首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
主要组织相容性复合体(Major histocompatibility complex,MHC) 基因是由一组紧密连锁的基因组成,是哺乳动物免疫系统中最重要的组成部分。本文选择3 个MHC 基因座位的第二外元,即:MHC-I 类基因和II 类基因的DRA 和DQB 座位,初步调查濒危物种中华白海豚的遗传变异。共鉴定了2 个DRA、2 个DQB 和7 MHC-I等位基因。DRA 座位遗传变异非常低,而DQB 和MHC-I 座位具有相对较高水平的遗传变异。并且,在DQB 和MHC-I 基因座位的假定的抗原结合位点(Antigen binding sites,ABS),非同义替代明显大于同义替代,提示平衡选择(Balancing selection)维持这两个座位的多态性,而在DRA 座位上,并没有检测到平衡选择。系统发生分析表明中华白海豚的MHC 等位基因没有聚在一起,而是和其他的物种聚在一起,符合MHC 跨种进化(Transspecies evolution)的模式。  相似文献   

2.
Two DRA alleles and six MHC-I alleles were identified from a group of 15 baiji (Lipotes vexillifer), the most threatened cetacean in the world. Little sequence variation was detected at the DRA locus but extensive variation at the MHC-I locus. In combination with data at the DQB locus previously reported, three MHC loci exon 2 of the baiji all revealed striking similarity with those of the finless porpoise. Especially, some identical alleles shared by both species at the MHC-I and DQB loci suggested the convergent evolution as a consequence of common adaptive solutions to similar environmental pressures in the Yangtze River. As for DRA locus, the identity alleles were shared not only by baiji and finless porpoise but by some other cetacean species of the families Phocoenidae and Delphinidae, suggesting trans-species evolution on this gene.  相似文献   

3.
A major challenge facing studies of major histocompatibility complex (MHC) evolution in birds is the difficulty in genotyping alleles at individual loci, and the consequent inability to investigate sequence variation and selection pressures for each gene. In this study, four MHC class I loci were isolated from the red-billed gull (Larus scopulinus), representing both the first characterized MHCI genes within Charadriiformes (shorebirds, gulls, and allies) and the first full-length MHCI sequences described outside Galloanserae (gamebirds + waterfowl). Complete multilocus genotypes were obtained for 470 individuals using a combination of reference-strand conformation analysis and direct sequencing of gene-specific amplification products, and variation of peptide-binding region (PBR) exons was surveyed for all loci. Each gene is transcribed and has conserved sequence features characteristic of antigen-presenting MHCI molecules. However, higher allelic variation, a more even allele frequency distribution, and evidence of positive selection acting on a larger number of PBR residues suggest that only one locus (Lasc-UAA) functions as a major classical MHCI gene. Lasc-UBA, with more limited variation and PBR motifs that encompass a subset of Lasc-UAA diversity, was assigned a putative minor classical function, whereas the divergent and largely invariant binding-groove motifs of Lasc-UCA and -UDA are suggestive of nonclassical loci with specialized ligand-binding roles.  相似文献   

4.
Miller HC  Lambert DM 《Molecular ecology》2004,13(12):3709-3721
The Chatham Island black robin, Petroica traversi, is a highly inbred, endangered passerine with extremely low levels of variation at hypervariable neutral DNA markers. In this study we investigated variation in major histocompatibility complex (MHC) class II genes in both the black robin and its nonendangered relative, the South Island robin Petroica australis australis. Previous studies have shown that Petroica have at least four expressed class II B MHC genes. In this study, the sequences of introns flanking exon 2 of these loci were characterized to design primers for peptide-binding region (PBR) sequence analysis. Intron sequences were comprised of varying numbers of repeated units, with highly conserved regions immediately flanking exon 2. Polymerase chain reaction primers designed to this region amplified three or four sequences per black robin individual, and eight to 14 sequences per South Island robin individual. MHC genes are fitness-related genes thought to be under balancing selection, so they may be more likely to retain variation in bottlenecked populations. To test this, we compared MHC variation in the black robin with artificially bottlenecked populations of South Island robin, and with their respective source populations, using restriction fragment length polymorphism analyses and DNA sequencing of the PBR. Our results indicate that the black robin is monomorphic at class II B MHC loci, while both source and bottlenecked populations of South Island robin have retained moderate levels of variation. Comparison of MHC variation with minisatellite DNA variation indicates that genetic drift outweighs balancing selection in determining MHC diversity in the bottlenecked populations. However, balancing selection appears to influence MHC diversity over evolutionary timescales, and the effects of gene conversion are evident.  相似文献   

