首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Patients with spatial neglect fail to attend to stimuli in the contralesional visual world. He et al. used fMRI to reveal how disrupted functional connectivity, independent of task-evoked activation, in ventral and dorsal attentional networks may explain behavioral impairment in neglect and recovery from acute neglect.  相似文献   

2.
The underlying functional neuroanatomy of tinnitus remains poorly understood. Few studies have focused on functional cerebral connectivity changes in tinnitus patients. The aim of this study was to test if functional MRI "resting-state" connectivity patterns in auditory network differ between tinnitus patients and normal controls. Thirteen chronic tinnitus subjects and fifteen age-matched healthy controls were studied on a 3 tesla MRI. Connectivity was investigated using independent component analysis and an automated component selection approach taking into account the spatial and temporal properties of each component. Connectivity in extra-auditory regions such as brainstem, basal ganglia/NAc, cerebellum, parahippocampal, right prefrontal, parietal, and sensorimotor areas was found to be increased in tinnitus subjects. The right primary auditory cortex, left prefrontal, left fusiform gyrus, and bilateral occipital regions showed a decreased connectivity in tinnitus. These results show that there is a modification of cortical and subcortical functional connectivity in tinnitus encompassing attentional, mnemonic, and emotional networks. Our data corroborate the hypothesized implication of non-auditory regions in tinnitus physiopathology and suggest that various regions of the brain seem involved in the persistent awareness of the phenomenon as well as in the development of the associated distress leading to disabling chronic tinnitus.  相似文献   

3.
Deng Y  Guo R  Ding G  Peng D 《PloS one》2012,7(3):e33337
Both the ventral and dorsal visual streams in the human brain are known to be involved in reading. However, the interaction of these two pathways and their responses to different cognitive demands remains unclear. In this study, activation of neural pathways during Chinese character reading was acquired by using a functional magnetic resonance imaging (fMRI) technique. Visual-spatial analysis (mediated by the dorsal pathway) was disassociated from lexical recognition (mediated by the ventral pathway) via a spatial-based lexical decision task and effective connectivity analysis. Connectivity results revealed that, during spatial processing, the left superior parietal lobule (SPL) positively modulated the left fusiform gyrus (FG), while during lexical processing, the left SPL received positive modulatory input from the left inferior frontal gyrus (IFG) and sent negative modulatory output to the left FG. These findings suggest that the dorsal stream is highly involved in lexical recognition and acts as a top-down modulator for lexical processing.  相似文献   

4.

Background

Visual neglect is an attentional deficit typically resulting from parietal cortex lesion and sometimes frontal lesion. Patients fail to attend to objects and events in the visual hemifield contralateral to their lesion during visual search.

Methodology/Principal Finding

The aim of this work was to examine the effects of parietal and frontal lesion in an existing computational model of visual attention and search and simulate visual search behaviour under lesion conditions. We find that unilateral parietal lesion in this model leads to symptoms of visual neglect in simulated search scan paths, including an inhibition of return (IOR) deficit, while frontal lesion leads to milder neglect and to more severe deficits in IOR and perseveration in the scan path. During simulations of search under unilateral parietal lesion, the model''s extrastriate ventral stream area exhibits lower activity for stimuli in the neglected hemifield compared to that for stimuli in the normally perceived hemifield. This could represent a computational correlate of differences observed in neuroimaging for unconscious versus conscious perception following parietal lesion.

Conclusions/Significance

Our results lead to the prediction, supported by effective connectivity evidence, that connections between the dorsal and ventral visual streams may be an important factor in the explanation of perceptual deficits in parietal lesion patients and of conscious perception in general.  相似文献   

5.
As different areas within the PMC have different connectivity patterns with various cortical and subcortical regions, we hypothesized that distinct functional modules may be present within the PMC. Because the PMC appears to be the most active region during resting state, it has been postulated to play a fundamental role in the control of baseline brain functioning within the default mode network (DMN). Therefore one goal of this study was to explore which components of the PMC are specifically involved in the DMN. In a sample of seventeen healthy volunteers, we performed an unsupervised voxelwise ROI-based clustering based on resting state functional connectivity. Our results showed four clusters with different network connectivity. Each cluster showed positive and negative correlations with cortical regions involved in the DMN. Progressive shifts in PMC functional connectivity emerged from anterior to posterior and from dorsal to ventral ROIs. Ventral posterior portions of PMC were found to be part of a network implicated in the visuo-spatial guidance of movements, whereas dorsal anterior portions of PMC were interlinked with areas involved in attentional control. Ventral retrosplenial PMC selectively correlated with a network showing considerable overlap with the DMN, indicating that it makes essential contributions in self-referential processing, including autobiographical memory processing. Finally, ventral posterior PMC was shown to be functionally connected with a visual network.The paper represents the first attempt to provide a systematic, unsupervised, voxelwise clustering of the human posteromedial cortex (PMC), using resting-state functional connectivity data. Moreover, a ROI-based parcellation was used to confirm the results.  相似文献   

