首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gelsolin consists of six related domains (G1-G6) and the C-terminal half (G4-G6) acts as a calcium sensor during the activation of the whole molecule, a process that involves large domain movements. In this study, we used targeted molecular dynamics simulations to elucidate the conformational transitions of G4-G6 at an atomic level. Domains G4 and G6 are initially ruptured, followed by a rotation of G6 by approximately 90 degrees , which is the dominant conformational change. During this period, local conformational changes occur at the G4 and G5 calcium-binding sites, facilitating large changes in interdomain distances. Alterations in the binding affinities of the calcium ions in these three domains appear to be related to local conformational changes at their binding sites. Analysis of the relative stabilities of the G4-G6-bound calcium ions suggests that they bind first to G6, then to G4, and finally to G5.  相似文献   

2.
3.
G-quadruplex (G4), a four-stranded DNA or RNA structure containing stacks of guanine tetrads, plays regulatory roles in many cellular functions. So far, conventional G4s containing loops of 1–7 nucleotides have been widely studied. Increasing experimental evidence suggests that unconventional G4s, such as G4s containing long loops (long-loop G4s), play a regulatory role in the genome by forming a stable structure. Other secondary structures such as hairpins in the loop might thus contribute to the stability of long-loop G4s. Therefore, investigation of the effect of the hairpin-loops on the structure and function of G4s is required. In this study, we performed a systematic biochemical investigation of model G4s containing long loops with various sizes and structures. We found that the long-loop G4s are less stable than conventional G4s, but their stability increased when the loop forms a hairpin (hairpin-G4). We also verified the biological significance of hairpin-G4s by showing that hairpin-G4s present in the genome also form stable G4s and regulate gene expression as confirmed by in cellulo reporter assays. This study contributes to expanding the scope and diversity of G4s, thus facilitating future studies on the role of G4s in the human genome.  相似文献   

4.
5.
We have shown in the accompanying companion paper that cloned cytotoxic T lymphocytes (CTL) can serve as veto cells in vitro, suppressing primary cytotoxic activity directed against antigens expressed by those cloned CTL but not against third party antigens. We now explore the mechanism of this antigen-specific suppression by cloned CTL, using as a model system the ability of G4, a BALB.B anti-H-2Dd CTL clone, to specifically suppress a primary in vitro anti-H-2b CTL response. G4 cells do not constitutively secrete a suppressor factor, because suppression cannot be mediated by supernatants removed from G4 cells at a time when they are routinely used as veto cells. Furthermore, medium removed from cultures suppressed by G4 will not suppress, indicating that the veto cell function of G4 is not mediated by soluble factors. Full suppression of primary anti-H-2b CTL responses requires that G4 be present throughout the 5-day mixed lymphocyte culture (MLC). Removal of G4 during the first 3 days of MLC results in a drastic reduction in the level of antigen-specific suppression, with a slight but reproducible loss of suppression after veto cell removal on day 4. The addition of G4 during the course of an ongoing MLC reveals that maximal suppression requires the presence of veto cells during the first 24 to 48 hr of culture. Thus, G4 cells must be present both early and late in an MLC to exert maximal veto cell suppression. Several experiments suggest that G4-induced veto cell activity is unlikely to be due to cytolysis of CTL precursors which are capable of recognizing G4. G4 cannot specifically recognize these CTL precursors, and G4 cells are inefficient at lectin-mediated lysis of non-tumor cell targets. Furthermore, we show that G4 cells cannot lyse CTL which recognize them. Finally, dilutions of anti-clonotypic antibodies which completely block both lectin-mediated and specific cytolysis by G4 do not block (and in fact enhance) G4-mediated veto cell activity.  相似文献   

6.
In order to understand in which biological processes the four-stranded G-quadruplex (G4) DNA structures play a role, it is important to determine which predicted regions can actually adopt a G4 structure. Here, to identify DNA regions in Schizosaccharomyces pombe that fold into G4 structures, we first optimized a quantitative PCR (qPCR) assay using the G4 stabilizer, PhenDC3. We call this method the qPCR stop assay, and used it to screen for G4 structures in genomic DNA. The presence of G4 stabilizers inhibited DNA amplification in 14/15 unexplored genomic regions in S. pombe that encompassed predicted G4 structures, suggesting that at these sites the stabilized G4 structure formed an obstacle for the DNA polymerase. Furthermore, the formation of G4 structures was confirmed by complementary in vitro assays. In vivo, the S. pombe G4 unwinder Pif1 helicase, Pfh1, was associated with tested G4 sites, suggesting that the G4 structures also formed in vivo. Thus, we propose that the confirmed G4 structures in S. pombe form an obstacle for replication in vivo, and that the qPCR stop assay is a method that can be used to identify G4 structures. Finally, we suggest that the qPCR stop assay can also be used for identifying G4 structures in other organisms, as well as being adapted to screen for novel G4 stabilizers.  相似文献   

