首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

2.
The effect of carvedilol on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unknown. This study examined if carvedilol altered basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Carvedilol at concentrations between 10 and 40 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was decreased by 50% by removing extracellular Ca2+. Carvedilol-induced Ca2+ entry was not affected by the store-operated Ca2+ channel blockers nifedipine, econazole, and SK&F96365, but was enhanced by activation or inhibition of protein kinase C. In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin did not change carvedilol-induced [Ca2+]i rise; conversely, incubation with carvedilol did not reduce thapsigargin-induced Ca2+ release. Pretreatment with the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) inhibited carvedilol-induced [Ca2+]i release. Inhibition of phospholipase C with U73122 did not alter carvedilol-induced [Ca2+]i rise. Carvedilol at 5–50 µM induced cell death in a concentration-dependent manner. The death was not reversed when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA/AM). Annexin V/propidium iodide staining assay suggests that apoptosis played a role in the death. Collectively, in OC2 cells, carvedilol induced [Ca2+]i rise by causing phospholipase C-independent Ca2+ release from mitochondria and non-endoplasmic reticulum stores, and Ca2+ influx via protein kinase C-regulated channels. Carvedilol (up to 50 μM) induced cell death in a Ca2+-independent manner that involved apoptosis.  相似文献   

3.
The effect of ketoconazole on cytosolic free Ca2 + concentrations ([Ca2 +]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2 + levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2 +]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 μ M and above increased [Ca2 +]i in a concentration-dependent manner. The Ca2 + signal was reduced partly by removing extracellular Ca2 +. The ketoconazole-induced Ca2 + influx was insensitive to L-type Ca2 + channel blockers and protein kinase C modulators. In Ca2 +-free medium, after pretreatment with 50 μ M ketoconazole, thapsigargin-(1 μ M)-induced [Ca2 +]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2 +]i rises. Inhibition of phospholipase C with 2 μ M U73122 did not change ketoconazole-induced [Ca2 +]i rises. At concentrations between 5 and 100 μ M, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 μ M ketoconazole was not reversed by prechelating cytosolic Ca2 + with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2 +]i rises by causing Ca2 + release from the endoplasmic reticulum and Ca2 + influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2 +]i rise.  相似文献   

4.
5.
The purpose of this study was to explore the effect of tamoxifen on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability in OC2 human oral cancer cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Tamoxifen at concentrations above 2 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The tamoxifen-induced Ca2+ influx was sensitive to blockade of L-type Ca2+ channel blockers but insensitive to the estrogen receptor antagonist ICI 182,780 and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 1 μM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), tamoxifen-induced [Ca2+]i rises were substantially inhibited; and conversely, tamoxifen pretreatment inhibited a part of thapsigargin-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 μM U73122 did not change tamoxifen-induced [Ca2+]i rises. At concentrations between 10 and 50 μM tamoxifen killed cells in a concentration-dependent manner. The cytotoxic effect of 23 μM tamoxifen was not reversed by prechelating cytosolic Ca2+ with BAPTA. Collectively, in OC2 cells, tamoxifen induced [Ca2+]i rises, in a nongenomic manner, by causing Ca2+ release from the endoplasmic reticulum, and Ca2+ influx from L-type Ca2+ channels. Furthermore, tamoxifen-caused cytotoxicity was not via a preceding [Ca2+]i rise.  相似文献   