6.
Stress-induced changes in functional brain connectivity have been linked to the etiology of stress-related disorders. Resting state functional connectivity (rsFC) is especially informative in characterizing the temporal trajectory of glucocorticoids during stress adaptation. Using the imaging Maastricht Acute Stress Test (iMAST), we induced acute stress in 39 healthy volunteers and monitored the neuroendocrine stress levels during three runs of resting state functional magnetic resonance imaging (rs-fMRI): before (run 1), immediately following (run 2), and 30min after acute stress (run 3). The iMAST resulted in strong increases in cortisol levels. Whole-brain analysis revealed that acute stress (run 2 - 1) was characterized by changes in connectivity of the amygdala with the ventrolateral prefrontal cortex (vlPFC), ventral posterior cingulate cortex (PCC), cuneus, parahippocampal gyrus, and culmen. Additionally, cortisol responders were characterized by enhanced amygdala - medial prefrontal cortex (mPFC) connectivity. Stress recovery (run 3 - 2) was characterized by altered amygdala connectivity with the dorsolateral prefrontal cortex (dlPFC), ventral and dorsal anterior cingulate cortex (ACC), anterior hippocampal complex, cuneus, and presupplementary motor area (preSMA). Opposite to non-responders, cortisol responders were characterized by enhanced amygdala connectivity with the anterior hippocampal complex and parahippocampal gyrus, and reduced connectivity with left dlPFC, dACC, and culmen during early recovery. Acute stress responding and recovery are thus associated with changes in the functional connectivity of the amygdala network. Our findings show that these changes may be regulated via stress-induced neuroendocrine levels. Defining stress-induced neuronal network changes is pertinent to developing treatments that target abnormal neuronal activity.  相似文献   

7.
In this study, we investigated changes in resting state networks (RSNs) in patients with gliomas located in the left hemisphere and its relation to cognitive function. We hypothesized that long distance connection, especially between hemispheres, would be affected by the presence of the tumor. We further hypothesized that these changes would correlate with, or reflect cognitive changes observed in patients with gliomas. Resting state functional MRI datasets from 12 patients and 12 healthy controls were used in the analysis. The tumor’s effect on three well-known RSNs including the default mode network (DMN), executive control network (ECN), and salience network (SN) identified using independent component analysis were investigated using dual regression analysis. Scores of neuropsychometric testing (WAIS-III and WMS-R) were also compared. Compared to the healthy control group, the patient group showed significant decrease in functional connectivity in the right angular gyrus/inferior parietal lobe of the ventral DMN and in the dorsolateral prefrontal cortex of the left ECN, whereas a significant increase in connectivity in the right ECN was observed in the right parietal lobe. Changes in connectivity in the right ECN correlated with spatial memory, while that on the left ECN correlated with attention. Connectivity changes in the ventral DMN correlated with attention, working memory, full IQ, and verbal IQ measures. Although the tumors were localized in the left side of the brain, changes in connectivity were observed in the contralateral side. Moreover, these changes correlated with some aspects of cognitive function indicating that patients with gliomas may undergo cognitive changes even in the absence of or before the onset of major symptoms. Evaluation of resting state networks could be helpful in advancing our hodological understanding of brain function in glioma cases.  相似文献   

8.
Control of goal-directed and stimulus-driven attention in the brain   总被引:1,自引:0,他引:1  
We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.  相似文献   

9.
The human cortical visual system is organized into major pathways: a dorsal stream projecting to the superior parietal lobe (SPL), considered to be critical for visuospatial perception or on-line control of visually guided movements, and a ventral stream leading to the inferotemporal cortex, mediating object perception. Between these structures lies a large region, consisting of the inferior parietal lobe (IPL) and superior temporal gyrus (STG), the function of which is controversial. Lesions here can lead to spatial neglect, a condition associated with abnormal visuospatial perception as well as impaired visually guided movements, suggesting that the IPL+STG may have largely a "dorsal" role. Here, we use a nonspatial task to examine the deployment of visuotemporal attention in focal lesion patients, with or without spatial neglect. We show that, regardless of the presence of neglect, damage to the IPL+STG leads to a more prolonged deployment of visuotemporal attention compared to lesions of the SPL. Our findings suggest that the human IPL+STG makes an important contribution to nonspatial perception, and this is consistent with a role that is neither strictly "dorsal" nor "ventral". We propose instead that the IPL+STG has a top-down control role, contributing to the functions of both dorsal and ventral visual systems.  相似文献   

