首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular products, not secreted from the microbial cell, are released by breaking the cell envelope consisting of cytoplasmic membrane and an outer cell wall. Hydrodynamic cavitation has been reported to cause microbial cell disruption. By manipulating the operating variables involved, a wide range of intensity of cavitation can be achieved resulting in a varying extent of disruption. The effect of the process variables including cavitation number, initial cell concentration of the suspension and the number of passes across the cavitation zone on the release of enzymes from various locations of the Brewers' yeast was studied. The release profile of the enzymes studied include alpha-glucosidase (periplasmic), invertase (cell wall bound), alcohol dehydrogenase (ADH; cytoplasmic) and glucose-6-phosphate dehydrogenase (G6PDH; cytoplasmic). An optimum cavitation number Cv of 0.13 for maximum disruption was observed across the range Cv 0.09-0.99. The optimum cell concentration was found to be 0.5% (w/v, wet wt) when varying over the range 0.1%-5%. The sustained effect of cavitation on the yeast cell wall when re-circulating the suspension across the cavitation zone was found to release the cell wall bound enzyme invertase (86%) to a greater extent than the enzymes from other locations of the cell (e.g. periplasmic alpha-glucosidase at 17%). Localised damage to the cell wall could be observed using transmission electron microscopy (TEM) of cells subjected to less intense cavitation conditions. Absence of the release of cytoplasmic enzymes to a significant extent, absence of micronisation as observed by TEM and presence of a lower number of proteins bands in the culture supernatant on SDS-PAGE analysis following hydrodynamic cavitation compared to disruption by high-pressure homogenisation confirmed the selective release offered by hydrodynamic cavitation.  相似文献   

2.
The release kinetics of the enzyme invertase and alcohol dehydrogenase from yeast and penicillin acylase from E. coli during disruption using various techniques has been investigated. The disruption techniques used were sonication, high-pressure homogenization, and hydrodynamic cavitation. The first-order-release kinetics was applied for the determination of release rate of these enzymes and total soluble proteins. Location factor (LF) values were calculated using these release rates. The location of the enzymes as given by the values of location factor coincided well with those reported in the literature. Varying values of location factor for the same enzyme by different disruption techniques gave some indications about the selectivity of release of a target enzyme by different disruption techniques. Varying values of location factor for the same enzyme with the use of a particular equipment or disruption technique at different conditions reveals the degree to which the cell is disrupted. Few plausible applications of this location factor concept have been predicted and these speculations have been examined. This location factor concept has been used for monitoring the heat-induced translocation of ADH and location of penicillin acylase during the growth period of E. coli cells.  相似文献   

3.
Secretion of Alkaline Phosphatase Subunits by Spheroplasts of Escherichia coli   总被引:13,自引:11,他引:2  
Under conditions that permitted continued protein synthesis, spheroplasts of Escherichia coli were unable to form active alkaline phosphatase, although they synthesized protein that was antigenically related to alkaline phosphatase subunits. This cross-reacting protein was primarily detected in the medium of the spheroplast culture, and it had properties that closely resembled those of the alkaline phosphatase subunit. These results suggest that formation of the active alkaline phosphatase dimer by intact E. coli cells proceeds by a pathway in which inactive subunits released from polyribosomes diffuse through the bacterial cell membrane to a periplasmic space where subsequent dimerization to active enzyme occurs. This pathway provides a possible mechanism for the specific localization of this enzyme to the E. coli periplasmic space.  相似文献   

4.
Release of recombinant proteins from gene-engineered Escherichia coli by applying a pulsed electric field (PEF) to a cell suspension was studied. When E. coli/pNC1, which produces beta-glucosidase and accumulates it in cytoplasm, was exposed to PEF, the most effective release of this enzyme was achieved in the cell suspension of 5% glycine and 15% PEG solution under 10kV/cm and 280J/ml of a PEF in a needle-plate electrode chamber. However, the amount of released beta-glucosidase by PEF treatment was only 26% of that by ultrasonic treatment. On the other hand, alpha-amylase produced by E. coli/pHI301A and accumulated in the periplasmic space could be easily released by PEF treatment. When this recombinant E. coli was suspended in 0.9% NaCl and 10% PEG solution and exposed to 10kV/cm and 200J/ml of a PEF in a plate-plate electrode chamber, 89% of intracellular alpha-amylase with nine-times higher specific activity compared with that by ultrasonic treatment was released. The release tendency of cellobiohydrolase, produced by E. coli/pNB6 and accumulated in both the cytoplasm and periplasmic space, was intermediate between those of beta-glucosidase and alpha-amylase. In this case, 70% of cellobiohydrolase with 1.9-times higher specific activity compared with that by ultrasonic treatment could be released when E. coli/pNB6 was suspended in 15% PEG and 10kV/cm and 200J/ml of a PEF was applied in a needle-plate electrode chamber. These results indicated that PEF treatment could easily disrupt the outer membrane, but it was difficult to disrupt the cytoplasmic membrane simultaneously. Therefore, PEF treatment is useful for easy release of periplasmic protein with selectivity.  相似文献   