6.
The roles of Ca2+ mobilization in development of tension induced by acetylcholine (ACh, 0.1–100 µM) in swine tracheal smooth muscle strips were studied. Under control conditions, ACh induced a transient increase in free cytosolic calcium concentration ([Ca2+]i) that declined to a steady-state level. The peak increase in [Ca2+]i correlated with the magnitude of tension at each [ACh] after a single exposure to ACh, while the steady-state [Ca2+]i did not. Removal of extracellular Ca2+ had little effect on peak [Ca2+]i but greatly reduced steady-state increases in [Ca2+]i and tension. Verapamil inhibited steady-state [Ca2+]i only at [ACh]<1 µM. After depletion of internal Ca2+ stores by 10 min exposure to ACh in Ca2+-free solution and then washout of ACh for 5 min in Ca2+-free solution, simultaneous re-exposure to ACh in the presence of 2.5 mM Ca2+ increased [Ca2+]i to the control steady-state level without overshoot. The tension attained was the same as control for each [ACh] used. Continuous exposure to successively increasing [ACh] (0.1–100 µM) also reduced the overshoot of [Ca2+]i at 10 and 100 µM ACh, yet tension reached control levels at each [ACh] used. We conclude that the steady-state increase in [Ca2+]i is necessary for tension maintenance and is dependent on Ca2+ influx through voltage-gated calcium channels at 0.1 µM ACh and through a verapamil-insensitive pathway at 10 and 100 µM. The initial transient increase in calcium arises from intracellular stores and is correlated with the magnitude of tension only in muscles that have completely recovered from previous exposure to agonists.  相似文献   

7.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

8.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

9.
The effects of econazole, an antifungal drug applied for treatment of keratitis and mycotic corneal ulcer, on cytosolic-free Ca2+ concentrations ([Ca2+]i) and viability of corneal cells was examined by using SIRC rabbit corneal epithelial cells as model. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Econazole at concentrations ≥ 1 µM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The econazole-induced Ca(2+) influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 20 µM econazole, [Ca2+]i rises induced by 1 µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) were abolished. Conversely, thapsigargin pretreatment also abolished econazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 µM U73122 did not change econazole-induced [Ca2+]i rises. At concentrations between 10 and 80 µM, econazole killed cells in a concentration-dependent manner. The cytotoxic effect of 20 µM econazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. This shows that in SIRC cells econazole induces [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Econazole-caused cytotoxicity was independent from a preceding [Ca2+]i rise.  相似文献   

10.
Abstract

Protriptyline, a tricyclic anti-depressant, is used primarily to treat the combination of symptoms of anxiety and depression. However, the effect of protriptyline on prostate caner is unknown. This study examined whether the anti-depressant protriptyline altered Ca2+ movement and cell viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Protriptyline evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Protriptyline-evoked Ca2+ entry was inhibited by store-operated channel inhibitors (nifedipine, econazole and SKF96365), protein kinase C activator (phorbol 12-myristate 13 acetate, PMA) and protein kinase C inhibitor (GF109203X). Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydr-oquinone (BHQ) in Ca2+-free medium inhibited 60% of protriptyline-evoked [Ca2+]i rises. Conversely, treatment with protriptyline abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C with U73122 suppressed 50% of protriptyline-evoked [Ca2+]i rises. At concentrations of 50–70?µM, protriptyline decreased cell viability in a concentration-dependent manner; which were not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in PC3 cells, protriptyline evoked [Ca2+]i rises by inducing phospholipase C-associated Ca2+ release from the endoplasmic reticulum and other stores, and Ca2+ influx via protein kinase C-sensitive store-operated Ca2+ channels. Protriptyline caused cell death that was independent of [Ca2+]i rises.  相似文献   

