首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coxiella burnetii, the agent of Q fever in man and of coxiellosis in other species, is a small, dimorphic, obligate intracellular bacterium, sheltered within large, acidified, and hydrolase-rich phagosomes. Although several primary and established cell lines, macrophage-like cells, and primary macrophages from other species have been infected with C. burnetii, the infection of mouse primary macrophages has not been sufficiently characterized. In this report quantification of DAPI (4', 6-diamino-2-phenylindole) fluorescence images acquired by confocal microscopy, and transmission electron microscopy were used to compare the infection of three mouse-derived cells, L929 fibroblasts, J774 macrophage-like cells, and resident peritoneal macrophages, with a phase II clone of C. burnetii known to be non-virulent for mammals. Infected peritoneal phagocytes differed from L929 or J774 cells in that: (a) large vacuoles took longer to appear (3-5 d instead of 2), and were only found in a subset (20-30%) of macrophages, as opposed to in more than 70% of the other cells; (b) total and vacuole-associated relative bacterial loads in L929 and J774 cells were several-fold higher than in peritoneal macrophages; (c) estimated doubling times of the bacteria were about 68 h in the primary macrophages, 18 h in J774 and 22 h in L929 cells. Thus, mouse resident peritoneal macrophages control both the formation of the large vacuoles and the intracellular proliferation of C. burnetii phase II.  相似文献   

2.
The subversion of microbicidal functions of macrophages by intracellular pathogens is critical for their survival and pathogenicity. The replication of Coxiella burnetii, the agent of Q fever, in acidic phagolysosomes of nonphagocytic cells has been considered as a paradigm of intracellular life of bacteria. We show in this study that C. burnetii survival in THP-1 monocytes was not related to phagosomal pH because bacterial vacuoles were acidic independently of C. burnetii virulence. In contrast, virulent C. burnetii escapes killing in resting THP-1 cells by preventing phagosome maturation. Indeed, C. burnetii vacuoles did not fuse with lysosomes because they were devoid of cathepsin D, and did not accumulate lysosomal trackers; the acquisition of markers of late endosomes and late endosomes-early lysosomes was conserved. In contrast, avirulent variants of C. burnetii were eliminated by monocytes and their vacuoles accumulated late endosomal and lysosomal markers. The fate of virulent C. burnetii in THP-1 monocytes depends on cell activation. Monocyte activation by IFN-gamma restored C. burnetii killing and phagosome maturation as assessed by colocalization of C. burnetii with active cathepsin D. In addition, when IFN-gamma was added before cell infection, it was able to stimulate C. burnetii killing but it also induced vacuolar alkalinization. These findings suggest that IFN-gamma mediates C. burnetii killing via two distinct mechanisms, phagosome maturation, and phagosome alkalinization. Thus, the tuning of vacuole biogenesis is likely a key part of C. burnetii survival and the pathophysiology of Q fever.  相似文献   

3.
Coxiella burnetii, the etiological agent of Q fever, is an obligate intracellular bacterium that resides within acidified vacuoles with secondary lysosomal characteristics. Infective stages of Trypanosoma cruzi, the causative agent of Chagas' disease, actively invade a wide variety of cells, a process followed by lysosomal recruitment. Recently, we have investigated and characterized early events that occur in Vero cells persistently colonized with C. burnetii when doubly infected with T. cruzi trypomastigote forms. Kinetic studies of trypomastigote transfer indicated that parasitophorous vacuoles (PV) of metacyclic trypomastigotes are rapidly and efficiently fused to C. burnetii vacuoles. Based on these observations we have investigated the behavior of metacyclic trypomastigotes within C. burnetii vacuoles beyond 12 h of co-infection inside Vero cells. Using indirect immunofluorescence with MAb against different developmental stages, it was possible to follow the T. cruzi differentiation process within C. burnetii vacuoles after up to 96 h post-invasion. We observed that metacyclic trypomastigotes began to differentiate after 12 h of infection, and 24 h later amastigotes were the prevailing forms within C. burnetii vacuoles. T. cruzi amastigote replication within C. burnetii vacuoles was confirmed using video and time-lapse confocal microscopy and around 36 h of co-infection, cytokinesis took about 70 min to occur. After 72 h, we observed that amastigote forms seemed to escape from C. burnetii vacuoles. Labeling of amastigotes within C. burnetii vacuoles using a polyclonal antibody to C9 complement protein suggested that TcTOX (T. cruzi hemolysin) could play a role in parasite escape from C. burnetii. We concluded that T. cruzi has an outstanding adaptation capability and can survive within a hostile milieu such as C. burnetii vacuoles.  相似文献   