5.
Determining how intra-specific genetic diversity is apportioned among natural populations is essential for detecting local adaptation and identifying populations with inherently low levels of extant diversity which may become a conservation concern. Sequence polymorphism at two adaptive loci (MHC DRA and DQB) was investigated in long-finned pilot whales (Globicephala melas) from four regions in the North Atlantic and compared with previous data from New Zealand (South Pacific). Three alleles were resolved at each locus, with trans-species allele sharing and higher levels of non-synonymous to synonymous substitution, especially in the DQB locus. Overall nucleotide diversities of 0.49?±?0.38% and 4.60?±?2.39% were identified for the DRA and DQB loci, respectively, which are relatively low for MHC loci in the North Atlantic, but comparable to levels previously described in New Zealand (South Pacific). There were significant differences in allele frequencies within the North Atlantic and between the North Atlantic and New Zealand. Patterns of diversity and divergence are consistent with the long-term effects of balancing selection operating on the MHC loci, potentially mediated through the effects of host-parasite coevolution. Differences in allele frequency may reflect variation in pathogen communities, coupled with the effects of differential drift and gene flow.  相似文献   

6.
7.
The immune genes of the major histocompatibility complex (MHC) are characterized by extraordinarily high levels of nucleotide and haplotype diversity. This variation is maintained by pathogen-mediated balancing selection that is operating on the peptide-binding region (PBR). Several recent studies have found, however, that some populations possess large clusters of alleles that are translated into virtually identical proteins. Here, we address the question of how this nucleotide polymorphism is maintained with little or no functional variation for selection to operate on. We investigate circa 750-850 bp of MHC class II DAB genes in four wild populations of the guppy Poecilia reticulata. By sequencing an extended region, we uncovered 40.9% more sequences (alleles), which would have been missed if we had amplified the exon 2 alone. We found evidence of several gene conversion events that may have homogenized sequence variation. This reduces the visible copy number variation (CNV) and can result in a systematic underestimation of the CNV in studies of the MHC and perhaps other multigene families. We then focus on a single cluster, which comprises 27 (of a total of 66) sequences. These sequences are virtually identical and show no signal of selection. We use microsatellites to reconstruct the populations' demography and employ simulations to examine whether so many similar nucleotide sequences can be maintained in the populations. Simulations show that this variation does not behave neutrally. We propose that selection operates outside the PBR, for example, on linked immune genes or on the "sheltered load" that is thought to be associated to the MHC. Future studies on the MHC would benefit from extending the amplicon size to include polymorphisms outside the exon with the PBR. This may capture otherwise cryptic haplotype variation and CNV, and it may help detect other regions in the MHC that are under selection.  相似文献   

