首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The dnaA operon of Escherichia coli contains the genes dnaA, dnaN, and recF encoding DnaA, beta clamp of DNA polymerase III holoenzyme, and RecF. When the DnaA concentration is raised, an increase in the number of DNA replication initiation events but a reduction in replication fork velocity occurs. Because DnaA is autoregulated, these results might be due to the inhibition of dnaN and recF expression. To test this, we examined the effects of increasing the intracellular concentrations of DnaA, beta clamp, and RecF, together and separately, on initiation, the rate of fork movement, and cell viability. The increased expression of one or more of the dnaA operon proteins had detrimental effects on the cell, except in the case of RecF expression. A shorter C period was not observed with increased expression of the beta clamp; in fact, many chromosomes did not complete replication in runout experiments. Increased expression of DnaA alone resulted in stalled replication forks, filamentation, and a decrease in viability. When the three proteins of the dnaA operon were simultaneously overexpressed, highly filamentous cells were observed (>50 micro m) with extremely low viability and, in runout experiments, most chromosomes had not completed replication. The possibility that recombinational repair was responsible for the survival of cells overexpressing DnaA was tested by using mutants in different recombinational repair pathways. The absence of RecA, RecB, RecC, or the proteins in the RuvABC complex caused an additional approximately 100-fold drop in viability in cells with increased levels of DnaA, indicating a requirement for recombinational repair in these cells.  相似文献   

6.
We show that temperature-sensitive mutations in dnaZ, the gene for the gamma subunit of DNA polymerase III holoenzyme, can be suppressed by mutations in the dnaN gene, which encodes the beta subunit. These results support a direct physical interaction of these two subunits during polymerase assembly or function. The suppressor phenotype is also sensitive to modulation by the dnaA genotype. Since dnaA is organized in an operon with dnaN, and dnaA is a regulatory gene of this operon, we propose that the dnaA effect on suppression can best be explained by modulation of suppressor dnaN levels.  相似文献   

7.
8.
Two key elements that are thought to be required for replication initiation in eubacteria are the DnaA protein, a trans-acting factor, and the replication origin, a cis-acting element. As a first step in studying the replication initiation process in mycobacteria, we have isolated a 4-kb chromosomal DNA fragment from Mycobacterium smegmatis that contains the dnaA gene. Nucleotide sequence analysis of this region revealed homologies with the rpmH gene, which codes for the ribosomal protein L34, the dnaA gene, which codes for the replication initiator protein DnaA, and the 5' end of the dnaN gene, which codes for the beta subunit of DNA polymerase III. Further, we provide evidence that when cloned into pUC18, a plasmid that is nonreplicative in M. smegmatis, the DNA fragment containing the dnaA gene and its flanking regions rendered the former capable of autonomous replication in M. smegmatis. We suggest that the M. smegmatis chromosomal origin of replication is located within the 4-kb DNA fragment.  相似文献   

9.
The Escherichia coli beta sliding clamp, which is encoded by the dnaN gene, is reported to interact with a variety of proteins involved in different aspects of DNA metabolism. Recent findings indicate that many of these partner proteins interact with a common surface on the beta clamp, suggesting that competition between these partners for binding to the clamp might help to coordinate both the nature and order of the events that take place at a replication fork. The purpose of the experiments discussed in this report was to test a prediction of this model, namely, that a mutant beta clamp protein impaired for interactions with the replicative DNA polymerase (polymerase III [Pol III]) would likewise have impaired interactions with other partner proteins and hence would display pleiotropic phenotypes. Results discussed herein indicate that the dnaN159-encoded mutant beta clamp protein (beta159) is impaired for interactions with the alpha catalytic subunit of Pol III. Moreover, the dnaN159 mutant strain displayed multiple replication and repair phenotypes, including sensitivity to UV light, an absolute dependence on the polymerase activity of Pol I for viability, enhanced Pol V-dependent mutagenesis, and altered induction of the global SOS response. Furthermore, epistasis analyses indicated that the UV sensitivity of the dnaN159 mutant was suppressed by (not epistatic with) inactivation of Pol IV (dinB gene product). Taken together, these findings suggest that in the dnaN159 mutant, DNA polymerase usage, and hence DNA replication, repair, and translesion synthesis, are altered. These findings are discussed in terms of a model to describe how the beta clamp might help to coordinate protein traffic at the replication fork.  相似文献   

10.
Factors affecting expression of the recF gene of Escherichia coli K-12   总被引:5,自引:0,他引:5  
S J Sandler  A J Clark 《Gene》1990,86(1):35-43
  相似文献   