4.
Dual infection of cells may divert pathogens to intracellular compartments different from those occupied in mono-infected cells. In the present studies, mouse bone marrow in vitro-derived macrophages were first infected with virulent Mycobacterium avium, which are normally singly lodged within tight phagosomes. These phagosomes do not mature; they undergo homotypic fusion with early endosomes and do not fuse with lysosomes. Seven days later, the cultures were superinfected with phase II (non-virulent) Coxiella burnetii, organisms sheltered in lysosome- (or prelysosome)-like, multi-occupancy phagosomes. The latter can attain large size and engage in efficient homo- and heterotypic fusion with other phagosomes. Cultures were fixed for transmission electron microscopy 6, 12, 24, and 48 h later. Other M. avium-infected cultures were superinfected with amastigotes of the trypanosomatid flagellate Leishmania amazonensis, which are also sheltered in lysosome- (or prelysosome)-like multi-occupancy vacuoles, and fixed at the same time periods. Chimeric phagosomes containing both M. avium and C. burnetii, were found already at 6 h and the proportion of M. avium that colocalized with C. burnetii in the same phagosomes reached over 90% after 48 h. In such phagosomes, both organisms were ultrastructurally well preserved. In contrast, colocalization of M. avium and L. amazonensis was rarely found. Speculative scenarios that could underlie the formation of chimeric phagosomes could involve delayed maturation of C. burnetii-containing phagosomes in presence of M. avium, which would allow for fusion of C. burnetii- and M. avium-containing phagosomes; the production, by C. burnetii, of molecules that upregulate the fusion of M. avium-containing phagosomes with those that contain C. burnetii; and the secretion of factors that could favour the survival of M. avium within chimeric vacuoles.  相似文献   

5.
After co-cultivation of Mobiluncus curtisii, an obligate non-sporeforming anaerobe, with free living amebae from the Acanthamoeba spp. under aerobic conditions, internalization, multiplication and persistence of bacterial cells were established for at least 4-6 weeks. Under the same conditions and media without viable amebae, the cells of M. curtisii did not replicate and died in 4-7 days. The infection of amebae occurred with 10 to 100 bacteria per ml of co-cultivation media. In 7-14 days the amount of bacterial cells increased to 1x10(5)-1x10(6) CFU/mL. Electron microscopic examinations revealed bacteria within vacuoles in the amebae and intracellular replication. These results suggest a previously undescribed mechanism for spread, replication and persistence of obligately anaerobe bacteria in the environment and new possible sources, reservoirs and transfer mechanisms of infections caused by obligate anaerobe bacteria.  相似文献   

6.
Coxiella burnetii is an obligate intracellular bacterium that causes the disease Q-fever. This is usually diagnosed by serology (immunofluorescence assay) and/or PCR detection of C.?burnetii DNA. However, neither of these methods can determine the viability of the bacterium. Four different cell lines were compared for their ability to amplify very low numbers of viable C.?burnetii. Two different isolates of C.?burnetii were used. For the Henzerling isolate, DH82 (dog macrophage) cells were the most sensitive with an ID (50) (dose required to infect 50% of cell cultures) of 14.6 bacterial copies. For the Arandale isolate, Vero (monkey epithelial) cells were the most sensitive with an ID (50) of less than one bacterium in a 100-μL inoculum. The Vero cell line appeared highly useful as vacuoles could be seen microscopically in unstained infected cells. The findings of this study favour the use of Vero and DH82 tissue culture cell lines for isolation and growth of C.?burnetii in vitro. The other cell lines, XTC-2 and L929, were less suitable.  相似文献   