8.
Analysis of the highly polymorphic beta1 domains of the HLA class II molecules encoded by the DRB1, DQB1, and DPB1 loci reveals contrasting levels of diversity at the allele and amino acid site levels. Statistics of allele frequency distributions, based on Watterson's homozygosity statistic F, reveal distinct evolutionary patterns for these loci in ethnically diverse samples (26 populations for DQB1 and DRB1 and 14 for DPB1). When examined over all populations, the DQB1 locus allelic variation exhibits striking balanced polymorphism (P < 10(-4)), DRB1 shows some evidence of balancing selection (P < 0.06), and while there is overall very little evidence for selection of DPB1 allele frequencies, there is a trend in the direction of balancing selection (P < 0.08). In contrast, at the amino acid level all three loci show strong evidence of balancing selection at some sites. Averaged over polymorphic amino acid sites, DQB1 and DPB1 show similar deviation from neutrality expectations, and both exhibit more balanced polymorphic amino acid sites than DRB1. Across ethnic groups, polymorphisms at many codons show evidence for balancing selection, yet data consistent with directional selection were observed at other codons. Both antigen-binding pocket- and non-pocket-forming amino acid sites show overall deviation from neutrality for all three loci. Only in the case of DRB1 was there a significant difference between pocket- and non-pocket-forming amino acid sites. Our findings indicate that balancing selection at the MHC occurs at the level of polymorphic amino acid residues, and that in many cases this selection is consistent across populations.  相似文献   

9.
This is the first study to quantify genomic sequence variation of the major histocompatibility complex (MHC) in wild and ornamental guppies, Poecilia reticulata. We sequenced 196-219 bp of exon 2 MHC class IIB (DAB) in 56 wild Trinidadian guppies and 14 ornamental strain guppies. Each of two natural populations possessed high allelic richness (15-16 alleles), whereas only three or fewer DAB alleles were amplified from ornamental guppies. The disparity in allelic richness between wild and ornamental fish cannot be fully explained by fixation of alleles by inbreeding, nor by the presence of non-amplified sequences (ie null alleles). Rather, we suggest that the same allele is fixed at duplicated MHC DAB loci owing to gene conversion. Alternatively, the number of loci in the ornamental strains has contracted during >100 generations in captivity, a hypothesis consistent with the accordion model of MHC evolution. We furthermore analysed the substitution patterns by making pairwise comparisons of sequence variation at the putative peptide binding region (PBR). The rate of non-synonymous substitutions (dN) only marginally exceeded synonymous substitutions (dS) in PBR codons. Highly diverged sequences showed no evidence for diversifying selection, possibly because synonymous substitutions have accumulated since their divergence. Also, the substitution pattern of similar alleles did not show evidence for diversifying selection, plausibly because advantageous non-synonymous substitutions have not yet accumulated. Intermediately diverged sequences showed the highest relative rate of non-synonymous substitutions, with dN/dS>14 in some pairwise comparisons. Consequently, a curvilinear relationship was observed between the dN/dS ratio and the level of sequence divergence.  相似文献   

10.
Sequence variability at three major histocompatibility complex (MHC) genes (DQB, DRA, and MHC-I) of cetaceans was investigated in order to get an overall understanding of cetacean MHC evolution. Little sequence variation was detected at the DRA locus, while extensive and considerable variability were found at the MHC-I and DQB loci. Phylogenetic reconstruction and sequence comparison revealed extensive sharing of identical MHC alleles among different species at the three MHC loci examined. Comparisons of phylogenetic trees for these MHC loci with the trees reconstructed only based on non-PBR sites revealed that allelic similarity/identity possibly reflected common ancestry and were not due to adaptive convergence. At the same time, trans-species evolution was also evidenced that the allelic diversity of the three MHC loci clearly pre-dated species divergence events according to the relaxed molecular clock. It may be the forces of balancing selection acting to maintain the high sequence variability and identical alleles in trans-specific manner at the MHC-I and DQB loci.  相似文献   