5.
Isolation of the periplasm of Neisseria gonorrhoeae   总被引:1,自引:1,他引:0  
The periplasm of Neisseria gonorrhoeae should be similar to other Gram-negative bacteria, but no published reports confirm this assumption. We used a periplasmic isolation procedure developed in Escherichia coli to release the periplasmic contents of N. gonorrhoeae. The resultant periplasmic extract lacked lipopolysaccharide, protein markers of inner or outer membranes, surface-radiolabelled protein components, or ribosomal proteins. The periplasmic extract contained a single haem protein believed to be a c-type cytochrome known to exist in the periplasm of other Gram-negative species, and retained significant alkaline phosphatase activity. The dominant protein species released in the periplasmic extract was the gonococcal homologue of elongation factor Tu, a major component released in similar periplasmic extracts of E. coli. These data showed that the extraction procedure selectively released periplasmic components and that the gonococcal periplasm was comparable to that of E. coli. Further analysis of the gonococcal periplasm may provide important insights into the physiology of this pathogen of humans.  相似文献   

6.
The Escherichia coli structural gene for alkaline phosphatase was inserted into Salmonella typhimurium by episomal transfer in order to determine whether this enzyme would continue to be localized to the periplasmic space of the bacterium even though it was formed in a cell that does not synthesize alkaline phosphatase. The S. typhimurium heterogenote synthesized alkaline phosphatase under conditions identical to that observed with E. coli. This enzyme appeared to be identical to that synthesized by E. coli, and was quantitatively released from the bacterial cell by spheroplast formation with lysozyme. These results showed that localization is not a property unique to the E. coli cell and suggested that, in E. coli, enzyme location is related to the structure of the protein. Formation of alkaline phosphatase in the S. typhimurium heterogenote was repressed in cells growing in a medium with excess inorganic phosphate, even though only one of the three regulatory genes for this enzyme is on the episome. Thus, S. typhimurium can supply the products of the other two regulatory genes essential for repression even though this bacterium seems to lack the structural gene for alkaline phosphatase.  相似文献   

7.
Thermal damage to the outer membrane of Escherichia coli W3110 was studied. When E. coli cells were heated at 55 degrees C in 50 mM Tris-hydrochloride buffer at pH 8.0, surface blebs were formed on the cell envelope, mainly at the septa of dividing cells. Membrane lipids were released from the cells during the heating period, and part of the released lipids formed vesicle-like structures from the membrane. This vesicle fraction had a lipopolysaccharide to phospholipid ratio similar to that of the outer membrane of intact cells, whereas it had a lower content of protein than the isolated outer membrane. After heating bacterial cells at 55 degrees C for 30 min, the resulting leakage from the cells of a periplasmic enzyme, alkaline phosphatase, amounted to 52% of the total activity, whereas no release of a cytoplasmic enzyme, glucose-6-phosphate dehydrogenase, was detected. The results obtained suggest that surface blebs formed by heat treatment almost completely consist of the outer membrane and that the blebs may be gradually released from the cell surface into the heating menstruum to partially form vesicles.  相似文献   