7.
The etiologic agent of Q fever Coxiella burnetii, is an intracellular obligate parasite that develops large vacuoles with phagolysosomal characteristics, containing multiple replicating bacteria. We have previously shown that Phase II C. burnetii replicative vacuoles generated after 24-48 h post infection are decorated with the autophagic protein LC3. The aim of the present study was to examine, at earlier stages of infection, the distribution and roles of the small GTPases Rab5 and Rab7, markers of early and late endosomes respectively, as well as of the protein LC3 on C. burnetii trafficking. Our results indicate that: (i) Coxiella phagosomes (Cph) acquire the two Rab proteins sequentially during infection; (ii) overexpression of a dominant negative mutant form of Rab5, but not of Rab7, impaired Coxiella entry, whereas both Rab5 and Rab7 dominant negative mutants inhibited vacuole formation; (iii) Cph colocalized with the protein LC3 as early as 5 min after infection; acquisition of this protein appeared to be a bacterially driven process, because it was inhibited by the bacteriostatic antibiotic chloramphenicol and (iv) C. burnetii delayed the arrival of the typical lysosomal protease cathepsin D to the Cph, which delay is further increased by starvation-induced autophagy. Based on our results we propose that C. burnetii transits through the normal endo/phagocytic pathway but actively interacts with autophagosomes at early times after infection. This intersection with the autophagic pathway delays fusion with the lysosomal compartment possibly favouring the intracellular differentiation and survival of the bacteria.  相似文献   

8.
This study examined whether protein synthesis and replication are required for maturation and fusogenicity of the lysosomal-like, large and spacious parasitophorous vacuole (PV) of Coxiella burnetii, an obligate intracellular bacterium. Large and spacious PV with multiple non-replicating C. burnetii were observed by phase microscopy in Vero cells infected at a multiplicity of infection of ten and treated with a bacteriostatic concentration of nalidixic acid or carbenicillin, antimicrobics that inhibit DNA and cell wall biosynthesis respectively. Conversely, large and spacious PV were not observed in cells treated with a bacteriostatic concentration of the protein synthesis inhibitor chloramphenicol. Rather, fluorescence microscopy of individual cells revealed multiple, acidic PV harbouring a single organism tightly bounded by a LAMP-1 positive vacuolar membrane. These vacuoles homotypically fused to form a large and spacious PV upon removal of the drug. Chloramphenicol also inhibited trafficking of latex beads to large and spacious PV and caused mature PV to collapse. Collectively, these results demonstrate that C. burnetii protein synthesis, but not replication, is required for fusion between nascent C. burnetii PV and latex bead phagosomes, and also for formation and maintenance of large and spacious, replicative PV. However, transit of nascent PV through the endocytic pathway to ultimately acquire lysosomal markers appears to occur irrespective of Coxiella protein synthesis.  相似文献   

9.
The vole and Fuller strains of Rochalimaea quintana were grown on monolayers of mouse L cells irradiated 7 days previously and examined by light microscopy and scanning and transmission electron microscopy. Most of the bacteria of both strains were shown to adhere to the L cells but remained in an extracellular location. Cell division was frequently seen among the extracellular bacteria. The few intracellular bacteria seemed to be within vacuoles and did not multiply. Attachment to the eucaryotic cell did not seem to involve pili or other bacterial surface structures. The dimensions of the bacteria were approximately 0.45 micron in width by 1.0 to 1.7 micron in length. The cell envelope consisted of the usual trilaminar cell wall and plasma membranes separated by a layer of low electron density, as found in other gram-negative bacteria. No significant differences between the vole and Fuller strains either in morphology or relationship to eucaryotic cells were encountered.  相似文献   

10.
This study was aimed at investigation of course of Coxiella burnetii infection in mice infected by these bacteria by different routes. The animals infected intranasally, perorally, intraperitoneally and intravaginally by suspension of C. burnetii cells. Mice were also infected via peritoneal and intravaginal route with spermatozoa derived from infected males. In all animals at the same time specific antibodies against phase I and phase II antigens of C. burnetii belonging to IgG and IgM classes of similar titers appeared and this was detected by dot-blot immunoenzymatic test. Independently of route of infection C. burnetii were present in the liver, spleen, testicles, prostate and spermatozoa of tested animals. The bacteria were detected in these organs for 18 days of infection, in the blood for 7 days only, whereas in urine they appeared as late as 14 days after infection. The course of infection with C. burnetii in mice in thus similar regardless of site of bacterial penetration. Infection with C. burnetii may be also transmitted by a sexual route from male to female animals. Infection of female mice occurs both after intravaginal application of live suspension of C. burnetii or spermatozoa derived from infected males.  相似文献   