11.
Effect of the carcinogen thapsigargin on human prostate cancer cells is unclear. This study examined if thapsigargin altered basal [Ca2+]i levels in suspended PC3 human prostate cancer cells by using fura-2 as a Ca2+-sensitive fluorescent probe. Thapsigargin at concentrations between 10?nM and 10 µM increased [Ca2+]i in a concentration-dependent fashion. The Ca2+ signal was reduced partly by removing extracellular Ca2+ indicating that Ca2+ entry and release both contributed to the [Ca2+]i rise. This Ca2+ influx was inhibited by suppression of phospholipase A2, but not by inhibition of store-operated Ca2+ channels or by modulation of protein kinase C activity. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) nearly abolished thapsigargin-induced Ca2+ release. Conversely, pretreatment with thapsigargin greatly reduced BHQ-induced [Ca2+]i rise, suggesting that thapsigargin released Ca2+ from the endoplasmic reticulum. Inhibition of phospholipase C did not change thapsigargin-induced [Ca2+]i rise. At concentrations of 1-10 µM, thapsigargin induced cell death that was partly reversed by chelation of Ca2+ with BAPTA/AM. Annexin V/propidium iodide staining data suggest that apoptosis was partly responsible for thapsigargin-induced cell death. Together, in PC3 human prostate cancer cells, thapsigargin induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive Ca2+ channels. Thapsigargin also induced cell death via Ca2+-dependent pathways and Ca2+-independent apoptotic pathways.  相似文献   

12.
Rat sympathetic neurons undergo programmed cell death (PCD) in vitro and in vivo when they are deprived of nerve growth factor (NGF). Chronic depolarization of these neurons in cell culture with elevated concentrations of extracellular potassium ([K+]o) prevents this death. The effect of prolonged depolarization on neuronal survival is thought to be mediated by a rise of intracellular calcium concentration ([Ca2+]i) caused by Ca2+ influx through voltage-gated channels. In this report we investigate the effects of chronic treatment of rat sympathetic neurons with thapsigargin, an inhibitor of intracellular Ca2+ sequestration. In medium containing a normal concentration of extracellular Ca2+ ([Ca2+]o), thapsigargin caused a sustained rise of intracellular Ca2+ concentration and partially blocked death of NGF-deprived cells. Elevating [Ca2+]o in the presence of thapsigargin further increased [Ca2+]i, suggesting that the sustained rise of [Ca2+]i was caused by a thapsigargin-induced Ca2+ influx. This treatment potentiated the effect of thapsigargin on survival. The dihydropyridine Ca2+ channel antagonist, nifedipine, blocked both a sustained elevation of [Ca2+]i and enhanced survival caused by depolarization with elevated [K+]o, suggesting that these effects are mediated by Ca2+ influx through L-type channels. Nifedipine did not block the sustained rise of [Ca2+]i or enhanced survival caused by thapsigargin treatment, indicating that these effects were not mediated by influx of Ca2+ through L-type channels. These results provide additional evidence that increased [Ca2+]i can suppress neuronal PCD and identify a novel method for chronically raising neuronal [Ca2+]i for investigation of this and other Ca2+-dependent phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Measurements of Ca2+ influx and [Ca2+]i changes in Fura-2/AM-loaded prothoracic glands (PGs) of the silkworm, Bombyx mori, were used to identify Ca2+ as the actual second messenger of the prothoracicotropic hormone (PTTH) of this insect. Dose-dependent increases of [Ca2+]i in PG cells were recorded in the presence of recombinant PTTH (rPTTH) within 5 minutes. The rPTTH-mediated increases of [Ca2+]i levels were dependent on extracellular Ca2+. They were not blocked by the dihydropyridine derivative, nitrendipine, an antagonist of high-voltage-activated (HVA) Ca2+ channels, and by bepridil, an antagonist of low-voltage-activated (LVA) Ca2+ channels. The trivalent cation La3+, a non-specific blocker of plasma membrane Ca2+ channels, eliminated the rPTTH-stimulated increase of [Ca2+]i levels in PG cells and so did amiloride, an inhibitor of T-type Ca2+ channels. Incubation of PG cells with thapsigargin resulted in an increase of [Ca2+]i levels, which was also dependent on extracellular Ca2+ and was quenched by amiloride, suggesting the existence of store-operated plasma membrane Ca2+ channels, which can also be inhibited by amiloride. Thapsigargin and rPTTH did not operate independently in stimulating increases of [Ca2+]i levels and one agent’s mediated increase of [Ca2+]i was eliminated in the presence of the other. TMB-8, an inhibitor of intracellular Ca2+ release from inositol 1,4,5 trisphosphate (IP3)-sensitive Ca2+ stores, blocked the rPTTH-stimulated increases of [Ca2+]i levels, suggesting an involvement of IP3 in the initiation of the rPTTH signaling cascade, whereas ryanodine did not influence the rPTTH-stimulated increases of [Ca2+]i levels. The combined results indicate the presence of a cross-talk mechanism between the [Ca2+]i levels, filling state of IP3-sensitive intracellular Ca2+ stores and the PTTH-receptor’s-mediated Ca2+ influx.  相似文献   