11.
To investigate the evolutionary dynamics at Mhc class II DR genes of mice (genus Mus), we sequenced the peptide binding regions (PBRs) of 41 DRB (=Eβ) genes and eight DRA (=Eα) genes from 15 strains representing eight species. As expected trees of these PBR sequences imply extensive maintenance of ancestral DRB alleles across species. We use a coalescent simulation model to show that the number of interspecific coalescent events (c) observed on these trees was higher than the number expected for neutral genealogies and similar sample sizes and is more consistent with balancing selection than with neutrality. Patterns of ancestral polymorphism in mouse DRB alleles were also used to examine the tempo of synonymous substitution in the PBR of mouse class II genes. Both absolute and relative rate tests on DRA and DRB genes imply increased substitution rates at two- and fourfold degnerate sites of mice and rats relative to primates, and decreased rates for the DRB genes of primates relative to ungulate and carnivore relatives. Thus rates of synonymous substitution at Mhc DR genes in mammals appear to be subject to generation time effects in ways similar to those found at other mammalian genes.  相似文献   

12.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

13.
Major histocompatibility complex (MHC) genes play an important role in the immune response of vertebrates. Allelic polymorphism and evolutionary mechanism of MHC genes have been investigated in many mammals, but much less is known in teleosts. We examined the polymorphism, gene duplication and balancing selection of the MHC class II DAB gene of the half-smooth tongue sole (Cynoglossus semilaevis); 23 alleles were found in this species. Gene duplication manifested as three to six distinct sequences at each domain in the same individuals. Non-synonymous substitutions occurred at a significantly higher frequency than synonymous substitutions in the PBR domain, suggesting balancing selection for maintaining polymorphisms at the MHC II DAB locus. Many positive selection sites were found to act very intensely on antigen-binding sites of MHC class II DAB gene.  相似文献   

14.
Sequences from exons encoding the peptide binding region of MHC class I (MHC-I) molecules were isolated from California gray whale (Eschrichtius robustus) genomic DNA to initiate an investigation of variation in these genes in a cetacean. These represent the first mysticete MHC-I sequences to be reported. The analysis of gray whale MHC-I sequences suggests the presence of at least three loci, which share greatest similarity to MHC-I in the ungulates, consistent with current views on cetacean phylogenetics. The peptide binding region of MHC is the most polymorphic part of the molecule and analysis of the variation and synonymous to nonsynonymous substitution ratios in gray whale sequences found these genes to display polymorphism characteristics similar to that attributed to selection in other species.  相似文献   

15.
Polymorphism at the ovine major histocompatibility complex class II loci   总被引:2,自引:0,他引:2  
Southern hybridization analysis of the ovine major histocompatibility complex (MHC) ( MhcOvar ) class II region, using sheep-specific probes for the DQA1, DQA2, DQB and DRA loci, has revealed extensive polymorphism. DQA1 and DQAP had eight and 16 alleles respectively, DQB had six and DRA had three alleles. Little information was derived from the DRB locus owing to extensive cross-hybridization between the DRB probe and the DQB locus. Differences in allele frequency between breeds were revealed. At the DQA1 locus a null allele (DQA1-N) was observed with a frequency of between 27% and 45%, making this the most common DQA1 allele in all breeds examined. The frequency of DQA1-N homozygotes was between 11% and 18%, raising questions as to the functional significance of the DQA1 gene. Linkage analysis between the DQA1, DQA2, DQB and DRA loci did not reveal any recombination.  相似文献   

16.
17.
Northern elephant seals were hunted to near extinction in the 19th century, yet have recovered remarkably and now number around 175,000. We surveyed 110 seals for single-strand conformation polymorphism (SSCP) and sequence variation at three major histocompatibility (MHC) class II loci (DQA, DQB and DRB) to evaluate the genetic consequences of the population bottleneck at these loci vs. other well-studied genes. We found very few alleles at each MHC locus, significant variation among breeding sites for the DQA locus, and linkage disequilibrium between the DQB and DRB loci. Northern elephant seals are evidently inbred, although there is as yet no evidence of correlative reductions in fitness.  相似文献   