11.
12.
The Gram-negative bacterium Campylobacter jejuni is able to enter, survive and multiply within the free living amoeba Acanthamoeba polyphaga, but the molecular mechanisms behind these events are still unclear. We have studied the uptake and intracellular trafficking of viable and heat killed bacterial cells of the C. jejuni strain 81–176 in A. polyphaga. We found that viable bacteria associated with a substantially higher proportion of Acanthamoeba trophozoites than heat killed bacteria. Furthermore, the kinetics of internalization, the total number of internalized bacteria as well as the intracellular localization of internalized C. jejuni were dramatically influenced by bacterial viability. Viable bacteria were internalized at a high rate already after 1 h of co-incubation and were observed in small vacuoles tightly surrounding the bacteria. In contrast, internalization of heat killed C. jejuni was low at early time points and did not peak until 96 h. These cells were gathered in large spacious vacuoles that were part of the degradative pathway as determined by the uptake of fluorescently labeled dextran. The amount of heat killed bacteria internalized by A. polyphaga did never reach the maximal amount of internalized viable bacteria. These results suggest that the uptake and intracellular survival of C. jejuni in A. polyphaga is bacterially induced.  相似文献   

13.
We have previously demonstrated that isolates of the Burkholderia cepacia complex can survive intracellularly in murine macrophages and in free-living Acanthamoeba. In this work, we show that the clinical isolates B. vietnamiensis strain CEP040 and B. cenocepacia H111 survived but did not replicate within vacuoles of A. polyphaga. B. cepacia-containing vacuoles accumulated the fluid phase marker Lysosensor Blue and displayed strong blue fluorescence, indicating that they had low pH. In contrast, the majority of intracellular bacteria within amoebae treated with the V-ATPse inhibitor bafilomycin A1 localized in vacuoles that did not fluoresce with Lysosensor Blue. Experiments using bacteria fluorescently labelled with chloromethylfluorescein diacetate demonstrated that intracellular bacteria remained viable for at least 24 h. In contrast, Escherichia coli did not survive within amoebae after 2 h post infection. Furthermore, intracellular B. vietnamiensis CEP040 retained green fluorescent protein within the bacterial cytoplasm, while this protein rapidly escaped from the cytosol of phagocytized heat-killed bacteria into the vacuolar lumen. Transmission electron microscopy analysis confirmed that intracellular Burkholderia cells were structurally intact. In addition, both Legionella pneumophila- and B. vietnamiensis-containing vacuoles did not accumulate cationized ferritin, a compound that localizes within the lysosome. Thus, our observations support the notion that B. cepacia complex isolates can use amoebae as a reservoir in the environment by surviving without intracellular replication within an acidic vacuole that is distinct from the lysosomal compartment.  相似文献   

14.
Pathogens evolved mechanisms to invade host cells and to multiply in the cytosol or in compositionally and functionally customized membrane-bound compartments. Coxiella burnetii, the agent of Q fever in man is a Gram-negative gamma-proteobacterium which multiplies in large, acidified, hydrolase-rich and fusogenic vacuoles with phagolysosomal-like characteristics. We reported previously that C. burnetii phase II replicative compartments are labelled by LC3, a protein specifically localized to autophagic vesicles. We show here that autophagy in Chinese hamster ovary cells, induced by amino acid deprivation prior to infection with Coxiella increased the number of infected cells, the size of the vacuoles, and their bacterial load. Furthermore, overexpression of GFP-LC3 or of GFP-Rab24 - a protein also localized to autophagic vacuoles - likewise accelerated the development of Coxiella-vacuoles at early times after infection. However, overexpression of mutants of those proteins that cannot be targeted to autophagosomes dramatically decreased the number and size of the vacuoles in the first hours of infection, although by 48 h the infection was similar to that of non-transfected controls. Overall, the results suggest that transit through the autophagic pathway increases the infection with Coxiella by providing a niche more favourable to their initial survival and multiplication.  相似文献   