14.
Calcium influx via the NMDA receptor has been proposed as a mechanism of hypoxia-induced neuronal injury. The present study tests the hypothesis that the increase of [Ca2+]i observed under hypoxic conditions is the result of an NMDA-mediated Ca2+ influx. Changes of [Ca2+]i, measured fluorometrically with Fura-2, were followed after activation of the NMDA receptor with NMDA and glutamate, in the presence of glycine, in cortical synaptosomes prepared from six normoxic and six hypoxic guinea pig fetuses. [Ca2+]i was significantly higher in hypoxic vs normoxic synaptosomes, at baseline and in the presence of glycine as well as following activation of the NMDA receptor. Increase in [Ca2+]i was not observed in a Ca2+ free medium and was significantly decreased by MK-801 and thapsigargin. These results demonstrate that hypoxia-induced modifications of the NMDA receptor ion-channel results in increased [Ca2+]i in hypoxic vs normoxic synaptosomes. This increased accumulation may be due to an initial influx of Ca2+ via the altered NMDA receptor with subsequent release of Ca2+ from intracellular stores. Increase in intracellular calcium may initiate several pathways of free radical generation including cyclooxygenase, lipoxygenase, xanthine oxidase and nitric oxide synthase, and lead to membrane lipid peroxidation resulting in neuronal cell damage.  相似文献   

15.
The effect of the synthetic estrogen diethylstilbestrol (DES) on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability was explored in Chinese hamster ovary (CHO-K1). [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. DES at concentrations ≥ 1∝ increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. In Ca2+-free medium, after pretreatment with 50∝ DES, 1∝ thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)-induced [Ca2+]i rises were abolished. Conversely, thapsigargin pretreatment abolished DES-induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not alter DES-induced [Ca2+]i rises. At a concentration of 5∝, DES increased cell viability. At concentrations of 100–200 μ M, DES decreased viability in a concentration-dependent manner. The effect of 5 and 100 μM DES on viability was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′ -tetraacetic acid (BAPTA). DES-induced cell death was induced via apoptosis as demonstrated by propidium iodide staining. DES (100 μ M)-induced [Ca2+]i rises were largely inhibited by pretreatment with the estrogen receptor antagonist ICI-182,780 (100 μ M). ICI-182,780 did not affect 5 μ M DES-induced increase in viability but partly reversed 100 μ M DES-induced cell death. Collectively, in CHO-K1 cells, DES induced [Ca2+]i rises by stimulating estrogen receptors leading to Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx. DES-caused cytotoxicity was mediated by an estrogen receptor- and Ca2+-dependent pathway.  相似文献   

16.
Changes in [Ca2+]i response of individual Jurkat cells to nanosecond pulsed electric fields (nsPEFs) of 60 ns and field strengths of 25, 50, and 100 kV/cm were investigated. The magnitude of the nsPEF-induced rise in [Ca2+]i was dependent on the electric field strength. With 25 and 50 kV/cm, the [Ca2+]i response was due to the release of Ca2+ from intracellular stores and occurred in less than 18 ms. With 100 kV/cm, the increase in [Ca2+]i was due to both internal release and to influx across the plasma membrane. Spontaneous changes in [Ca2+]i exhibited a more gradual increase over several seconds. The initial, pulse-induced [Ca2+]i response initiates at the poles of the cell with respect to electrode placement and co-localizes with the endoplasmic reticulum. The results suggest that nsPEFs target both the plasma membrane and subcellular membranes and that one of the mechanisms for Ca2+ release may be due to nanopore formation in the endoplasmic reticulum.  相似文献   