8.
After 16 hr of incubation in a low-phosphate, aerated medium, bakers' yeast was obtained with a high titer of acid phosphatase (EC 3.1.3.2) and beta-fructofuranosidase (EC 3.2.1.26). All of the beta-fructofuranosidase and 75% of the acid phosphatase were easily released by mechanical disruption in a French pressure cell. The cell wall suffered a limited number of cracks, but this was sufficient for the co-release of these enzymes. Both enzymes were subject to autolytic release, although correlation was inconclusive because of the relative instability of acid phosphatase. The data are consistent with the bulk of the two enzymes being located in the periplasmic space. Ethylacetate treatments yielded ghosts with high beta-fructofuranosidase but low acid phosphatase activities. The surviving acid phosphatase was not representative of that in live cells. It was resistant to release by mechanical disruption and showed a high susceptibility to heat inactivation. The beta-fructofuranosidase in live cells and in ethylacetatetreated cells exhibited polydispersity in heat inactivation susceptibility; but the kinetics were indistinguishable, and facile release by mechanical disruption was shown in both cases.  相似文献   

9.
Two of the four proline analogues tested for their effect on the formation and activity of Escherichia coli alkaline phosphatase were able to substitute for proline in protein synthesis in a proline auxotroph. One of these, 3,4-dehydroproline, effectively replaced proline and led to formation of an active enzyme under conditions where no proline was present in the polypeptides. Substitution of azetidine-2-carboxylate for proline prevented active enzyme formation, producing instead altered monomeric forms of the alkaline phosphatase. These were detected with antibodies specific to denatured forms of the enzyme, and they were also characterized, together with cellular proteins, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Alkaline phosphatase, as well as several other proteins, is localized exterior to the bacterial cell cytoplasm in the periplasmic space. In the presence of azetidine-2-carboxylate, a substantial number of these periplasmic proteins retain their specific site of localization, and the denatured subunits of alkaline phosphatase were only detected in the periplasmic fraction of the cell. Thus, secretion of these proteins does not appear to require a high degree of specificity in the native structure of the polypeptide chain. The analogues 4-allohydroxyproline and 4-thiazolidine carboxylate were unable to substitute for proline in protein synthesis but they inhibited growth of E. coli.  相似文献   

10.
Penicillin amidase is a periplasmic enzyme in Escherichia coli. Conventionally, the periplasmic enzymes are released into the medium by osmotic shock which is tedious involving a number of centrifugation steps. The present communication deals with a simple technique for the release of penicillin amidase by chloroform shock. Experimental findings show that the periplasmic penicillin amidase does not show any variation by the chloroform treatment. This analysis was also extended to the E. coli cells grown at various concentrations of phenylacetic acid, optimal concentration of phenylacetic acid plus glucose and lactic acid.  相似文献   

11.
Hybrid proteins were constructed in which C-terminal regions of the bacterial cell surface and extracellular protein pullulanase were replaced by the mature forms of the normally periplasmic Escherichia coli proteins beta-lactamase or alkaline phosphatase. In E. coli strains expressing all pullulanase secretion genes, pullulanase-beta-lactamase hybrid protein molecules containing an N-terminal 834-amino-acid pullulanase segment were efficiently and completely transported to the cell surface. This hybrid protein remained temporarily anchored to the cell surface, presumably via fatty acids attached to the N-terminal cysteine of the pullulanase segment, and was subsequently specifically released into the medium in a manner indistinguishable from that of pullulanase itself. These results suggest that the C-terminal extremity of pullulanase lacks signal(s) required for export to the cell surface. When beta-lactamase was replaced by alkaline phosphatase, the resulting hybrid also became exposed at the cell surface, but exposition was less efficient and specific release into the medium was not observed. We conclude that proteins that do not normally cross the outer membrane can be induced to do so when fused to a permissive site near the C-terminus of pullulanase.  相似文献   

12.
Release of colicin E2 from Escherichia coli.   总被引:4,自引:3,他引:1       下载免费PDF全文
Treatment of Escherichia coli K-12(ColE2.P9) with 500 ng of mitomycin C per ml resulted in rapid and almost synchronous colicin E2 production. Colicin accumulated outside the cytoplasmic membrane, most probably in the periplasmic space. Colicin release occurred during a period in which the turbidity of the culture declined markedly. Periplasmic alkaline phosphatase was released during the same period, but cytoplasmic beta-galactosidase release was delayed.  相似文献   

