首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythrosin b, a potent inhibitor of the Ca2+‐ATPases and the Ca2+‐release channel (BCC1) in mechanosensitive tissue of Bryonia dioica Jacq., effectively suppresses a tendril's reaction to touch, suggesting that Ca2+‐transporters are involved in signal transduction in this organ. The Ca2+‐ATPase located in the endoplasmic reticulum (ER) represents a multiregulated enzyme that is stimulated by calmodulin (CaM), KCl and lysophospholipids. Limited proteolysis of ER‐membranes by trypsin results in an irreversible activation of the Ca2+‐ATPase and loss of the CaM sensitivity, presumably through removal of an autoinhibitory domain where CaM binds. Mild trypsination mimics the effects of CaM on Vmax and the affinity for Ca2+ and ATP. Irrespective of a trypsin treatment, the enzyme can be additionally stimulated by KCl and lysolipids, indicating that the sites of interaction for these effectors are not located in the domain removed by the protease. CaM‐stimulated ATPase activity was purified from microsomal and ER fractions using a combination of CaM‐affinity and anion‐exchange chromatography. The isolated polypeptide was enzymatically active, showed a calcium‐dependent mobility‐shift in SDS‐PAGE from 109 kDa in the absence of Ca2+ to 104 kDa in the presence of 10 m M CaCl2 and could be radiolabeled with [35S]‐CaM. The characteristics of the purified enzyme remained closely similar to those of the ER‐bound Ca2+‐transporting activity, including the enzymatic data, CaM stimulation, and the sensitivity towards a range of inhibitors.  相似文献   

2.
Commelina cammunis L., a monocotyledonous plant whose stomata are highly sensitive to calcium ions, was used to study calmodulin (CaM) involvement in stomatal movements. CaM was detected and quantified in guard cell and mesophyll cell protoplasts by western blot and by 45Ca2+-overlays. CaM was found to be 3- to 7-fold more abundant on a per protein basis in guard cell than in mesophyll cell protoplasts. Numerous guard cell proteins that bind CaM in a Ca2+-dependent manner were detected by gold-labelled CaM overlays. Using bioassays with epidermal strips, different CaM-antagonists were found to induce a net stimulation of stomatal opening in darkness or under illumination (trifluoperazine > compound 48/80 ∼ fluphenazine > W7 > W5). As CaM is frequently involved in the regulation of phosphorylation processes, the effects of different inhibitors of protein kinases on stomatal movements were studied. In red plus blue light, a promotion of the stomatal aperture was observed in the nanomolar range with K252a and KT5926 and in the micromolar range with KT5720 ≫ ML7 ∼ ML9 ≫ H7 > KN62. Only the inhibitors with a high specificity for Ca2+-CaM dependent protein kinases (K252a, KT5926, ML7, ML9) triggered a stomatal opening in darkness and increased stomatal aperture in red plus blue light. Taken together, these data strongly suggest that a Ca2+- or a Ca2+-CaM-dependent protein kinase plays a central role in the calcium transduction pathway leading to the maintaining of stomatal closure.  相似文献   

3.
Commelina cammunis L., a monocotyledonous plant whose stomata are highly sensitive to calcium ions, was used to study calmodulin (CaM) involvement in stomatal movements. CaM was detected and quantified in guard cell and mesophyll cell protoplasts by western blot and by 45Ca2+-overlays. CaM was found to be 3- to 7-fold more abundant on a per protein basis in guard cell than in mesophyll cell protoplasts. Numerous guard cell proteins that bind CaM in a Ca2+-dependent manner were detected by gold-labelled CaM overlays. Using bioassays with epidermal strips, different CaM-antagonists were found to induce a net stimulation of stomatal opening in darkness or under illumination (trifluoperazine > compound 48/80 ≅ fluphenazine > W7 > W5). As CaM is frequently involved in the regulation of phosphorylation processes, the effects of different inhibitors of protein kinases on stomatal movements were studied. In red plus blue light, a promotion of the stomatal aperture was observed in the nanomolar range with K252a and KT5926 and in the micromolar range with KT5720 ≫ ML7 ≅ ML9 ≫ H7 > KN62. Only the inhibitors with a high specificity for Ca2+-CaM dependent protein kinases (K252a, KT5926, ML7, ML9) triggered a stomatal opening in darkness and increased stomatal aperture in red plus blue light. Taken together, these data strongly suggest that a Ca2+- or a Ca2+-CaM-dependent protein kinase plays a central role in the calcium transduction pathway leading to the maintaining of stomatal closure.  相似文献   