18.
DNA-based typing of the HLA class II loci in a sample of the Cayapa Indians of Ecuador reveals several lines of evidence that selection has operated to maintain and to diversify the existing level of polymorphism in the class II region. As has been noticed for other Native American groups, the overall level of polymorphism at the DRB1, DQA1, DQB1, and DPB1 loci is reduced relative to that found in other human populations. Nonetheless, the relative evenness in the distribution of allele frequencies at each of the four loci points to the role of balancing selection in the maintenance of the polymorphism. The DQA1 and DQB1 loci, in particular, have near-maximum departures from the neutrality model, which suggests that balancing selection has been especially strong in these cases. Several novel DQA1-DQB1 haplotypes and the discovery of a new DRB1 allele demonstrate an evolutionary tendency favoring the diversification of class II alleles and haplotypes. The recombination interval between the centromeric DPB1 locus and the other class II loci will, in the absence of other forces such as selection, reduce disequilibrium across this region. However, nearly all common alleles were found to be part of DR-DP haplotypes in strong disequilibrium, consistent with the recent action of selection acting on these haplotypes in the Cayapa.  相似文献   

19.
To date, there are no published MHC sequences from the California sea lion (Zalophus californianus), a thriving species that, by feeding high on the marine food web, could be a sentinel for disturbances in marine and coastal ecosystems. In this study, degenerate primers and RACE technology were used to amplify near-full-length (MhcZaca- DQB) and full-length (MhcZaca- DQA) expressed class II MHC gene products from the peripheral blood mononuclear cells of two California sea lions in rehabilitation. Five unique Zaca- DQA sequences and eight unique Zaca- DQB sequences, all encoding functional proteins, were identified in the two animals, indicating the presence of multiple DQ- loci in this species. An additional three Zaca- DQB sequences containing features compatible with pseudogenes or null alleles were also identified. Despite the identification of multiple DQA and DQB sequences, the degree of heterogeneity between them was extremely low. To confirm the limited degree of Zaca-DQ nucleotide variation between individuals, we used denaturing gradient gel electrophoresis to examine putative peptide binding region sequences from the peripheral blood leukocyte-derived RNAs of 19 wild-caught California sea lions from physically distinct populations. The pattern of Zaca-DQ sequence migration was identical between individuals and independent of geographical region. This apparent Zaca-DQ sequence identity between sea lions was confirmed by direct sequencing of individual bands. In combination, these findings raise important questions regarding immunogenetic diversity within this thriving species, and should prompt further research into the existence of a highly polymorphic sea lion class II MHC molecule with sequence features that support traditional peptide binding functions.  相似文献   

20.
In this study, we aimed to assess the sequence diversity of major histocompatibility complex (MHC) class-II DRB gene at exon 2 in gazelles raised in Sanliurfa Province of Turkey. Twenty DNA samples isolated from gazelles (Gazella subgutturosa) were used for sequencing exon 2 of MHC class-II DRB gene. Target region was amplified by polymerase chain reaction (PCR) and their products were directly sequenced. Nine of these 20 samples yielded unambiguously readable sequences. Three of the nine samples were homozygotes and each showed different sequences. A 262-bp sequence obtained from the three homozygote samples were submitted to GenBank (accession numbers: KC309405, KC309406 and KC309407). Using an allele specific PCR, we detected 10 additional haplotypes. Among 13 haplotypes, 45 nucleotide positions were polymorphic and most of the polymorphic nucleotide positions localized at peptide-binding region (PBR). Rates of nonsynonymous substitutions were significantly higher than synonymous substitutions at PBR. Phylogenetic analysis of the haplotypes showed that 10 haplotypes of the gazelles were clustered together while three were clustered with ovine and bovine haplotypes. The results indicated that at least 13 haplotypes at exon 2 of MHC class-II DRB gene were showing high degree of nucleotide and amino acid diversity, and certain haplotypes of G. subgutturosa were more similar to haplotypes from sheep or cattle than to each other. Rates of synonymous and nonsynonymous substitutions suggested that positive selection was a driving force for diversity at this locus in G. subgutturosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号