7.
Using circular dichroism spectroscopy the ability of berenil, a minor groove binding drug, to induce triple helix formation was investigated with two oligonucleotides designed to form two intramolecular triplexes containing T*A:T and G*G:C triplets, which differ only by the orientation of their third strand: 5'-d(G4A4G4-[T4]-C4T4C4-[T4]-G4T4G4), and 5'-d(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4), where [T4] represents a stretch of four thymine residues. We demonstrate that when added to the duplex form of these oligonucleotides, berenil induces triplex structure formation only if the orientation of third strand is anti-parallel to the purine strand.  相似文献   

8.
黄琼  彭玉玲  冯启理  牛康康 《昆虫学报》2022,65(12):1582-1591
【目的】本研究旨在通过寻找家蚕Bombyx mori胚胎发育因子(embryonic development factor, EDF)基因BmEDF G-四链体(G-quadruplex, G4)结构的结合蛋白,进一步探究G4结构调控家蚕胚胎发育的可能作用和机制。【方法】通过圆二色谱(circular dichroism, CD)和凝胶迁移实验(electrophoretic mobility shift assay, EMSA)验证G4序列在体外是否形成G4结构;通过启动子活性实验验证BmEDF启动子区G4结构对BmEDF的表达调控的影响;通过qRT-PCR检测BmEDF在家蚕胚胎发育各时期的表达量变化。通过EMSA联合质谱分析可能与BmEDF的G4结构结合的蛋白,然后将与G4结构结合的2个候选蛋白BmeIF4H和BmADDH分别进行基因克隆、表达和纯化,再通过EMSA实验分别验证候选蛋白BmeIF4H和BmADDH与BmEDF的G4结构结合与否。【结果】CD和EMSA实验都证明BmEDF的G4序列在体外可以形成G4结构。启动子活性实验表明BmEDF G4结构的存在对BmEDF转录表达具有正调控的作用。qRT-PCR结果表明BmEDF在产卵后120 h时表达量显著升高。经原核表达纯化,获得BmeIF4H和BmADDH重组蛋白。EMSA实验表明重组蛋白BmeIF4H在体外与BmEDF的G4结构结合,BmADDH不与BmEDF G4结构结合。【结论】家蚕胚胎中的BmeIF4H蛋白可能与BmEDF的G4结构结合。本研究为解析家蚕胚胎发育的DNA高级结构调控机理提供了实验证据。  相似文献   

9.
10.
DNA的G-四链体(G-quadruplex,G4)是由富含串联重复的鸟嘌呤(guanine,G)的核酸序列折叠形成的四链体螺旋结构,目前认为其与基因表达调控和基因组稳定性有关。已有研究表明,结核分枝杆菌(Mycobacterium tuberculosis)的espK(Rv3879c)是构成ESX-1分泌系统的一个重要元件,其蛋白序列具有串联重复的GTPITP氨基酸序列多态性。本研究经核酸序列比对分析,确定该氨基酸序列多态性区域对应的模板链上存在G4序列,且该G4序列仅存在于结核分枝杆菌复合群。通过比对结核分枝杆菌临床分离株espK基因的核酸序列,发现espK基因的高频率G1573C突变位于G4序列。为研究该G4结构及基因表达调控功能,首先利用圆二色谱检测其核酸片段在钾离子存在条件下的光谱学特征,证实其可在体外形成具有顺式平行结构特征的G4,同义点突变G4会使其结构稳定性下降。采用重叠聚合酶链反应(overlapping polymerase chain reaction,overlapping PCR)构建含有G4突变的espK表达质粒,获得重组表达菌株。通过实时定量PCR测定espK重组表达菌株中基因转录水平变化,发现同义点突变G4后,其基因转录水平比野生型espK重组菌株提升 1.5 倍(P<0.05)。此外,临床分离株中espK出现的高频率G1573C突变会破坏G4结构,但蛋白免疫印迹检测结果显示espK G1573C突变导致EspK蛋白表达水平上升。以上结果提示,espK的G4结构具有表达调控功能,该G4区域的序列多态性可能通过影响EspK表达水平来调节ESX-1分泌系统的活性。  相似文献   