10.
Exact low resolution electromagnetic tomography (eLORETA) was recorded from nineteen EEG channels in nine patients with myalgic encephalomyelitis (ME) and 9 healthy controls to assess current source density and functional connectivity, a physiological measure of similarity between pairs of distributed regions of interest, between groups. Current source density and functional connectivity were measured using eLORETA software. We found significantly decreased eLORETA source analysis oscillations in the occipital, parietal, posterior cingulate, and posterior temporal lobes in Alpha and Alpha-2. For connectivity analysis, we assessed functional connectivity within Menon triple network model of neuropathology. We found support for all three networks of the triple network model, namely the central executive network (CEN), salience network (SN), and the default mode network (DMN) indicating hypo-connectivity in the Delta, Alpha, and Alpha-2 frequency bands in patients with ME compared to controls. In addition to the current source density resting state dysfunction in the occipital, parietal, posterior temporal and posterior cingulate, the disrupted connectivity of the CEN, SN, and DMN appears to be involved in cognitive impairment for patients with ME. This research suggests that disruptions in these regions and networks could be a neurobiological feature of the disorder, representing underlying neural dysfunction.  相似文献   

11.

Background

The posterior parietal cortex (PPC) is thought to interact with the medial temporal lobe (MTL) to support spatial cognition and topographical memory. While the response of medial temporal lobe regions to topographical stimuli has been intensively studied, much less research has focused on the role of PPC and its functional connectivity with the medial temporal lobe.

Methodology/Principle Findings

Here we report a dissociation between dorsal and ventral regions of PPC in response to different types of change in natural scenes using an fMRI adaptation paradigm. During scanning subjects performed an incidental target detection task whilst viewing trial unique sequentially presented pairs of natural scenes, each containing a single prominent object. We observed a dissociation between the superior parietal gyrus and the angular gyrus, with the former showing greater sensitivity to spatial change, and the latter showing greater sensitivity to scene novelty. In addition, we observed that the parahippocampal cortex has increased functional connectivity with the angular gyrus, but not superior parietal gyrus, when subjects view change to the scene content.

Conclusions/Significance

Our findings provide support for proposed dissociations between dorsal and ventral regions of PPC and suggest that the dorsal PPC may support the spatial coding of the visual environment even when this information is incidental to the task at hand. Further, through revealing the differential functional interactions of the SPG and AG with the MTL our results help advance our understanding of how the MTL and PPC cooperate to update representations of the world around us.  相似文献   

12.
Previous studies have demonstrated task-related changes in brain activation and inter-regional connectivity but the temporal dynamics of functional properties of the brain during task execution is still unclear. In the present study, we investigated task-related changes in functional properties of the human brain network by applying graph-theoretical analysis to magnetoencephalography (MEG). Subjects performed a cue-target attention task in which a visual cue informed them of the direction of focus for incoming auditory or tactile target stimuli, but not the sensory modality. We analyzed the MEG signal in the cue-target interval to examine network properties during attentional control. Cluster-based non-parametric permutation tests with the Monte-Carlo method showed that in the cue-target interval, beta activity was desynchronized in the sensori-motor region including premotor and posterior parietal regions in the hemisphere contralateral to the attended side. Graph-theoretical analysis revealed that, in beta frequency, global hubs were found around the sensori-motor and prefrontal regions, and functional segregation over the entire network was decreased during attentional control compared to the baseline. Thus, network measures revealed task-related temporal changes in functional properties of the human brain network, leading to the understanding of how the brain dynamically responds to task execution as a network.  相似文献   

13.
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.  相似文献   

14.
The hypothesis that ventral/anterior left inferior frontal gyrus (LIFG) subserves semantic processing and dorsal/posterior LIFG subserves phonological processing was tested by determining the pattern of functional connectivity of these regions with regions in left occipital and temporal cortex during the processing of words and word-like stimuli. In accordance with the hypothesis, we found strong functional connectivity between activity in ventral LIFG and activity in occipital and temporal cortex only for words, and strong functional connectivity between activity in dorsal LIFG and activity in occipital and temporal cortex for words, pseudowords, and letter strings, but not for false font strings. These results demonstrate a task-dependent functional fractionation of the LIFG in terms of its functional links with posterior brain areas.  相似文献   

