首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Omata T  Ogawa T 《Plant physiology》1986,80(2):525-530
When cells of Anacystis nidulans strain R2 grown under high CO2 conditions (3%) were transferred to low CO2 conditions (0.05%), their ability to accumulate inorganic carbon (Ci) increased up to 8 times. Cytoplasmic membranes (plasmalemma) isolated at various stages of low CO2 adaptation were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was a marked increase of a 42-kilodalton polypeptide in the cytoplasmic membrane during adaptation; a linear relationship existed between the amount of this polypeptide and the Ci-accumulating capability of the cells. No significant changes were observed during this process in the amount of other polypeptides in the cytoplasmic membranes or in the polypeptide profiles of the thylakoid membranes, cell walls, and soluble fractions. Spectinomycin, an inhibitor of protein biosynthesis, inhibited both the increase of the 42-kilodalton polypeptide and the induction of high Ci-accumulating capability. The incorporation of [35S]sulfate into membrane proteins was greatly reduced during low CO2 adaptation. Radioautograms of the 35S-labeled membrane proteins revealed that synthesis of the 42-kilodalton polypeptide in the cytoplasmic membrane was specifically activated during the adaptation, while that of most other proteins was greatly suppressed. These results suggested that the 42-kilodalton polypeptide in the cytoplasmic membrane is involved in the active Ci transport by A. nidulans strain R2 and its synthesis under low CO2 conditions leads to high Ci-transporting activity.  相似文献   

2.
In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from `low salt' (0.03 molar NaCl) to `high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. `salt shock,' virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameters 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.  相似文献   

3.
Antibodies cross-reactive with specific membrane proteins were used to investigate membrane development in Anacystis nidulans R2 during recovery from iron stress. Polyclonal antibodies prepared using the iron-regulated chlorophyll (Chl)-protein CPVI-4 (HB Pakrasi, HC Riethman, LA Sherman 1985 Proc Natl Acad Sci USA 82: 6903-6907) as antigen were characterized and used to identify three iron stress-induced polypeptides of 36, 35, and 34 kilodaltons on immunoblots of polyacrylamide gels. The 34 kilodalton protein was shown to be a component of the Chlbinding CPVI-4 complex. The 36 kilodalton protein is an unrelated, intrinsic membrane protein tightly regulated by iron (designated IrpA), whereas the 35 kilodalton immunoreactive component is an extremely abundant glycoprotein (GP35). An analysis of photosystem II (PSII)-associated Chl-proteins during recovery from iron stress demonstrates that CPVI-4 is associated with most of the Chl present in iron-starved cells, whereas the PSII core polypeptides are present in very low levels; upon recovery, CPVI-4 diminishes in abundance as the relative levels of the other PSII proteins increase. The abundance of CPVI-4 in iron-stressed cells and the distribution of Chl among individual Chl-proteins during recovery suggest a possible role for CPVI-4 in the direction of membrane assembly during recovery from iron stress.  相似文献   

4.
Deprivation of iron from the growth medium results in physiological as well as structural changes in the unicellular cyanobacterium Anacystis nidulans R2. Important among these changes are alterations in the composition and function of the photosynthetic membranes. Room-temperature absorption spectra of iron-starved cyanobacterial cells show a chlorophyll absorption peak at 672 nanometers, 7 nanometers blue-shifted from its normal position at 679 nanometers. Iron-starved cells have decreased amounts of chlorophyll and phycobilins. Their fluorescence spectra (77K) have one prominent chlorophyll emission peak at 684 nanometers as compared to three peaks at 687, 696, and 717 nanometers from normal cells. Chlorophyll-protein analysis of iron-deprived cells indicated the absence of high molecular weight bands. Addition of iron to iron-starved cells induced a restoration process in which new components were initially synthesized and integrated into preexisting membranes; at later times, new membranes were assembled and cell division commenced. Synthesis of chlorophyll and phycocyanins started almost immediately after the addition of iron. The absorption peak slowly returned to its normal wavelength within 24 to 28 hours. The fluorescence emission spectrum at 77K changed over a period of 14 to 24 hours during which the 696- and 717-nanometer peaks grew to their normal levels, and the 684 nanometer peak moved to 687 nanometers and its relative intensity decreased to its normal level. Analysis of chlorophyll-protein complexes on polyacrylamide gels showed that high molecular weight chlorophyll-protein bands were formed during this time, and that low molecular weight bands (related to photosystem II) disappeared. The origin of the fluorescence emission at 687 and 696 nanometers is discussed in relation to the specific chlorophyll-protein complexes formed during iron reconstitution.  相似文献   