4.
Calmodulin is involved in heat shock signal transduction in wheat   总被引:28,自引:0,他引:28       下载免费PDF全文
Liu HT  Li B  Shang ZL  Li XZ  Mu RL  Sun DY  Zhou RG 《Plant physiology》2003,132(3):1186-1195
The involvement of calcium and calcium-activated calmodulin (Ca(2+)-CaM) in heat shock (HS) signal transduction in wheat (Triticum aestivum) was investigated. Using Fluo-3/acetoxymethyl esters and laser scanning confocal microscopy, it was found that the increase of intracellular free calcium ion concentration started within 1 min after a 37 degrees C HS. The levels of CaM mRNA and protein increased during HS at 37 degrees C in the presence of Ca(2+). The expression of hsp26 and hsp70 genes was up-regulated by the addition of CaCl(2) and down-regulated by the calcium ion chelator EGTA, the calcium ion channel blockers LaCl(3) and verapamil, or the CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and chlorpromazine. Treatment with Ca(2+) also increased, and with EGTA, verapamil, chlorpromazine, or trifluoperazine decreased, synthesis of HS proteins. The temporal expression of the CaM1-2 gene and the hsp26 and hsp70 genes demonstrated that up-regulation of the CaM1-2 gene occurred at 10 min after HS at 37 degrees C, whereas that of hsp26 and hsp70 appeared at 20 min after HS. A 5-min HS induced expression of hsp26 after a period of recovery at 22 degrees C after HS at 37 degrees C. Taken together, these results indicate that Ca(2+)-CaM is directly involved in the HS signal transduction pathway. A working hypothesis about the relationship between upstream and downstream of HS signal transduction is presented.  相似文献   

5.
Abstract: The effect of heat shock on agonist-stimulated intracellular Ca2+ mobilization and the expression of heat shock protein 72 (hsp72) in neuroblastoma × glioma hybrid cells (NG 108–15 cells) were examined. Hsp72 was expressed at 6 h after heat shock (42.5°C, 2 h), reached a maximum at 12 h, and decreased thereafter. Bradykinin-induced [Ca2+], rise was attenuated to 28% of control by heat shock at 2 h after heat shock, and reversion to the control level was seen 12 h later. When the cells were treated with quercetin or antisense oligodeoxyribonucleotide against hsp72 cDNA, the synthesis of hsp72 was not induced by heat shock, whereas bradykinin-induced [Ca2+]i rise was abolished and the [Ca2+]i rise was not restored. Recovery from this stressed condition was evident when cells were stimulated by the Ca2+-ATPase inhibitor thapsigargin, even in the presence of either quercetin or antisense oligodeoxyribonucleotide. Inositol 1,4,5-trisphosphate (IP3) production was not altered by heat shock at 12 h after heat shock, whereas IP3 receptor binding activity was reduced to 45.3%. In the presence of quercetin or antisense oligodeoxyribonucleotide, IP3 receptor binding activity decreased and reached 27.2% of the control 12 h after heat shock. Our working thesis is that heat shock transiently suppresses the IPs-mediated intracellular Ca2+ signal transduction system and that hsp72 is involved in the recovery of bradykinin-induced [Ca2+]i rise.  相似文献   