13.
E. coli K12802 cells transformed by multicopy plasmid with phoA gene acquire the ability to oversynthesize alkaline phosphatase, secrete it into the cultural medium, and accumulate the precursor of this enzyme. The dynamics of enzyme production and secretion as well as cytomorphological changes revealed the existence of a mechanism of selective enzyme secretion into the medium. It is characterized by a decrease of enzyme specific activity in periplasm and its increase in cultural medium, appearance of numerous local zones of adhesion of cytoplasmic and outer membranes, formation of large extracellular outer membrane vesicles containing PhoA protein on the cell poles, and their release into the medium. We isolated the vesicles and found that they contain PhoA (in dominating quantity), several other periplasmic proteins, and matrix proteins of outer membranes. By their phospholipid and protein composition, they correspond to the fraction of outer membranes which have the largest density and sedimentation rate and, apparently, contain no lipoprotein.  相似文献   

14.
Expanded bed adsorption chromatography is used to capture the protein product of interest from a crude biological suspension directly, thereby eliminating the need for the removal of the cell debris. While this technique may replace three or four unit operations in a typical downstream process for biological product recovery, the adsorption process is influenced by the interaction between the microbial cells or cell debris and the adsorbent as well as the presence of contaminating solutes. The influence of the extent and nature of disruption of Bakers' yeast on the adsorption of the total soluble protein and alpha-glucosidase was investigated in this study. Two different techniques were used for cell disruption: high pressure homogenisation and hydrodynamic cavitation. Two different adsorbents were chosen: anionic Streamline DEAE and cationic Streamline SP. The settled bed height and the superficial velocity were constant across all experiments. The feedstock was characterised in terms of viscosity, pH, conductivity, particle size distribution of the cell debris and the extent of protein and alpha-glucosidase released. The performance of the adsorption process was found to be influenced by the electrostatic interactions of cell debris with the anionic adsorbent Streamline DEAE and the intraparticle diffusional resistance inside the pores of the adsorbent matrix. The increase in the intensity of disruption resulted in an increase in the dynamic binding capacity (10% feed) of both the total soluble protein and the alpha-glucosidase. However, the increase in the DBC of protein and alpha-glucosidase were not proportional. The amount of protein that could be adsorbed per ml of adsorbent from the samples subjected to a lower intensity of disruption was found to exceed that obtained at a higher disruption intensity on increasing the volume of feed suggesting multilayer adsorption. In this case, selective adsorption of the model protein alpha-glucosidase was reduced, illustrating the compromise of maximising protein recovery through non-specific binding. The study illustrates the need for an interrogation of the intensity of disruption needed and a rigorous understanding of the influence of cell debris and adsorbent-protein interaction, in optimising the selective recovery of intracellular products by EBA.  相似文献   

15.
It is difficult for Escherichia coli to secrete products such as recombinant enzymes, because the Gram-negative bacterium has a double membrane structure and so some of the products are accumulated in a periplasmic space. In this study, we demonstrated that recombinant alpha-amylase can be released from recombinant E. coli HB101/pHI301A during cultivation by applying a pulsed electric field (PEF). When a PEF (12 kV, 2 Hz) was applied for 30 min with an interval of 30 min from the point of OD660=0.7, the amount of released alpha-amylase was about 30% of the total amount of alpha-amylase produced in the cells. As a result of SDS-PAGE and activity staining analyses, it was confirmed that the released proteins were not all of the intracellular proteins, and the alpha-amylase, which was identical with intracellular alpha-amylase, was released by applied PEF cultivation. PEF treatment could be useful for easy release of periplasmic protein with selectivity.  相似文献   

16.
Periplasmic-leaky mutants of Escherichia coli K-12 were isolated after nitrosoguanidine-induced mutagenesis. They released periplasmic enzymes into the extracellular medium. Excretion of alkaline phosphatase, which started immediately in the early exponential phase of growth, could reach up to 90% of the total enzyme production in the stationary phase. Leaky mutants were sensitive to ethylenediaminetetraacetic acid, cholic acid, and the antibiotics rifampin, chloramphenicol, mitomycin C, and ampicillin. Furthermore, they were resistant to colicin E1 and partially resistant to phage TuLa. Their genetic characterization showed that the lky mutations mapped between the suc and gal markers, near or in the tolPAB locus. A biochemical analysis of cell envelope components showed that periplasmic-leaky mutants contained reduced amounts of major outer membrane protein OmpF and increased amounts of a 16,000-dalton outer membrane protein.  相似文献   

