首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The primary structure of the cholesterol side-chain cleavage cytochrome P-450 (P-450scc) from bovine adrenocortical mitochondria has been determined. At the initial stage an exhaustive chymotryptic digestion of carboxymethylated P-450scc was performed, and the amino acid sequence of 66 peptides was determined. At the second stage an investigation of the amino acid sequence of individual fragments I (Mr 29 800) and II (Mr 26 600) of the limited trypsinolysis of P-450scc was carried out. Fragment I was digested with trypsin, Staphylococcus aureus V8 proteinase and thermolysin; fragment II was cleaved with trypsin and S. aureus V8 proteinase. In addition, the amino acid sequence of some CNBr peptides of P-450scc has been investigated. The primary structure of cytochrome P-450scc determined with protein chemistry methods proved the multistage cholesterol transformation to pregnenolone to be catalyzed by a single species of cytochrome P-450scc which consists of 481 amino acids. The results from protein sequencing of P-450scc are in good agreement with those obtained recently from nucleotide sequencing. The localization of peptide bonds cleaved under limited proteolysis of P-450 with trypsin to fragments I and II, I and III (Mr 16 800) is presented. It is shown that the transformation of P-450scc to P-420 is accompanied by the appearance of an additional trypsin-sensitive peptide bond in the N-terminal part of P-450scc.  相似文献   

2.
Cytochrome P-450scc consists of two domains linked with a short loop of the polypeptide chain; under hydrolysis by trypsin the domains retain their associated state due to rigid noncovalent interactions. A partial separation of the domains by gel-chromatography on Sephadex G-200 with retention of a haem group in domain I has been achieved after incubation of the trypsin-modified cytochrome P-450scc in 50 mM phosphate buffer (pH 7.2)/1 M NaCl/0.3% sodium cholate/0.3% Tween 80. The separation of domains I and II to individual fragments of the haemoprotein polypeptide chain has been achieved by chromatography under denaturation conditions on the activated thiopropyl-Sepharose via a selective covalent immobilization of domain II. Dissociation of a complex of domains I and II has been effectuated in the presence of 7 M guanidine. Structural characteristics of individual domains have been investigated. It is established that domain I containing a haem group is the N-terminal moiety, and domain II, the C-terminal moiety of the polypeptide chain of cytochrome P-450scc. The pathways of limited trypsinolysis of the native cytochrome P-450scc have been determined. The peptides containing cysteine residues localized on the surface of domain II and responsible for the interaction of haemoprotein with activated thiopropyl-Sepharose have been isolated in a homogeneous form and their amino-acid sequences have been assessed.  相似文献   

3.
An immunochemical comparison of components of cholesterol side chain cleavage system from bovine adrenocortical and human placental mitochondria has been carried out. Antibodies against cytochrome P-450scc, adrenodoxin reductase and adrenodoxin from bovine adrenocortical mitochondria were shown to cross-react with corresponding antigens of human placental mitochondria. A highly sensitive immunochemical method for cytochrome P-450scc determination has been developed. Limited proteolysis of cytochrome P-450scc of human placental mitochondria was studied, and the products of trypsinolysis were identified using antibodies against cytochrome P-450scc and fragments of its polypeptide chain: F1, F2 and F3. Immunochemical relatedness of ferredoxins from bovine adrenocortical and human placental mitochondria allowed one to develop a fast and efficient method for cytochrome P-450scc purification from human placental mitochondria by affinity chromatography on adrenodoxin-Sepharose.  相似文献   

4.
The topology of adrenocortical cytochrome P-450scc in inner mitochondrial membrane was studied. To determine the polypeptide chain parts exposed to matrix or cytosol, two approaches were used, i.e. i) limited proteolysis of membrane-bound cytochrome P-450scc followed by the detection of the peptides formed by immunoblotting; ii) binding of monospecific antibodies against cytochrome P-450scc as well as fragments F1 and F2 representing N- and C-terminal sequences of the hemeprotein, to membrane structures (mitoplasts and submitochondrial particles). The data obtained confirm the transmembrane orientation of cytochrome P-450scc molecule, since antibodies against the hemeprotein as well as fragments F1 and F2 were found to be bound both on the matrix and cytosol surfaces of the inner mitochondrial membrane. It was shown that region 250-257 in cytochrome P-450scc connecting domains F1 and F2 is exposed to the matrix. A model of molecular organization of cytochrome P-450scc in inner mitochondrial membranes is proposed.  相似文献   