6.
The hydraulic conductance ( L 0) of detached, exuding root systems from melon ( Cucumis melo cv. Amarillo oro) was measured. All plants received a half-strength Hoagland nutrient solution, and plants stressed either solely with NaCl (50 mM) or with NaCl (50 mM) following treatment (2 d) with CaCl2 (10 mM) were compared with controls and CaCl2-treated (10 mM) plants. The L 0 of NaCl-treated plants was markedly decreased when compared to control and CaCl2-treated plants, but the decrease was smaller when NaCl was added to plants previously treated with CaCl2. A similar effect was observed when the flux of Ca2+ into the xylem and the Ca2+ concentration in the plasma membrane of the root cells were determined. In control, CaCl2- and NaCl + CaCl2-treated plants, HgCl2 treatment (50 μM) caused a sharp decline in L 0 to values similar to those of NaCl-stressed roots, but L 0 was restored by treatment with 5 mM DTT. However, in NaCl roots only a slight effect of Hg2+ and DTT were observed. The effect of all treatments on L 0 was similar to that on osmotic water permeability ( P f) of individual protoplasts isolated from roots. The results suggest that NaCl decreased the passage of water through the membrane and roots by reducing the activity of Hg-sensitive water channels. The ameliorative effect of Ca2+ on NaCl stress could be related to water-channel function.  相似文献   

7.
Arabidopsis thaliana plasma membrane (PM) Ca2+-ATPase is a type IIB P-type ATPase, which binds calmodulin (CaM) to an autoinhibitory N-terminal domain. Here, we took advantage of the fact that PM isolated from cultured cells mainly contains At -ACA8, the first cloned A. thaliana PM Ca2+-ATPase, to analyse its interaction with CaM in detail. Analysis of the ability of different peptides designed from At -ACA8 N-terminus to compete with the native protein for binding of bovine brain CaM (bbCaM) showed that peptide 41I-T63 had the same affinity of the native protein [apparent dissociation constant (KD) at 10 µ M free Ca2+ about 25 n M ], thus localizing At -ACA8 CaM-binding site within this sequence. The interaction of At -ACA8 N-terminus with bbCaM, as determined by surface plasmon resonance, was rapid, and slowly but was fully reversible. Analysis of Ca2+-ATPase activation as a function of the concentration of different isoforms of A. thaliana CaM showed that Ca2+-ATPase is activated to similar extent by bbCaM and by different isoforms of homologous CaM. However, the affinity for the divergent A. thaliana isoform CaM8 was lower than that for canonical CaM isoforms such as A. thaliana CaM2, CaM4 and CaM6 or bbCaM. The apparent KD for CaM isoforms of the native enzyme increased with the decrease of free Ca2+ concentration, suggesting that enzyme conformation is affected by Ca2+. Binding of CaM isoforms to At -ACA8 N-terminus was affected differently by free Ca2+ concentration, suggesting that plant CaMs may have different affinities for Ca2+.  相似文献   

8.
Free fatty acids exhibit diverse biological effects such as the regulation of immune responses in humans and animals. To investigate the biological effect of fatty acids in the model eukaryotic organism yeast, we examined the activity of various fatty acids in a yeast-based drug-screening system designed to detect the small-molecule compounds that inhibit Ca2+-signal-mediated cell-cycle regulation. Among the fatty acids examined, ricinoleic acid markedly alleviated the deleterious physiological effects induced by the compelled activation of Ca2+ signaling by external CaCl2, such as the polarized bud growth and the growth arrest in the G2 phase. In accordance with the physiological consequences induced by ricinoleic acid, it diminished the Ca2+-induced phosphorylation of Cdc28p at Tyr-19, concomitant with the decrease in the Ca2+-stimulated expression levels of Cln2p and Swe1p.  相似文献   

