as a complex function of social status, lactation stage, infant growth, and female fertility. Thus, as a consequence of reduced energy availability, subordinate females in this captive context may experience reproductive delays even though the total energy expenditure after the return of cycling was similar between high and low ranking females.  相似文献   

18.
Evolved patterns of resource expenditure for reproduction have resulted in a life history continuum across species. A strictly capital-breeding strategy relies extensively on stored energy for reproduction, whereas income breeding uses energy acquired throughout the reproductive period. However, facultative income breeding has been shown in some classically capital-breeding animals, and was originally thought to provide a nutritional refuge for smaller females incapable of securing sufficient reserves during pre-partum foraging. We examined milk composition and milk output for the Weddell seal to determine to what degree lactation was aided by food intake, and what factors contributed to its manifestation. Milk composition was independent of maternal post-partum mass and condition, but did change over lactation. Changes were most likely in response to energetic and nutritional demands of the pup at different stages of development. During early lactation, females fasted and devoted 54.9% of total energy loss to milk production. Later in lactation 30.5% more energy was devoted to milk production and evidence suggested that larger females fed more during lactation than smaller females. It appears that Weddell seals may exhibit a flexible strategy to adjust reproductive investment to local resource levels by taking advantage of periods when prey are occasionally abundant, although it is restricted to larger females possessing the physiological capacity to dive for longer and exploit different resources during lactation. This supports the assumption that although body mass and phylogenetic history explain most of the variation in lactation patterns (20–69%), the remaining variation has likely resulted from physiological adaptations to local environmental conditions. Our study confirms that Weddell seals use a mixed capital–income breeding strategy, and that considerable intraspecific variation exists. Questions remain as to the amount of energy gain derived from the income strategy, and the consequences for pup condition and survival. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Hooded seals (Cystophora cristata) lactate for 3.6 days during which females simultaneously fast and transfer large amounts of energy to their pups through fat-rich milk. Pups grow rapidly, principally due to blubber deposition. Lipoprotein lipase (LPL), the primary enzyme responsible for tissue uptake of triglyceride fatty acids, may strongly influence both maternal milk fat secretion and pup blubber deposition. We measured the energetic costs of lactation (using hydrogen isotope dilution, 3H20), milk composition, prolactin, and LPL activity (post-heparin plasma LPL [PH LPL], blubber, mammary gland and milk; U) in six females. PH LPL and blubber LPL were measured in their pups. Females depleted 216.3 MJ · day−1 of body energy and fat accounted for 59% of maternal mass loss and 90% of postpartum body energy loss, but maternal body composition changed little. Maternal blubber LPL was negligible (0.0–0.2 U), while mammary LPL was elevated (1.8–2.5 U) and was paralleled by changes in prolactin. Estimated total mammary LPL activity was high (up to 20,000 U · animal−1) effectively favoring the mammary gland for lipid uptake. Levels of total blubber LPL in pups increased seven-fold over lactation. Pups with higher PH LPL at birth had greater relative growth rates (P = 0.025). Pups with greater blubber stores and total blubber LPL activity had elevated rates of fat deposition (P = 0.035). Accepted: 4 May 1999  相似文献   

20.
We measured resting metabolic rate (RMR), daily energy expenditure (DEE) and metabolisable energy intake (MEI) in two breeds of dog during peak lactation to test whether litter size differences were a likely consequence of allometric variation in energetics. RMR of Labrador retrievers (30 kg, n=12) and miniature Schnauzers (6 kg, n=4) averaged 3437 and 1062 kJ/day, respectively. DEE of Labradors (n=6) and Schnauzers (n=4) averaged 9808 and 2619 kJ/day, respectively. MEI of Labradors (n=12) was 22448 kJ/day and of Schnauzers (n=7) was 5382 kJ/day. DEE of Labrador pups (2.13 kg, n=19) was 974 kJ/day and Schnauzers (0.89 kg, n=7) were 490 kJ/day. Although Labradors had higher MEIs than Schnauzers during peak lactation, there was no difference in mass-specific energy expenditure between the two breeds. Hence, it is unlikely that litter size variation is a likely consequence of differences in maternal energy expenditure. Individual offspring were relatively more costly for mothers of the smaller breed to produce. Therefore, litter size variations were consistent with the expectation that smaller offspring should be more costly for mothers, but not that smaller mothers should per se invest more resources in reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号