5.
Cytoplasmic membranes (plasma membranes), thylakoid membranesand cell walls prepared from the cyanobacterium, Anacystis nidulans,were compared for UDP-glucose: l,2-diacylglycerol glucosyltransferaseactivity. When 1,2-dipalmitoylglycerol was added as a glucosylacceptor, both cytoplasmic membranes and thylakoid membranesincorporated glucose from UDP-glucose into monoglucosyl diacylglycerol,but the cell walls containing the outer membranes did not. Thecytoplasmic membranes incorporated about twice as much glucoseas the thylakoid membranes on a protein basis. These observationssuggest that in A. nidulans the UDP-glucose: 1,2-diacylglycerolglucosyltransferase participating in glucolipid biosynthesisis located in both cytoplasmic and thylakoid membranes, butnot in the outer membrane. 1Solar Energy Research Group, The Institute of Physical andChemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan. (Received November 21, 1985; Accepted January 27, 1986)  相似文献   

6.
Homocontinuous cultures of the cyanobacterium Anacystis nidulans (syn. Synechococcus sp. PCC 6301) were grown at white light intensities of 2 and 20 W/m2, and supplied with 0.03 and 3 % CO2 enriched air. The mutual influence of these growth factors on the development of the photosynthetic apparatus was studied by analyses of the pigment content, by low temperature absorbance and fluorescence spectroscopy, by analyses of oxygen evolution light-saturation curves, and by SDS PAGE of isolated phycobilisomes. The two growth factors, light and CO2, distinctly affect the absorption cross section of the photosynthetic apparatus, which is expressed by its pigment pattern, excitation energy distribution and capacity. In response to low CO2 concentrations, the phycocyanin / allophycocyanin ratios were lower and one linker polypeptide L30R, of the phycobilisomes was no longer detectable in SDS PAGE. Apparently, low CO2 adaptation results in shorter phycobilisome rods. Specifically, upon adaptation to low light intensities, the chlorophyll and the phycocyanin content on a per cell basis increase by about 50% suggesting a parallel increase in the amount of phycobilisomes and photosystem core-complexes. Low light adaptation and low CO2 adaptation both cause a shift of the excitation energy distribution in favor of photosystem I. Variations in the content of the “anchor” polypeptides L60CM and L75CM are possibly related to changes in the excitation energy transfer from phycobilisomes to the photosystem II and photosystem I core-complexes.  相似文献   

7.
Cells of the blue-green alga (cyanobacterium) Anacyslis nidulanswere disintegrated, and their thylakoid membranes and cytoplasmicmembranes were isolated by floatation centrifugation on a sucrosedensity gradient. Electron micrographs revealed that the cytoplasmicmembranes formed single closed vesicles having diameters of200–400 nm. These membranes contained xanthophylls asthe major constituent pigments and rß-carotene andchlorophyll a as very minor ones. The major peaks in their absorptionspectra were due to carotenoids at 435, 455 and 487 nm, witha minor one due to chlorophyll a at 673 nm. These findings areconsistent with the yellow color of the cytoplasmic membranes.The absorption spectrum of the membranes in the carotenoid regionwas markedly affected by temperature: with a decrease in temperature,the peaks at 455 and 487 nm diminished and a new peak appearedat 390 nm. (Received February 12, 1983; Accepted June 20, 1983)  相似文献   

8.
Cultures of the cyanobacterium Anacystis nidulans were grown under iron-deficient conditions and then restored by the addition of iron. Membrane proteins from iron-deficient and iron-restored cells were analyzed by lithium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The incorporation of [35S]sulfate into membrane proteins and lactoperoxidase-catalyzed 125I iodination were used to monitor the rates of polypeptide biosynthesis and surface exposure of membrane proteins, respectively. These polypeptide profiles revealed major differences in the membrane composition of iron-deficient and normal cells. Iron deficiency caused a decrease in the amount of certain important membrane proteins, reflecting a decreased rate of biosynthesis of these peptides. Several photosystem II peptides also showed an increase in surface exposure after iron stress. In addition, iron deficiency led to the synthesis of proteins at 34 and 52 kilodaltons which were not present in normal cells. When iron was restored to a deficient culture, a metabolic sequence was initiated within the first 12 h after the addition of iron which led to phenotypically normal cells. Pulse labeling with [35S]sulfate during this period demonstrated that iron addition initiates a coordinated pattern of synthesis that leads to the assembly of normal membranes.  相似文献   

9.
10.
The mutant E1 of Anacystis nidulans R2 requires high CO2 concentration for growth but was able to adapt to low CO2 concentration. This was exhibited by the increased ability to accumulate inorganic carbon within the cells and the large increase in the amount of a 42-kilodalton polypeptide located in the cytoplasmic membrane. The adaptation occurred in E1 cells at an extracellular CO2 concentration as high as 0.3%, which was 8 times the concentration for maximal adaptation in R2 cells. The ability of E1 cells to exhibit low CO2 characteristics at a higher CO2 concentration was attributed to lower intracellular CO2 concentration.  相似文献   