17.
Escherichia coli cells, the outer membrane of which is permeabilized with EDTA, release a specific subset of cytoplasmic proteins upon a sudden drop in osmolarity in the surrounding medium. This subset includes EF-Tu, thioredoxin, and DnaK among other proteins, and comprises approximately 10% of the total bacterial protein content. As we demonstrate here, the same proteins are released from electroporated E. coli cells pretreated with EDTA. Although known for several decades, the phenomenon of selective release of proteins has received no satisfactory explanation. Here we show that the subset of released proteins is almost identical to the subset of proteins that are able to pass through a 100-kDa-cutoff cellulose membrane upon molecular filtration of an E. coli homogenate. This finding indicates that in osmotically shocked or electroporated bacteria, proteins are strained through a molecular sieve formed by the transiently damaged bacterial envelope. As a result, proteins of small native sizes are selectively released, whereas large proteins and large protein complexes are retained by bacterial cells.  相似文献   

18.
Nucleotide sequence of the alkaline phosphatase gene of Escherichia coli   总被引:33,自引:0,他引:33  
C N Chang  W J Kuang  E Y Chen 《Gene》1986,44(1):121-125
The nucleotide sequence of the alkaline phosphatase (APase) gene (phoA) of Escherichia coli strain 294 has been determined. Pre-APase has a total of 471 amino acids (aa) including a signal sequence of 21 aa. The derived aa sequence differs from that obtained by protein sequencing by the presence of aspartic acid instead of asparagine at positions 16 and 36, and glutamic acid instead of glutamine at position 197. Two open reading frames (ORF1 and ORF2) located downstream from phoA or upstream from proC have been found. ORF1 encodes a putative presecretory protein of 106 aa with a signal sequence of 21 or 22 aa. If this protein is actually produced, it may be one of the smallest periplasmic proteins in E. coli.  相似文献   

19.
The gene for ribonuclease T1 from Aspergillus oryzae has been chemically synthesized using the segmental support technique. An Escherichia coli clone producing the ribonuclease at high levels was constructed by linking the gene downstream to the region coding for the signal peptide of the OmpA protein (a major outer membrane protein of E. coli), using the secretion cloning vector pIN-III-ompA2. This strategy was employed in order to circumvent a possible toxic effect of the gene product on the host cell. Active ribonuclease containing four additional amino acids at the N-terminus could be isolated from the periplasmic fraction of the host. The final yield after purification was 20 mg enzyme/l liquid culture. With respect to immunological, catalytic and specific behaviour, no qualitative differences could be detected between the enzyme from the over-producing E. coli strain and ribonuclease T1 isolated from A. oryzae.  相似文献   

20.
Of the three species (Bacteroides ruminicola, B. succinogenes, and Megasphaera elsdenii) of anaerobic gram-negative rumen bacteria studied, only B. ruminicola produced significant amounts of alkaline phosphatase. This enzyme, which is constitutive, showed a greater affinity for p-nitrophenylphosphate than for sodium-beta-glycerophosphate and was shown to be located exclusively in the periplasmic space of log-phase cells. Small amounts of this enzyme were released from these cells in stationary-phase cultures, but washing in 0.01 M MgCl(2) and the production of spheroplasts by using lysozyme in 0.01 M MgCl(2) did not release significant amounts of the enzyme. Exposure to 0.2 M MgCl(2) did not release significant amounts of the periplasmic alkaline phosphatase of the cell, and when these cells were spheroplasted with lysozyme in 0.2 M MgCl(2) only 25% of the enzyme was released. Spheroplasts were formed spontaneously in aging cultures of B. ruminicola, but even these cells retained most of their periplasmic alkaline phosphatase. It was concluded that the alkaline phosphatase of B. ruminicola is firmly bound to a structural component within the periplasmic area of the cell wall and that the enzyme is released in large amounts only when the cells break down. The behavior of alkaline phosphatase in this bacterium contrasts with that of conventional periplasmic enzymes of aerobic bacteria, which are released upon conversion into spheroplasts by lysozyme and ethylenediaminetetraacetic acid and by other types of cell wall damage. All three species of bacteria studied here, as well as bacteria found in mixed populations in the rumen, have thick, complex layers external to the double-track layer of their cell walls. In addition, B. ruminicola produces a loose extracellular material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号