9.
Effect of low temperature on anthocyanin accumulation in seedlings of Alternanthera bettzickiana and activity changes of calmodulin (CaM) and Ca2+-ATPase under low temperature were studied. Results indicate that the increase of anthocyanin content was obviously paralleled not only by the activity of CaM but also by the activity of Ca2+-ATPase. In addition, seedlings were pretreated with CaM antagonist [chlorpromazine (CPZ)] before low-temperature treatment in order to further investigate whether CaM plays a role in anthocyanin accumulation. CPZ pretreatment inhibited the activity of CaM and Ca2+-ATPase and caused a reduction in anthocyanin levels. Hence, it is concluded that CaM and Ca2+-ATPase were directly correlated with anthocyanin accumulation under low temperature, Ca2 ± CaM may be involved in low-temperature signal transduction leading anthocyanin synthesis.  相似文献   

10.
The effect of phospholipids on the activity of the plasma membrane (PM) Ca2+-ATPase was evaluated in PM isolated from germinating radish ( Raphanus sativus L. cv. Tondo Rosso Quarantino) seeds after removal of endogenous calmodulin (CaM) by washing the PM vesicles with EDTA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4,5-diphosphate (PIP2)≈phosphatidylinositol 4-monophosphate>phosphatidylinositol≈phosphatidylserine≈phosphatidic acid. Neutral phospholipids as phosphatidylcholine and phosphatidylethanolamine were essentially ineffective. When the assays were performed in the presence of optimal free Ca2+ concentrations (10 μ M ) acidic phospholipids did not affect the Ca2+-ATPase activated by CaM or by a controlled trypsin treatment of the PM, which cleaved the CaM-binding domain of the enzyme. Analysis of the dependence of Ca2+-ATPase activity on free Ca2+ concentration showed that acidic phospholipids increased Vmax and lowered the apparent Km for free Ca2+ below the value measured upon tryptic cleavage of the CaM-binding domain; in particular, PIP2 was shown to lower the apparent Km for free Ca2+ of the Ca2+-ATPase also in trypsin-treated PM. These results indicate that acidic phospholipids activate the plant PM Ca2+-ATPase through a mechanism only partially overlapping that of CaM, and thus involving a phospholipid-binding site in the Ca2+-ATPase distinct from the CaM-binding domain. The physiological implications of these results are discussed.  相似文献   

11.
12.
Abstract: The metabotropic glutamate receptor mGluR5, but not the closely related mGluR1, is expressed in cultured astrocytes, and this expression is up-regulated by specific growth factors. We investigated the capability and underlying mechanisms of mGluR5 to induce oscillatory responses of intracellular calcium concentration ([Ca2+]i) in cultured rat astrocytes. Single-cell [Ca2+]i recordings indicated that an mGluR-selective agonist, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate (1 S ,3 R -ACPD), elicits [Ca2+]i oscillations in good agreement with the growth factor-induced up-regulation of mGluR5 in cultured astrocytes. A protein kinase C (PKC) inhibitor, bisindolylmaleimide I, converted a 1 S ,3 R -ACPD-mediated oscillatory response into a nonoscillatory response. In addition, the PKC activator phorbol 12-myristate 13-acetate completely abolished the [Ca2+]i increase. These and other pharmacological properties of 1 S ,3 R -ACPD-induced [Ca2+]i oscillations correlate well with those of the cloned mGluR5 characterized in heterologous expression systems. Furthermore, the potential involvement of protein phosphatases in [Ca2+]i oscillations is suggested. The present study demonstrates that mGluR5 is capable of inducing [Ca2+]i oscillations in cultured astrocytes and that phosphorylation/dephosphorylation of mGluR5 is critical in [Ca2+]i oscillations, analogous to the cloned mGluR5 expressed in heterologous cell lines.  相似文献   