5.
Highly specific antibodies to cytochrome P-450scc and its F1 and F2 fragments, representing N- and C-terminal sequences of the hemeprotein respectively, were raised in rabbits. These antibodies were found to be inhibitory (up to 50-90%) for the cholesterol transformation into pregnenolone in the reconstituted system, indicating the involvement of both F1 and F2 domains formed by the respective fragments in monooxygenase catalysis. Cytochrome P-450scc in mitoplasts is not accessible for trypsin as revealed by immunological techniques. However, the treatment of submitochondrial particles with trypsin results in two main fragments identified by immunoblotting in the presence of the monospecific antibodies as F1 and F2 fragments. This indicates that the trypsin sensitive 250-257 region in cytochrome P-450scc molecule connecting both domains is exposed to the matrix side of the inner mitochondrial membrane.  相似文献   

6.
Highly specific antibodies to adrenocortical cytochrome P-450scc as well as fragments F1 and F2 representing the N- and C-terminal sequences of the hemoprotein obtained by limited trypsinolysis were raised in rabbits. Antibodies to cytochrome P-450scc as demonstrated by the Ouchterlony diffusion analysis, immunoelectrophoresis and immunoblotting techniques interact with the hemoprotein and both fragments. Antibodies to cytochrome P-450scc fragments interact with the hemoprotein and corresponding antigens, but do not cross-react. To determine the localization of antigenic determinants in the polypeptide chain of cytochrome P-450scc, the interaction of antibodies to the hemoprotein and to its fragments F1 and F2 with limited trypsinolysis products was studied. All antibodies were found to effectively inhibit cholesterol transformation into pregnenolone in a reconstituted system. Using SDS electrophoresis followed by immunoblotting, the cross-reactivity of antibodies to cytochrome P-450scc and to its fragments with microsomal cytochromes P-450scc LM2 and LM4 as well as with mitochondrial cytochrome P-45027 was revealed. This finding testifies to the presence of common antigenic determinants in the hemoproteins.  相似文献   

7.
Steroid-induced difference spectra have been used to examine the combination of cholesterol with adrenal mitochondrial cytochrome P-450 which participates in cholesterol side chain cleavage (P-450scc) and the depletion of cholesterol from the cytochrome which results from turnover of the enzyme system. Type I difference spectra-induced by cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and cholest-5-ene-3beta, 20 alpha, 22R-triol (20alpha, 22R dihydroxycholesterol) have been used to quantitate binding of cholesterol to two sites (I and II) on cytochrome P-450scc. The action of adrenocorticotropic hormone (ACTH) in vivo and the action of calcium or phosphate ions on isolated mitochondria stimulate the combination of cholesterol with site I but not site II. Cholesterol derived from lecithin-cholesterol micelles, however, binds to both sites. Malate-induced cholesterol depletion occurred at a comparable rate to the transfer of cholesterol from lecithin-cholesterol micelles. However, a residual proportion of cholesterol-cytochrome P-450scc complexes remained, even after 10 min of exposure to malate, and was of similar magnitude in mitochondria from both cycloheximide-treated and stressed rats. It is suggested that this reflects a less reactive form of cholesterol-cytochrome complex. Steroid-induced difference spectra indicate that sites I and II on cytochrome P-450scc are similarly depleted after metabolism of mitochondrial cholesterol in vitro and after inhibition of the action of ACTH in vivo. Anaerobiosis of adrenal cells after excision of the accumulation of cholesterol at cytochrome P-450cc. When anaerobiosis was prevented, cytochrome P-450scc in the freshly isolated mitochondria was apparently essentially free of complexed cholesterol, irrespective of the extent of ACTH action. For 30 min after suspension of the mitochondria in 0.25 M sucrose at 4 degrees, cholesterol combines with cytochrome P-450scc. The extent of this process was not affected by the presence of cycloheximide during ether stress treatment of the rats. It is concluded that there are at least two pools of mitochondrial cholesterol with access to cytochrome P-450scc but that ACTH stimulates only the pool which most readily interacts with the cytochrome.  相似文献   