11.
Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate.  相似文献   

12.
CO 2 fixation by the blue-green alga Anacystis nidulans   总被引:1,自引:0,他引:1  
  相似文献   

13.
The rate of adaptation of high CO2 (5% v/v CO2 in air)-grown Anabaena to a low level of CO2 (0.05% v/v in air) was determined as a function of O2 concentration. Exposure of cells to low (2.6%) O2 concentration resulted in an extended lag in the adaptation to low CO2 concentration. The rate of adaptation following the lag was not affected by the concentration of O2. The length of the lag period is markedly affected by the O2/CO2 concentration ratio, indicating that the signal for adaptation to low CO2 may be related to the relative rate of ribulose-1,5-bisphosphate carboxylase/oxygenase activities, rather than to CO2 concentration proper. This suggestion is supported by the observed accumulation of phosphoglycolate following transfer of cells from high to low CO2 concentration.  相似文献   

14.
Lara C  Romero JM 《Plant physiology》1986,81(2):686-688
The effect of light intensity on the rates of ammonium and nitrate uptake and of CO2 fixation has been determined in intact Anacystis nidulans cells. Ammonium uptake became saturated at photon flux values of about 60 microeinsteins per square meter per second, whereas both nitrate uptake and CO2 fixation reached saturation at about 250 microeinsteins per square meter per second, the rates of the two latter processes being tightly correlated at any light intensity assayed. Inhibition of ammonium assimilation resulted in the loss of correlation between CO2 fixation and nitrate uptake, the latter process exhibiting then a reduced light requirement. The results establish a clear distinction between ammonium utilization and nitrate utilization with regard to their light requirement and to the nature of their dependence upon CO2 fixation.  相似文献   

15.
李荣贵  汪靖超 《植物学报》2005,22(3):302-306
高盐浓度条件下分离了蓝细菌Anacystis nidulans R-2的藻胆体, 藻胆体中存在一种43 kD的蛋白。Western blotting 分析表明, 该蛋白能与蓝细菌Fd:NADP+氧还酶中FNR结构域的抗体发生反应, 解聚的藻胆体具有FNR黄递酶的活性, 初步证明该43 kD蛋白就是Fd:NADP+氧还酶。TritonX-114分相实验表明, 这种43 kD的蛋白不能进入TritonX-114相。对藻胆体的部分解聚合实验表明, 富含外周杆的组分中不存在43 kD的蛋白。  相似文献   

16.
高盐浓度条件下分离了蓝细菌Anacystis nidulans R-2的藻胆体,藻胆体中存在一种43kD的蛋白。Western blotting分析表明,该蛋白能与蓝细菌Fd:NADP氧还酶中FNRE占构域的抗体发生反应,解聚的藻胆体具有FNR黄递酶的活性,初步证明该43kD蛋白就是Fd:NADP氧还酶。Triton X-114分相实验表明,这种43kD的蛋白不能进入Triton X-114相。对藻胆体的部分解聚合实验表明,富含外周杆的组分中不存在43kD的蛋白。  相似文献   

17.
Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a `low salt' (0.015 molar NaCl) to `high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1Δ9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1Δ9, C18:1Δ11), with the higher increase in oleic acid C18:1Δ9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells control membrane function and stability.  相似文献   

18.
19.
Absorption spectra and photosynthetic action spectra have been determined for living Anacystis grown in complete and iron-deficient inorganic media. The absorption studies have shown a spectral shift from 679 nm to 673 nm in the chlorophyll a absorption peak when the algae had to grow without iron. The shift is believed to reflect a changed ratio between at least two chlorophyll a forms denoted Ca670 and Ca680 in this work. Action spectra determinations have revealed a similar shift from 677 nm to 672 nm in the photosynthetic activity peak of chlorophyll a when Anacystis was transferred to a medium without iron. It is proposed that both Ca670 and Ca680 participate in light absorption for photo-system I.  相似文献   

20.
Gombos Z  Vigh L 《Plant physiology》1986,80(2):415-419
The lipid phase transition of the cytoplasmic membrane and the chilling susceptibility were studied in nitrate-starved Anacystis nidulans cells. Nitrate starvation resulted in the disappearance of the thylakoid membrane system, without any effect on chilling susceptibility. The chilling susceptibility of the algal cells depended on the growth temperature. Temperatures of lipid phase transitions of the cytoplasmic membranes were detected by chilling-induced spectral changes in the carotenoid region, in vivo. These values were identical to those of cultures containing intact thylakoid systems. Our results suggest that cytoplasmic membrane plays a determinative role in the thermal acclimation of the alga cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号