13.
Abstract: Confocal microscopy was used to assess internal calcium level changes in response to presynaptic receptor activation in individual, isolated nerve terminals (synaptosomes) from rat corpus striatum, focusing, in particular, on the serotonin 5-HT3 receptor, a ligand-gated ion channel. The 5-HT3 receptor agonist-induced calcium level changes in individual synaptosomes were compared with responses evoked by K+ depolarization. Using the fluorescent dye fluo-3 to measure relative changes in internal free Ca2+ concentration ([Ca2+]i), K+-induced depolarization resulted in variable but rapid increases in apparent [Ca2+]i among the individual terminals, with some synaptosomes displaying large transient [Ca2+]i peaks of varying size (two- to 12-fold over basal levels) followed by an apparent plateau phase, whereas others displayed only a rise to a sustained plateau level of [Ca2+]i (two- to 2.5-fold over basal levels). Agonist activation of 5-HT3 receptors induced slow increases in [Ca2+]i (rise time, 15–20 s) in a subset (∼5%) of corpus striatal synaptosomes, with the increases (averaging 2.2-fold over basal) being dependent on Ca2+ entry and inhibited by millimolar external Mg2+. We conclude that significant increases in brain nerve terminal Ca2+, rivaling that found in response to excitation by depolarization but having distinct kinetic properties, can therefore result from the activation of presynaptic ligand-gated ion channels.  相似文献   

14.
The antioxidant status of potato ( Solanum tuberosum L.) tubers of two genotypes, cv. Désirée and clone 10337de40 was investigated in relation to susceptibility to internal rust spot (IRS), a Ca2+-related physiological disorder. Concentrations of total calcium within the perimedulla tissue of tubers, grown with a restricted (1 m M CaCl2) Ca2+ supply, were similar in cv. Désirée (IRS resistant) and clone 10337de40 (IRS susceptible). A range of antioxidants was assayed in order to assess antioxidant status in both genotypes under the two Ca2+ treatments. Although no appreciable differences were detected between low Ca2+ and control treatments, certain antioxidants were present at significantly higher levels in the IRS resistant genotype, cv. Désirée. These included dehydroascorbate reductase (EC 1.8.5.1) activity (more than 100% higher), total glutathione content (ca 40% higher), glutathione reductase (EC 1.6.4.2) activity (almost 50% higher), peroxidase (EC 1.11.1.7) activity (ca 60% higher) and superoxide dismutase (EC 1.15.1.1) activity (almost 80% higher). There was no difference in ascorbate content, ascorbate free radical reductase activity (EC 1.6.5.4), α-tocopherol levels and catalase activity (EC 1.11.1.6) between the two genotypes. The possible relationship between resistance to IRS and a superior antioxidant status, found in cv. Désirée, is discussed.  相似文献   

15.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2, and CaCl2, then re-isolated, and the activity of Na+,K+-ATPase determined. SAM inhibited the Na+,K+-ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+,K+-ATPase activity. The inhibition by SAM appeared to be Mg2+- or Ca2+-dependent.  相似文献   

16.
Liu HT  Gao F  Cui SJ  Han JL  Sun DY  Zhou RG 《Cell research》2006,16(4):394-400
The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level reached a maximum 2.5 fold increase. Using the transgenic Arabidopsis plants that have AtHsp 18.2 promoter-β-glucuronidase (GUS) fusion gene, it was found that the level of GUS activity was up-regulated by the addition of caged IP3 at both non-HS and HS temperatures and was down-regulated by the phospholipase C (PLC) inhibitors {1-[6-(( 1713-3-Methoxyestra-1,3,5(10)-trien- 7-yl)amino)hexyl]-2,5-pyrrolidinedione } (U-73122). The intracellular-free calcium ion concentration ([Ca^2+]i) increased during HS at 37℃ in suspension-cultured Arabidopsis cells expressing apoaequorin. Treatment with U-73122 prevented the increase of [Ca^2+]i to some extent. Above results provided primary evidence for the possible involvement of IP3 in HS signal transduction in higher plants.  相似文献   