8.
Adrenodoxin, purified from bovine adrenal cortex, was subjected to trypsin cleavage to yield a trypsin-resistant form, designated TT-adrenodoxin. Sequencing with carboxypeptidase Y identified the trypsin cleavage site as Arg-115, while Edman degradation indicated no NH2-terminal cleavage. Native adrenodoxin and TT-adrenodoxin exhibited similar affinity for adrenodoxin reductase as determined in cytochrome c reductase assays. In side chain cleavage assays using cytochrome P-450scc, however, TT-adrenodoxin demonstrated greater activity than adrenodoxin with cholesterol, (22R)-22-hydroxycholesterol, or (20R,22R)-20,22-dihydroxycholesterol as substrate. This enhanced activity is due to increased affinity of TT-adrenodoxin for cytochrome P-450scc; TT-adrenodoxin exhibits a 3.8-fold lower apparent Km for the conversion of cholesterol to pregnenolone. TT-Adrenodoxin was also more effective in coupling with cytochrome P-450(11) beta, exhibiting a 3.5-fold lower apparent Km for the 11 beta-hydroxylation of deoxycorticosterone. In the presence of partially saturating cholesterol, TT-adrenodoxin elicited a type I spectral shift with cytochrome P-450scc similar to that induced by adrenodoxin, and spectral titrations showed that oxidized TT-adrenodoxin exhibited a 1.5-fold higher affinity for cytochrome P-450scc. These results establish that COOH-terminal residues 116-128 are not essential for the electron transfer activity of bovine adrenodoxin, and the differential effects of truncation at Arg-115 on interactions with adrenodoxin reductase and cytochromes P-450 suggest that the residues involved in the interactions are not identical.  相似文献   

9.
The cholesterol analogue 25-doxyl-27-nor-cholesterol (CNO), was found to be a substrate for cytochrome P-450scc. Upon incubation with the cytochrome P-450scc electron transfer system, CNO is transformed to pregnenolone (Km = 33 microM, Vmax = 0.32 min-1). The pregnenolone formation from endogenous cholesterol is strongly inhibited by CNO (50% at 5 microM). It binds tightly to cytochrome P-450scc as evidenced by a reversed type I spectral absorbance change (Kd = 5.9 microM) which is paralleled by a greater hyperfine splitting of the room-temperature CNO ESR spectrum due to an enhanced probe immobilization (Kd = 1.9 microM). This finding is in accord with a rotational correlation time of about 10(-7) s, which is close to the tumbling rate of the protein. At 110 K the CNO-bound cytochrome P-450scc displays the ESR g-values gx = 2.404/2.456, gy = 2.245 and gz = 1.916; these are different from those of cholesterol-liganded cytochrome P-450scc and may thus serve as a marker for cytochrome P-450scc. Our data indicate that the stereospecificity of the cytochrome P-450scc side-chain-cleaving activity is not dependent on the nature of the cholesterol side-chain termination (C25 to C27). The substrate binding site is however rather sensitive to a modification of the side chain. The doxyl ring confers a stronger affinity of the substrate to the enzyme. Upon binding it becomes embedded in the protein matrix, and we estimate that its final position is 0.6-1.0 nm from the heme moiety.  相似文献   