15.
Listeria monocytogenes grows in the cytosol of mammalian cells and spreads from cell to cell without exiting the intracellular milieu. During cell-cell spread, bacteria become transiently entrapped in double-membrane vacuoles. Escape from these vacuoles is mediated in part by a bacterial phospholipase C (PC-PLC), whose activation requires cleavage of an N-terminal peptide. PC-PLC activation occurs in the acidified vacuolar environment. In this study, the pH-dependent mechanism of PC-PLC activation was investigated by manipulating the intracellular pH of the host. PC-PLC secreted into infected cells was immunoprecipitated, and both forms of the protein were identified by SDS-PAGE fluorography. PC-PLC activation occurred at pH 7.0 and lower, but not at pH 7.3. Total amounts of PC-PLC secreted into infected cells increased several-fold over controls within 5 min of a decrease in intracellular pH, and the active form of PC-PLC was the most abundant species detected. Bacterial release of active PC-PLC was dependent on Mpl, a bacterial metalloprotease that processes the proform (proPC-PLC), and did not require de novo protein synthesis. The amount of proPC-PLC released in response to a decrease in pH was the same in wild-type and Mpl-minus-infected cells. Immunofluorescence detection of PC-PLC in infected cells was performed. When fixed and permeabilized infected cells were treated with a bacterial cell wall hydrolase, over 97% of wild-type and Mpl-minus bacteria stained positively for PC-PLC, in contrast to less than 5% in untreated cells. These results indicate that intracellular bacteria carry pools of proPC-PLC. Upon cell-cell spread, a decrease in vacuolar pH triggers Mpl activation of proPC-PLC, resulting in bacterial release of active PC-PLC.  相似文献   

16.
IFN-gamma is critical for the protection against intracellular bacteria through activation of the antimicrobial machinery of phagocytes. Coxiella burnetii, the etiological agent of Q fever, is a strictly intracellular bacterium that inhabits monocytes/macrophages. We previously showed that IFN-gamma induced C. burnetii killing by promoting the apoptosis of infected monocytes. We show in this study that IFN-gamma-induced apoptosis of infected monocytes was characterized by a time- and dose-dependent activation of caspase-3. IFN-gamma-mediated caspase-3 activation and C. burnetii killing depend on the expression of membrane TNF. Indeed, TNF was transiently expressed on the cell surface of infected monocytes a few hours after IFN-gamma treatment. In addition, anti-TNF Abs inhibited IFN-gamma-mediated caspase-3 activation whereas soluble TNF had no effect on infected cells. Concomitantly, IFN-gamma induced homotypic adherence of C. burnetii-infected monocytes. The latter required the interaction of beta(2) integrins with CD54. When adherence was disrupted by pipetting, by a combination of Abs specific for CD11b, CD18, and CD54, or by an antisense oligonucleotide targeting CD18 mRNA, both cell apoptosis and bacterial killing induced by IFN-gamma were inhibited. Thus, adherence via CD54/beta(2) integrins together with membrane TNF are required to eliminate C. burnetii-infected cells through cell contact-dependent apoptosis. Our results reveal a new component of the antimicrobial arsenal mobilized by IFN-gamma against infection by intracellular bacteria.  相似文献   

17.
IRG proteins, or immunity-related GTPases (also known as p47 GTPases), are a group of IFN-regulated proteins that are highly expressed in response to infection. The proteins localize to intracellular membranes including vacuoles that contain pathogens in infected macrophages and other host cells. Current data indicate that the IRG protein Irgm1 (LRG-47) is critical for resistance to intracellular bacteria. This function is thought to be a consequence of regulating the survival of vacuolar bacteria in host cells. In the current work, the role of Irgm1 in controlling resistance to Salmonella typhimurium was explored to further define the mechanism through which the protein regulates host resistance. Irgm1-deficient mice displayed increased susceptibility to this bacterium that was reflected in increased bacterial loads in spleen and liver and decreased maturation of S. typhimurium granulomas. The mice also displayed an inability to concentrate macrophages at sites of bacterial deposition. In vitro, the ability of Irgm1-deficient macrophages to suppress intracellular growth of S. typhimurium was impaired. Furthermore, adhesion and motility of Irgm1-deficient macrophages after activation with IFN-gamma was markedly decreased. Altered adhesion/motility of those cells was accompanied by changes in cell morphology, density of adhesion-associated proteins, and actin staining. Together, these data suggest that in addition to regulating the maturation of pathogen-containing vacuoles, Irgm1 plays a key role in regulating the adhesion and motility of activated macrophages.  相似文献   