17.
Abstract: Purified rat brain Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) is stimulated by brain gangliosides to a level of about 30% the activity obtained in the presence of Ca2+/calmodulin (CaM). Of the various gangliosides tested, GT1b was the most potent, giving half-maximal activation at 25 μ M . Gangliosides GD1a and GM1 also gave activation, but asialo-GM1 was without effect. Activation was rapid and did not require calcium. The same gangliosides also stimulated the autophosphorylation of CaM-kinase II on serine residues, but did not produce the Ca2+-independent form of the kinase. Ganglioside stimulation of CaM-kinase II was also present in rat brain synaptic membrane fractions. Higher concentrations (125-250 μ M ) of GT1b, GD1a, and GM1 also inhibited CaM-kinase II activity. This inhibition appears to be substrate-directed, as the extent of inhibition is very dependent on the substrate used. The molecular mechanism of the stimulatory effect of gangliosides was further investigated using a synthetic peptide (CaMK 281-309), which contains the CaM-binding, inhibitory, and autophosphorylation domains of CaM-kinase II. Using purified brain CaM-kinase II in which these regulatory domains were removed by limited proteolysis, CaMK 281-309 strongly inhibited kinase activity (IC50=0.2 μ M ). GT1b completely reversed this inhibition, but did not stimulate phosphorylation of the peptide on threonine-286. These results demonstrate that GT1b can partially mimic the effects of Ca2+/CaM on native CaM-kinase II and on peptide CaMK 281-309.  相似文献   

18.
Abstract: The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

19.
The role of Ca2+ signalling during the self-incompatibility (SI) response in Papaver rhoeas L. has been investigated using Ca2+-sensitive dyes. Pollen tubes were micro-injected with Calcium Green-1 and cytosolic free calcium ([Ca2+]i) imaged using laser scanning confocal microscopy (LSCM). Addition of incompatible stigmatic S-glycoproteins induced a transient increase in the level of [Ca2+]i in pollen tubes. In contrast, no rise in [Ca2+]i was detectable after addition of either compatible or heat-denatured incompatible stigmatic S-glycoproteins. The elevation of [Ca2+]i was followed by the specific inhibition of pollen tube growth in incompatible reactions. It has been shown previously that gene expression in pollen tubes is switched on during an incompatible reaction. Since the [Ca2+]i transient appeared to originate from the region where the nuclei are located, Ca2+ may be involved in locally regulating the expression of these genes. The photoactivation of caged Ca2+ to artificially elevate [Ca2+]i resulted in the inhibition of pollen tube growth and thus mimicked the SI response. Taken together, the results provide an important link between a transient rise in [Ca2+]i and the biological phenomenon of inhibition of pollen tube growth and demonstrate, for the first time, direct evidence that the SI response in P. rhoeas is mediated by [Ca2+]i.  相似文献   

20.
We show here that, within 1–2 min of application, systemin triggers a transient increase of cytoplasmic free calcium concentration ([Ca2+]c) in cells from Lycopersicon esculentum mesophyll. The systemin-induced Ca2+ increase was slightly but not significantly reduced by L-type Ca2+ channel blockers (nifedipine, verapamil and diltiazem) and the Ca2+ chelator [ethylene glycol tetraacetic acid (EGTA)], whereas inorganic Ca2+ channel blockers (LaCl3, CdCl2 and GdCl3) and compounds affecting the release of intracellular Ca2+ from the vacuole (ruthenium red, LiCl, neomycin) strongly reduced the systemin-induced [Ca2+]c increase. By contrast, no inhibitory effect was seen with the potassium and chloride channel blockers tested. Unlike systemin, other inducers of proteinase inhibitor (PI) and of wound-induced protein synthesis, such as jasmonic acid (JA) and bestatin, did not trigger an increase of cytoplasmic Ca2+. The systemin-induced elevation of cytoplasmic Ca2+ which might be an early step in the systemin signalling pathway, appears to involve an influx of extracellular Ca2+ simultaneously through several types of Ca2+ permeable channels, and a release of Ca2+ from intracellular stores sensitive to blockers of inositol 1,4,5-triphosphate (IP3)- and cyclic adenasine 5'-diphosphoribose (cADPR)-mediated Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号