11.
A 23-kb fragment of the Streptomyces coelicolor chromosome spanning the dnaA region has been isolated as a cosmid clone. Nucleotide sequence analysis of a 5-kb portion shows that the genes for the RNase P protein (rnpA), ribosomal protein L34 (rpmH), the replication initiator protein (dnaA), and the beta subunit of DNA polymerase III (dnaN) are present in the highly conserved gene arrangement found in all eubacterial genomes studied so far. The dnaA-dnaN intergenic region is approximately 1 kb and contains a cluster of at least 12 DnaA boxes with a consensus sequence of TTGTCCACA matching the consensus DnaA box in the phylogenetically related Micrococcus luteus. Two DnaA boxes precede the dnaA sequence. We propose that the chromosomal origin (oriC) of S. coelicolor lies between dnaA and dnaN. In related work, J. Zakrzewska-Czerwinska and H. Schrempf (J. Bacteriol. 174:2688-2693, 1992) have identified the homologous sequence from the closely-related Streptomyces lividans as capable of self-replication.  相似文献   

12.
13.
14.
The Escherichia coli umuDC gene products encode DNA polymerase V, which participates in both translesion DNA synthesis (TLS) and a DNA damage checkpoint control. These two temporally distinct roles of the umuDC gene products are regulated by RecA-single-stranded DNA-facilitated self-cleavage of UmuD (which participates in the checkpoint control) to yield UmuD' (which enables TLS). In addition, even modest overexpression of the umuDC gene products leads to a cold-sensitive growth phenotype, apparently due to the inappropriate expression of the DNA damage checkpoint control activity of UmuD(2)C. We have previously reported that overexpression of the epsilon proofreading subunit of DNA polymerase III suppresses umuDC-mediated cold sensitivity, suggesting that interaction of epsilon with UmuD(2)C is important for the DNA damage checkpoint control function of the umuDC gene products. Here, we report that overexpression of the beta processivity clamp of the E. coli replicative DNA polymerase (encoded by the dnaN gene) not only exacerbates the cold sensitivity conferred by elevated levels of the umuDC gene products but, in addition, confers a severe cold-sensitive phenotype upon a strain expressing moderately elevated levels of the umuD'C gene products. Such a strain is not otherwise normally cold sensitive. To identify mutant beta proteins possibly deficient for physical interactions with the umuDC gene products, we selected for novel dnaN alleles unable to confer a cold-sensitive growth phenotype upon a umuD'C-overexpressing strain. In all, we identified 75 dnaN alleles, 62 of which either reduced the expression of beta or prematurely truncated its synthesis, while the remaining alleles defined eight unique missense mutations of dnaN. Each of the dnaN missense mutations retained at least a partial ability to function in chromosomal DNA replication in vivo. In addition, these eight dnaN alleles were also unable to exacerbate the cold sensitivity conferred by modestly elevated levels of the umuDC gene products, suggesting that the interactions between UmuD' and beta are a subset of those between UmuD and beta. Taken together, these findings suggest that interaction of beta with UmuD(2)C is important for the DNA damage checkpoint function of the umuDC gene products. Four possible models for how interactions of UmuD(2)C with the epsilon and the beta subunits of DNA polymerase III might help to regulate DNA replication in response to DNA damage are discussed.  相似文献   

15.
Origins of replication are known to be highly conserved among widely divergent microbial species, with the gene order in those regions being dnaA-dnaN-recF-gyrB. On the basis of sequence identities to entries in GenBank, the gene order of a 6-kb fragment of Mycoplasma genitalium DNA was determined to be dnaN-orf311-gyrB-gyrA-serS, which is structurally similar to the ancestral origin of replication. We have directly linked the dnaN gene to the M. genitalium dnaA gene by PCR amplification. However, we found a novel open reading frame, designated orf311, in place of an expected sequence encoding recF. Orf311 contains a DnaJ box motif at its N terminus, but it has no overall homology to any other protein or sequence in the database. We are unable to detect any recF homolog in M. genitalium by hybridization or during a random sequencing survey of the genome.  相似文献   

16.
A 13-kb DNA fragment containing oriC and the flanking genes thdF, orf900, yidC, rnpA, rpmH, oriC, dnaA, dnaN, recF, and gyrB was cloned from the gram-negative plant pathogen Xanthomonas campestris pv. campestris 17. These genes are conserved in order with other eubacterial oriC genes and code for proteins that share high degrees of identity with their homologues, except for orf900, which has a homologue only in Xylella fastidiosa. The dnaA/dnaN intergenic region (273 bp) identified to be the minimal oriC region responsible for autonomous replication has 10 pure AT clusters of four to seven bases and only three consensus DnaA boxes. These findings are in disagreement with the notion that typical oriCs contain four or more DnaA boxes located upstream of the dnaA gene. The X. campestris pv. campestris 17 attB site required for site-specific integration of cloned fragments from filamentous phage phiLf replicative form DNA was identified to be a dif site on the basis of similarities in nucleotide sequence and function with the Escherichia coli dif site required for chromosome dimer resolution and whose deletion causes filamentation of the cells. The oriC and dif sites were located at 12:00 and 6:00, respectively, on the circular X. campestris pv. campestris 17 chromosome map, similar to the locations found for E. coli sites. Computer searches revealed the presence of both the dif site and XerC/XerD recombinase homologues in 16 of the 42 fully sequenced eubacterial genomes, but eight of the dif sites are located far away from the 6:00 point instead of being placed opposite the cognate oriC. The differences in the relative position suggest that mechanisms different from that of E. coli may participate in the control of chromosome replication.  相似文献   