11.
Laminins are a family of trimeric extracellular matrix proteins consisting of alpha, beta, and gamma chains. So far five different laminin alpha chains have been identified. The laminin alpha 4 chain, which is present in laminin-8/9, is expressed in cells of mesenchymal origin, such as endothelial cells and adipocytes. Previously, we identified heparin-binding sites in the C-terminal globular domain (G domain) of the laminin alpha 4 chain. Here we have focused on the biological functions of the laminin alpha 4 chain G domain and screened active sites using a recombinant protein and synthetic peptides. The rec-alpha 4G protein, comprising the entire G domain, promoted cell attachment activity. The cell attachment activity of rec-alpha 4G was completely blocked by heparin and partially inhibited by EDTA. We synthesized 116 overlapping peptides covering the entire G domain and tested their cell attachment activity. Twenty peptides showed cell attachment activity, and 16 bound to heparin. We further tested the effect of the 20 active peptides in competition assays for cell attachment and heparin binding to rec-alpha 4G protein. A4G6 (LAIKNDNLVYVY), A4G20 (DVISLYNFKHIY), A4G82 (TLFLAHGRLVFM), and A4G83 (LVFMFNVGHKKL), which promoted cell attachment and heparin binding, significantly inhibited both cell attachment and heparin binding to rec-alpha 4G. These results suggest that the four active sites are involved in the biological functions of the laminin alpha 4 chain G domain. Furthermore, rec-alpha 4G, A4G6, and A4G20 were found to interact with syndecan-4. These active peptides may be useful for defining of the molecular mechanism laminin-receptor interactions and laminin-mediated cellular signaling pathways.  相似文献   

12.
Tn5 insertion mutants of Pseudomonas cepacia G4 that were unable to degrade trichloroethylene (TCE), toluene, or phenol or to transform m-trifluoromethyl phenol (TFMP) to 7,7,7-trifluoro-2-hydroxy-6-oxo-2,4-heptadienoic acid (TFHA) were produced. Spontaneous reversion to growth on phenol or toluene as the sole source of carbon was observed in one mutant strain, G4 5223, at a frequency of approximately 1 x 10(-4) per generation. One such revertant, G4 5223-PR1, metabolized TFMP to TFHA and degraded TCE. Unlike wild-type G4, G4 5223-PR1 constitutively metabolized both TFMP and TCE without aromatic induction. G4 5223-PR1 also degraded cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and 1,1-dichloroethylene and oxidized naphthalene to alpha naphthol constitutively. G4 5223-PR1 exhibited a slight retardation in growth rate at TCE concentrations of > or = 530 microM, whereas G4 (which was unable to metabolize TCE under the same noninducing growth conditions) remained unaffected. The constitutive degradative phenotype of G4 5223-PR1 was completely stable through 100 generations of nonselective growth.  相似文献   

13.
G4-DNA binding proteins of E. coli, Saccharomyces cerevisiae, Arabidopsis, and human have been identified by a synthetic non-telomeric G4-DNA oligo 5'-d(ACTGTCGTACTTGATATGGGGGT)-3' using gel mobility shift assays. G4-DNA binding proteins are specific to G4-DNA, a four-stranded guanine-DNA structure. Bound complexes of G4-DNA and proteins were identified in nuclear extracts of all examined organisms in this study. In humans, three different G4-DNA and protein complexes were identified. However, human telomeric G-quadruplex oligo did not compete with G4-DNA oligo in the competition assays, suggesting that the identified G4-DNA binding proteins may be different from the known human telomeric G4-DNA binding proteins. We discovered two complexes of G4-DNA and protein in Arabidopsis identified in mobility shift assays. Interestingly, two complexes of G4-DNA and proteins were identified from E. coli, which have a circular genomic DNA structure. Results of this investigation suggest that non-telomeric G4-DNA structure and its binding proteins may be involved in important functional roles in both prokaryotes and eukaryotes.  相似文献   