15.
Steffenach HA  Witter M  Moser MB  Moser EI 《Neuron》2005,45(2):301-313
The extensive connections of the entorhinal cortex with the hippocampus and the neocortex point to this region as a major interface in the hippocampal-neocortical interactions underlying memory. We asked whether hippocampal-dependent recall of spatial memory depends on the entorhinal cortex, and, if so, which parts are critical. After training in a Morris water maze, rats received fiber-sparing lesions in the dorsolateral band of the entorhinal cortex, which mediates much of the visuospatial input to the dorsal hippocampus. These lesions entirely disrupted retention and retarded new learning. Spatial memory was spared by lesions in the ventromedial band, which connects primarily with ventral hippocampus, but these lesions reduced defensive behavior on an elevated plus maze, mirroring the effects of damage to ventral hippocampus. The results suggest that the functional differences between dorsal and ventral hippocampus reflect their connectivity with modules of the entorhinal cortex that are differently linked to the rest of the cortex.  相似文献   

16.
Early-onset Alzheimer’s disease (AD) patients present a different clinical profile than late-onset AD patients. This can be partially explained by cortical atrophy, although brain organization might provide more insight. The aim of this study was to examine functional connectivity in early-onset and late-onset AD patients. Resting-state fMRI scans of 20 early-onset (<65 years old), 28 late-onset (≥65 years old) AD patients and 15 “young” (<65 years old) and 31 “old” (≥65 years old) age-matched controls were available. Resting-state network-masks were used to create subject-specific maps. Group differences were examined using a non-parametric permutation test, accounting for gray-matter. Performance on five cognitive domains were used in a correlation analysis with functional connectivity in AD patients. Functional connectivity was not different in any of the RSNs when comparing the two control groups (young vs. old controls), which implies that there is no general effect of aging on functional connectivity. Functional connectivity in early-onset AD was lower in all networks compared to age-matched controls, where late-onset AD showed lower functional connectivity in the default-mode network. Functional connectivity was lower in early-onset compared to late-onset AD in auditory-, sensory-motor, dorsal-visual systems and the default mode network. Across patients, an association of functional connectivity of the default mode network was found with visuoconstruction. Functional connectivity of the right dorsal visual system was associated with attention across patients. In late-onset AD patients alone, higher functional connectivity of the sensory-motor system was associated with poorer memory performance. Functional brain organization was more widely disrupted in early-onset AD when compared to late-onset AD. This could possibly explain different clinical profiles, although more research into the relationship of functional connectivity and cognitive performance is needed.  相似文献   

17.
Fronto-striatal circuits are hypothesized to be involved in the pathophysiology of obsessive-compulsive disorder (OCD). Within this circuitry, ventral frontal regions project fibers to the ventral striatum (VS) and dorsal frontal regions to the dorsal striatum. Resting state fMRI research has shown higher functional connectivity between the orbitofrontal cortex (OFC) and the dorsal part of the VS in OCD patients compared to healthy controls (HC). Therefore, we hypothesized that in OCD the OFC predominantly project fibers to the more dorsal part of the VS, and that the structural connectivity between the OFC and VS is higher compared to HC. A total of 20 non-medicated OCD patients and 20 HC underwent diffusion-weighted imaging. Connectivity-based parcellation analyses were performed with the striatum as seed region and the OFC, dorsolateral prefrontal cortex, and dorsal anterior cingulate cortex as target regions. Obtained connectivity maps for each frontal region of interest (ROI) were normalized into standard space, and Z-component (dorsal–ventral) coordinate of center-of-gravity (COG) were compared between two groups. Probabilistic tractography was performed to investigate diffusion indices of fibers between the striatum and frontal ROIs. COG Z-component coordinates of connectivity maps for OFC ROI were located in the more dorsal part of the VS in OCD patients compared to HC. Fractional anisotropy of fibers between the OFC and the striatum was higher in OCD patients compared to HC. Part of the pathophysiology of OCD might be understood by altered topography and structural connectivity of fibers between the OFC and the striatum.  相似文献   