10.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

11.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed.  相似文献   

12.
Adrenal mitochondrial cytochrome P-450 which functions in cholesterol side chain cleavage (P-450scc) exhibited type I (lambdamax 385, lambdamin 420 nm) and inverse type I (lambdamin 385, lambdamax 420 nm) difference spectra with several steroids. The magnitude and type of response were dependent on the particular steroid and on the extent to which cholesterol was bound to the cytochrome in the intact mitochondrion. the inverse type I difference spectrum induced by 3beta-hydroxy-pregn-5-ene-20-one (pregnenolone) was dependent on the proportion of high spin cholesterol-cytochrome P-450scc complexes. With rat adrenal mitochondria cholest-5-ene-3beta, 20alpha-diol (20alpha-hydroxycholesterol) invariably induced a smaller inverse type I response and, under conditions where cytochrome P-450scc was nearly free of cholesterol, even produced a small type I response. Two distinct steroid binding sites on cytochrome P-450scc were detected by, respectively, the slow type I response to cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and the rapid type I response to a subsequent addition of cholest-5-ene-3beta, 20alpha, 22 R-triol (20alpha, 22R-dihydroxycholesterol). The relative proportions of the spectral responses to these steroids were dependent on the previous extent of adrenal activation by adrenocorticotropic hormone (ACTH), because this stimulatory process altered the combination of mitochondrial cholesterol with cytochrome P-450scc. It is proposed that the two steroid binding sites on cytochrome P-450scc interact with steroids in the following way: site I binds cholesterol, 25-hydroxycholesterol, and 20alpha, 22R-dihydroxycholesterol with formation of a partially high spin cytochrome; site II binds both pregnenolone and 20alpha-OH cholesterol resulting in a low spin cytochrome. Interactions between sites I and II are not competitive, and occupancy of site II ensures a low spin state irrespective of the occupancy of site I. A second mode of interaction by 20alpha, 22R-dihydroxycholesterol stabilizes a high spin cytochrome and is competitive with site II binding by 20alpha-hydroxycholesterol or pregnenolone. Formation of a maximally high spin cytochrome follows occupancy by 20alpha, 22R-dihydroxycholesterol at both sites.  相似文献   

13.
Chemical modifications of cytochrome P-450scc and cytochrome P-450(11) beta with fluorescein-, diiodofluorescein-, eosine- and rhodamine isothiocyanate have been carried out. At a low reagent/protein ratio and neutral pH, a selective chemical modification was known to take place which did not affect the spectral properties of cytochrome P-450scc. Covalent chromatography was found useful to discriminate between covalent modification of cytochrome P-450scc and non-specific binding of FITC with cytochrome P-450scc. Proteolytic modification of cytochrome P-450scc and structural analysis indicate that a lysine residue of the C-terminal sequence of cytochrome P-450scc is accessible to FITC. The residue was shown, by the analysis of the chymotryptic hydrolysate of the fragment F2, to be Lys338. Effect of modification with FITC on the interaction of cytochrome P-450scc with cholesterol or adrenodoxin, on the reduction kinetics and on the conversion of cholesterol to pregnenolone was also studied.  相似文献   

14.
Spectrophotometric, affinity chromatography and cross-linking experiments provided evidence that cytochrome P-450scc from bovine adrenocortical mitochondria forms a tight complex with cytochrome b5 from rabbit liver microsomes. In the reconstituted system cholesterol side chain activity of cytochrome P-450scc was enhanced by the addition of cytochrome b5.  相似文献   

15.
Cytochrome P-450scc (cholesterol side-chain cleavage enzyme) was purified from porcine adrenocortical mitochondria. 2. The purified cytochrome P-450scc was found to be homogeneous on SDS-polyacrylamide gel electrophoresis. 3. The heme content of the purified enzyme was 20.6 nmol/mg protein. 4. The enzymatic activity of the reconstituted cytochrome P-450scc-linked monooxygenase system amounted to 7.8 nmol of pregnenolone formed per nmole of P-450 per minute, with cholesterol as a substrate. 5. The amino acid sequence of the amino-terminal region of the cytochrome P-450scc and the amino acid residue at the carboxyl terminal were determined and compared with those of other mammalian cytochromes P-450scc.  相似文献   