14.
15.
O A Dada  O Abugo  G B Ogunmola 《Enzyme》1983,30(4):217-222
Thyroid hormones, throxine (T4) and triiodothyronine (T3) which are known to activate glucose-6-phosphate dehydrogenase (G6PD) activity in vivo act as substrate inhibitors of G6PD in vitro. T4 competitively inhibits NADP in human erythrocyte G6PD variants G6PDA, G6PDB and G6PDA- with inhibition constants of 2.40 +/- 0.90 X 10(-6), 3.44 +/- 0.63 X 10(-6) and 6.53 +/- 0.60 X 10(-6) mol/l, respectively. The inhibition is, however, noncompetitive with respect to G6P in the three variants. T3 also has similar inhibition pattern to T4 with inhibition constants for NADP of 1.9 +/- 0.08 X 10(-5) and 1.28 +/- 0.17 X 10(-5) mol/l for G6PDB and G6PDA-, respectively. cAMP on the other hand inhibits G6P competitively with inhibition constants 1.50 +/- 0.22 X 10(-4), 1.06 +/- 0.24 X 10(-4) and 1.76 +/- 0.14 X 10(-4) mol/l for G6PDB, G6PDA and G6PDA-, respectively. There are significant differences in the inhibition effects of T4 and cAMP with respect to NADP as substrates for the normal enzyme G6PDA or G6PDB and the deficient enzyme G6PDA- when NADP is the substrate, the latter being much more inhibited. The activation effect of thyroid hormones in vivo may therefore not be a direct result of thyroid hormone binding to the G6PD enzyme nor mediated through the action of cAMP but plausibly be through complexation of inhibitory trace metal ions by the thyroid hormones T4 and T3.  相似文献   

16.
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant. To determine whether the transmembrane and cytoplasmic portions of the VSV G protein were required for insertion of the HIV receptor, a chimeric CD4/G glycoprotein gene was constructed and a vaccinia virus recombinant which expresses the fused CD4/G gene was isolated. The chimeric CD4/G protein was functional as shown in a syncytium-forming assay in HeLa cells as demonstrated by coexpression with a vaccinia virus recombinant expressing the HIV envelope protein. The CD4/G protein was efficiently inserted into the envelope of VSV, and the virus particles retained their infectivity even after specific immunoprecipitation experiments with monoclonal anti-CD4 antibodies. Expression of the normal CD4 protein also led to insertion of the receptor into the envelope of VSV particles. The efficiency of CD4 insertion was similar to that of CD4/G, with approximately 60 molecules of CD4/G or CD4 per virus particle compared with 1,200 molecules of VSV G protein. Considering that (i) the amount of VSV G protein in the cell extract was fivefold higher than for either CD4 or CD4/G and (ii) VSV G protein is inserted as a trimer (CD4 is a monomer), the insertion of VSV G protein was not significantly preferred over CD4 or CD4/G, if at all. We conclude that the efficiency of CD4 or CD4/G insertion appears dependent on the concentration of the glycoprotein rather than on specific selection of these glycoproteins during viral assembly.  相似文献   

17.
G-quadruplexes (G4s) are four-stranded nucleic acid structures adopted by some repetitive guanine-rich sequences. Putative G-quadruplex-forming sequences (PQSs) are highly prevalent in human genome. Recently some G4s have been reported to have cancer-selective antiproliferative activity. A G4 DNA, AS1411, is currently in phase II clinical trials as an anticancer agent, which is reported to bind tumor cells by targeting surface nucleolin. AS1411 also has been extensively investigated as a target-recognition element for cancer cell specific drug delivery or cancer cell imaging. Here we show that, in addition to AS1411, intramolecular G4s with parallel structure (including PQSs in genes) have general binding activity to many cell lines with different affinity. The binding of these G4s compete with each other, and their targets are certain cellular surface proteins. The tested G4s exhibit enhanced cellular uptake than non-G4 sequences. This uptake may be through the endosome/lysosome pathway, but it is independent of cellular binding of the G4s. The tested G4s also show selective antiproliferative activity that is independent of their cellular binding. Our findings provide new insight into the molecular recognition of G4s by cells; offer new clues for understanding the functions of G4s in vivo, and may extend the potential applications of G4s.  相似文献   

18.
Tn5 insertion mutants of Pseudomonas cepacia G4 that were unable to degrade trichloroethylene (TCE), toluene, or phenol or to transform m-trifluoromethyl phenol (TFMP) to 7,7,7-trifluoro-2-hydroxy-6-oxo-2,4-heptadienoic acid (TFHA) were produced. Spontaneous reversion to growth on phenol or toluene as the sole source of carbon was observed in one mutant strain, G4 5223, at a frequency of approximately 1 x 10(-4) per generation. One such revertant, G4 5223-PR1, metabolized TFMP to TFHA and degraded TCE. Unlike wild-type G4, G4 5223-PR1 constitutively metabolized both TFMP and TCE without aromatic induction. G4 5223-PR1 also degraded cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and 1,1-dichloroethylene and oxidized naphthalene to alpha naphthol constitutively. G4 5223-PR1 exhibited a slight retardation in growth rate at TCE concentrations of > or = 530 microM, whereas G4 (which was unable to metabolize TCE under the same noninducing growth conditions) remained unaffected. The constitutive degradative phenotype of G4 5223-PR1 was completely stable through 100 generations of nonselective growth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号