18.
Neuropsychological and functional MRI data suggest that two functionally and anatomically dissociable streams of visual processing exist: a ventral perception-related stream and a dorsal action-related stream. However, relatively little is known about how the two streams interact in the intact brain during the production of adaptive behavior. Using functional MRI and a virtual three-dimensional paradigm, we aimed at examining whether the parieto-occipital junction (POJ) acts as an interface for the integration and processing of information between the dorsal and ventral streams in the near and far space processing. Virtual reality three-dimensional near and far space was defined by manipulating binocular disparity, with -68.76 arcmin crossed disparity for near space and +68.76 arcmin uncrossed disparity for near space. Our results showed that the POJ and bilateral superior occipital gyrus (SOG) showed relative increased activity when responded to targets presented in the near space than in the far space, which was independent of the retinotopic and perceived sizes of target. Furthermore, the POJ showed the enhanced functional connectivity with both the dorsal and ventral streams during the far space processing irrespective of target sizes, supporting that the POJ acts as an interface between the dorsal and ventral streams in disparity-defined near and far space processing. In contrast, the bilateral SOG showed the enhanced functional connectivity only with the ventral stream if retinotopic sizes of targets in the near and far spaces were matched, which suggested there was a functional dissociation between the POJ and bilateral SOG.  相似文献   

19.
Bipolar disorder is characterized by a functional imbalance between hyperactive ventral/limbic areas and hypoactive dorsal/cognitive brain regions potentially contributing to affective and cognitive symptoms. Resting-state studies in bipolar disorder have identified abnormal functional connectivity between these brain regions. However, most of these studies used a seed-based approach, thus restricting the number of regions that were analyzed. Using data-driven approaches, researchers identified resting state networks whose spatial maps overlap with frontolimbic areas such as the default mode network, the frontoparietal networks, the salient network, and the meso/paralimbic network. These networks are specifically engaged during affective and cognitive tasks and preliminary evidence suggests that functional connectivity within and between some of these networks is impaired in bipolar disorder. The present study used independent component analysis and functional network connectivity approaches to investigate functional connectivity within and between these resting state networks in bipolar disorder. We compared 30 euthymic bipolar I disorder patients and 35 age- and gender-matched healthy controls. Inter-network connectivity analysis revealed increased functional connectivity between the meso/paralimbic and the right frontoparietal network in bipolar disorder. This abnormal connectivity pattern did not correlate with variables related to the clinical course of the disease. The present finding may reflect abnormal integration of affective and cognitive information in ventral-emotional and dorsal-cognitive networks in euthymic bipolar patients. Furthermore, the results provide novel insights into the role of the meso/paralimbic network in bipolar disorder.  相似文献   

20.

Background

Motivational and cognitive abnormalities are frequently reported in pathological gambling. However, studies simultaneously investigating motivational and cognitive processing in problematic gamblers are lacking, limiting our understanding of the interplay between these systems in problematic gambling. Studies in non-clinical samples indicate that interactions between dorsal “executive” and ventral “affective” processing systems are necessary for adequate responses in various emotive situations.

Methods

We conducted a generalized Psycho-Physiological Interaction (gPPI) analysis to assess the influence of affective stimuli on changes in functional connectivity associated with response inhibition in 16 treatment seeking problematic gamblers (PRGs) and 15 healthy controls (HCs) using an affective Go-NoGo fMRI paradigm including neutral, gambling-related, positive and negative pictures as neutral and affective conditions.

Results

Across groups, task performance accuracy during neutral inhibition trials was positively correlated with functional connectivity between the left caudate and the right middle frontal cortex. During inhibition in the gambling condition, only in PRGs accuracy of task performance was positively correlated with functional connectivity within sub-regions of the dorsal executive system. Group interactions showed that during neutral inhibition, HCs exhibited greater functional connectivity between the left caudate and occipital cortex than PRGs. In contrast, during inhibition in the positive condition, PRGs compared to HCs showed greater functional connectivity between the left caudate and occipital cortex. During inhibition trials in the negative condition, a stronger functional connectivity between the left caudate and the right anterior cingulate cortex in PRGs compared to HCs was present. There were no group interactions during inhibition in the gambling condition.

Conclusions

During gamble inhibition PRGs seem to benefit more from functional connectivity within the dorsal executive system than HCs, because task accuracy in this condition in PRGs is positively correlated with functional connectivity, although the groups show similar connectivity patterns during gamble inhibition. Greater functional connectivity between the ventral affective system and the dorsal executive system in PRGs in the affective conditions compared to HCs, suggests facilitation of the dorsal executive system when affective stimuli are present specifically in PRGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号