17.
The Escherichia coli beta sliding clamp protein is proposed to play an important role in effecting switches between different DNA polymerases during replication, repair, and translesion DNA synthesis. We recently described how strains bearing the dnaN159 allele, which encodes a mutant form of the beta clamp (beta159), display a UV-sensitive phenotype that is suppressed by inactivation of DNA polymerase IV (M. D. Sutton, J. Bacteriol. 186:6738-6748, 2004). As part of an ongoing effort to understand mechanisms of DNA polymerase management in E. coli, we have further characterized effects of the dnaN159 allele on polymerase usage. Three of the five E.coli DNA polymerases (II, IV, and V) are regulated as part of the global SOS response. Our results indicate that elevated expression of the dinB-encoded polymerase IV is sufficient to result in conditional lethality of the dnaN159 strain. In contrast, chronically activated RecA protein, expressed from the recA730 allele, is lethal to the dnaN159 strain, and this lethality is suppressed by mutations that either mitigate RecA730 activity (i.e., DeltarecR), or impair the activities of DNA polymerase II or DNA polymerase V (i.e., DeltapolB or DeltaumuDC). Thus, we have identified distinct genetic requirements whereby each of the three different SOS-regulated DNA polymerases are able to confer lethality upon the dnaN159 strain, suggesting the presence of multiple mechanisms by which the actions of the cell's different DNA polymerases are managed in vivo.  相似文献   

18.
In Escherichia coli, an interaction between the replication initiator DnaA and the sliding clamp protein, the beta subunit (DnaN) of DNA polymerase III, is required to regulate the chromosomal replication cycle. We report here that colony formation by, and cell division of, the temperature (42 degrees C)-sensitive dnaN59 mutant are inhibited at 34-35 degrees C when DnaA is moderately (4-to 8-fold ) overexpressed, although chromosomal replication and the beta subunit-dependent regulation of DnaA activity are not significantly inhibited. Immunoblotting analysis revealed that the beta subunit is abundant (present at a level of about 5000 dimers per cell) at 34 degrees C, and its concentration per unit cell volume was practically unaffected in the dnaN59 mutant by the overexpression of DnaA. The dnaN mutant cells that overexpress DnaA become filamentous at 34 degrees C via an sfiA-independent pathway, different from that activated by the SOS response. This filamentation is accompanied by inhibition of nucleoid partition and FtsZ ring formation. In the dnaN59 mutant, oversupply of DnaA may disturb the coordinated action of cell cycle-regulating molecules, thus leading to the inhibition of these events.  相似文献   

19.
20.
Sutton MD  Duzen JM 《DNA Repair》2006,5(3):312-323
Escherichia coli dnaN159 strains encode a mutant form of the beta sliding clamp (beta159), causing them to display altered DNA polymerase (pol) usage. In order to better understand mechanisms of pol selection/switching in E. coli, we have further characterized pol usage in the dnaN159 strain. The dnaN159 allele contains two amino acid substitutions: G66E (glycine-66 to glutamic acid) and G174A (glycine-174 to alanine). Our results indicated that the G174A substitution impaired interaction of the beta clamp with the alpha catalytic subunit of pol III. In light of this finding, we designed two additional dnaN alleles. One of these dnaN alleles contained a G174A substitution (beta-G174A), while the other contained D173A, G174A and H175A substitutions (beta-173-175). Examination of strains bearing these different dnaN alleles indicated that each conferred a distinct UV sensitive phenotype that was dependent upon a unique combination of Delta polB (pol II), Delta dinB (pol IV) and/or Delta umuDC (pol V) alleles. Taken together, these findings indicate that mutations in the beta clamp differentially affect the functions of these three pols, and suggest that pol II, pol IV and pol V are capable of influencing each others' abilities to gain access to the replication fork. These findings are discussed in terms of a model whereby amino acid residues in the vicinity of those mutated in beta159 (G66 and G174) help to define a DNA polymerase usage hierarchy in E. coli following UV irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号