18.
Synthesis of ribonucleic acid (RNA) by the deoxyribonucleic acid-dependent RNA polymerase of Coxiella burnetii required adenosine, uridine, guanosine, and cytidine 5'-triphosphates. Cell-free preparations of this obligate intracellular procaryotic parasite had competence to phosphorylate ribonucleoside mono- and diphosphates in the presence of exogenous adenosine and guanosine 5'-triphosphates to the corresponding di- and triphosphates. C. burnetii contained about 2 nmol of adenosine 5'-triphosphate per mg of protein, which could serve as a approximately P donor for in vivo synthesis of nucleoside triphosphates. The latter were then used as substrates in the synthesis of RNA in a coordinated metabolic system with C. burnetii RNA polymerase. It is suggested that during infection the rickettsiae might obtain the nucleotides necessary for RNA synthesis from the vacuoles in which C. burnetii proliferates.  相似文献   

19.
The virulence strategy of pathogenic Yersinia spp. involves cell‐invasive as well as phagocytosis‐preventing tactics to enable efficient colonisation of the host organism. Enteropathogenic yersiniae display an invasive phenotype in early infection stages, which facilitates penetration of the intestinal mucosa. Here we show that invasion of epithelial cells by Yersinia enterocolitica is followed by intracellular survival and multiplication of a subset of ingested bacteria. The replicating bacteria were enclosed in vacuoles with autophagy‐related characteristics, showing phagophore formation, xenophagy, and recruitment of cytoplasmic autophagosomes to the bacteria‐containing compartments. The subsequent fusion of these vacuoles with lysosomes and concomitant vesicle acidification were actively blocked by Yersinia. This resulted in increased intracellular proliferation and detectable egress of yersiniae from infected cells. Notably, deficiency of the core autophagy machinery component FIP200 impaired the development of autophagic features at Yersinia‐containing vacuoles as well as intracellular replication and release of bacteria to the extracellular environment. These results suggest that Yenterocolitica may take advantage of the macroautophagy pathway in epithelial cells to create an autophagosomal niche that supports intracellular bacterial survival, replication, and, eventually, spread of the bacteria from infected cells.  相似文献   

20.
Phagocytosis is a highly localized event requiring the formation of spatially and temporally restricted signals. Numerous microorganisms have taken advantage of this property to invade host cells. Coxiella burnetii, the agent of Q fever, is an obligate intracellular bacterium that has developed a survival strategy in macrophages based on subversion of receptor-mediated phagocytosis. The uptake of C. burnetii is mediated by alpha(v)beta(3) integrin and is restricted by impaired cross-talk of alpha(v)beta(3) integrin and complement receptor 3 (CR3) (CD11b/CD18). In this study, we showed that CR3 molecules remained outside the pseudopodal extensions induced by C. burnetii in THP-1 monocytes, although alpha(v)beta(3) integrin was present in the pseudopods. Chemoattractants such as RANTES restored CR3 localization to the front of pseudopodal extensions and increased C. burnetii phagocytosis, demonstrating that the localization of CR3 is critical for bacterial uptake. In addition, monocyte activation due to the expression of HIV-1 Nef protein also restored CR3-mediated phagocytosis of C. burnetii by allowing CR3 redistribution toward bacterial-induced pseudopods. The redistribution of CR3 and increased C. burnetii phagocytosis in THP-1 cells stimulated by RANTES or expressing Nef were associated with the inhibition of intracellular replication of C. burnetii. Hence, the localization of CR3 is critical for bacterial phagocytosis and also for the control of bacterial replication. This study describes a nonpreviously reported strategy of phagocytosis subversion by intracellular pathogens based on altered localization of monocyte receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号