16.
Cytochrome P-450BM-3 (P-450BM-3) from Bacillus megaterium incorporates both a P-450 and an NADPH:P-450 reductase in proteolytically separable domains of a single, 119-kDa polypeptide and functions as a fatty acid monooxygenase independently of any other protein. A 5-kilobase DNA fragment which contains the gene encoding P-450BM-3 was sequenced. A single continuous open reading frame starting at nucleotide 1541 of the 5-kilobase fragment correctly predicted the previously determined NH2-terminal protein sequences of the trypsin-generated P-450 and reductase domains and, in toto, predicted a mature polypeptide of 1,048-amino acid residues with Mr = 117,641. The trypsin site was found at arginine residue 471. The P-450 domain is most similar (about 25%) to the fatty acid omega-hydroxylases of P-450 family IV, while the reductase domain exhibits some 33% sequence similarity with the NADPH:P-450 reductases of mammalian liver. Both the P-450 and reductase domains of P-450BM-3 define new gene families but contain highly conserved segments which display as much as 50% sequence similarity with P-450s and reductases of eukaryotic origin. The mRNA for P-450BM-3 was found by S1 mapping to be 3,339 +/- 10 nucleotides in length. In the accompanying paper, two regions in the 1.5 kilobases 5' to the P-450BM-3 coding region have been implicated in the regulation of P-450BM-3 gene expression.  相似文献   

17.
The effects of the cholesterol analogue, (20R)-20-phenyl-5-pregnene-3 beta,20-diol (20-PPD), on the catalytic and spectral properties of purified bovine adrenocortical cytochrome P-450scc were investigated. In contrast to results with cholesterol and (20R)-20-hydroxycholesterol, no conversion of 20-PPD to pregnenolone could be detected; instead, 20-PPD was found to be a potent inhibitor of cytochrome P-450scc. Kinetic analyses showed that the inhibition is reversible and competitive with respect to cholesterol with an apparent Ki = 30nM. Spectral binding studies with ferricytochrome P-450scc showed that 20-PPD formed a 1:1 complex with the enzyme, having an absorption spectrum similar to that produced by (20R)-20-hydroxycholesterol. These results indicate that 20-PPD binds with very high affinity to the substrate site on cytochrome P-450scc. The finding that the phenyl side chain is readily accommodated suggests the presence in this site of an open pocket which may be normally occupied by C-22 to C-27 of the cholesterol side chain.  相似文献   

18.
Selective chemical modification of adrenocortical cytochrome P-450scc, responsible for key stages of steroid biogenesis, with tetranitromethane has been carried out. Nitration of the cytochrome P-450scc tyrosine residues results in heme protein inactivation with syncatalytic loss of enzyme activity. Analysis of the cytochrome P-450scc inactivation kinetics indicates that there are several pools of tyrosine residues, differing in their accessibility to tetranitromethane. The modification of cytochrome P-450scc results in changes in the hemeprotein spectral properties and its conformation which indicates to the involvement of essential tyrosine residue(s) in the heme-protein interaction. Cholesterol and adrenodoxin (high-spin effectors) prevent the inactivation of cytochrome P-450scc with tetranitromethane, i.e., protect the essential tyrosine residue(s) from modification. Possible functions of the tyrosine residues in the cytochrome P-450scc molecule are discussed.  相似文献   

19.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Difference spectroscopy was used to measure the binding of cholesterol sulfate (CS) to cytochrome P-450scc. The uncomplexed cytochrome and the complex of the cytochrome with adrenodoxin (ADX) were both titrated with CS in order to test whether ADX increased the affinity of the cytochrome for the sterol sulfate. The addition of ADX to the cytochrome had different effects on the binding of the sterol sulfate depending on several factors including: (1) The method of preparation of the cytochrome P-450scc, (2) The concentration of cytochrome P-450scc, (3) The method by which CS was suspended in aqueous solution, and (4) Whether or not the solutions of cytochrome contained non-ionic detergents. The results of this study suggest that the method of isolation of cytochrome P-450scc, and non-ionic detergents, greatly modulate the apparent affinity of cytochrome P-450scc for CS. In the absence of detergents the addition of adrenodoxin to dilute solutions of cytochrome P-450scc appears to enhance only slightly (1- to 2-fold) the affinity of the cytochrome for the sterol sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号