17.
External bioenergy (EBE, energy emitted from a human body) has been shown to increase intracellular calcium concentration ([Ca2+]i, an important factor in signal transduction) and regulate the cellular response to heat stress in cultured human lymphoid Jurkat T cells. In this study, we wanted to elucidate the underlying mechanisms. A bioenergy specialist emitted bioenergy sequentially toward tubes of cultured Jurkat T cells for one 15-minute period in buffers containing different ion compositions or different concentrations of inhibitors. [Ca2+]i was measured spectrofluorometrically using the fluorescent probe fura-2. The resting [Ca2+]i in Jurkat T cells was 70 ± 3 nM (n = 130) in the normal buffer. Removal of external calcium decreased the resting [Ca2+]i to 52 ± 2 nM (n = 23), indicating that [Ca2+] entry from the external source is important for maintaining the basal level of [Ca2+]i. Treatment of Jurkat T cells with EBE for 15 min increased [Ca2+]i by 30 ± 5% (P 0.05, Student t-test). The distance between the bioenergy specialist and Jurkat T cells and repetitive treatments of EBE did not attenuate [Ca2+]i responsiveness to EBE. Removal of external Ca2+ or Na+, but not Mg2+, inhibited the EBE-induced increase in [Ca2+]i. Dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, also inhibited the EBE-induced increase in [Ca2+]i in a concentration-dependent manner with an IC50 of 0.11 ± 0.02 nM. When external [K+] was increased from 4.5 mM to 25 mM, EBE decreased [Ca2+]i. The EBE-induced increase was also blocked by verapamil, an L-type voltage-gated Ca2+ channel blocker. These results suggest that the EBE-induced [Ca2+]i increase may serve as an objective means for assessing and validating bioenergy effects and those specialists claiming bioenergy capability. The increase in [Ca2+]i is mediated by activation of Na+/Ca2+ exchangers and opening of L-type voltage-gated Ca2+ channels. (Mol Cell Biochem 271: 51–59, 2005)  相似文献   

18.
Cytoplasmic calcium concentration ([Ca2+]i) and extracellular calcium (Ca2+o) influx has been studied in pollen tubes of Lilium longliflorum in which the processes of cell elongation and exocytosis have been uncoupled by use of Yariv phenylglycoside ((β-D-Glc)3). Growing pollen tubes were pressure injected with the ratio dye fura-2 dextran and imaged after application of (β-D-Glc)3, which binds arabinogalactan proteins (AGPs). Application of (β-D-Glc)3 inhibited growth but not secretion. Ratiometric imaging of [Ca2+]i revealed an initial spread in the locus of the apical [Ca2+]i gradient and substantial elevations in basal [Ca2+]i followed by the establishment of new regions of elevated [Ca2+]i on the flanks of the tip region. Areas of elevated [Ca2+]i corresponded to sites of pronounced exocytosis, as evidenced by the formation of wall ingrowths adjacent to the plasma membrane. Ca2+o influx at the tip of (β-D-Glc)3-treated pollen tubes was not significantly different to that of control tubes. Taken together these data indicate that regions of elevated [Ca2+]i, probably resulting from Ca2+o influx across the plasma membrane, stimulate exocytosis in pollen tubes independent of cell elongation.  相似文献   

19.
Abstract

Clotrimazole is an antimycotic imidazole derivative that interferes with cellular Ca2+ homeostasis. This study examined the effect of clotrimazole on cytosolic Ca2+ concentrations ([Ca2+]i) and viability in HA59T human hepatoma cells. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Clotrimazole induced [Ca2+]i rises in a concentration-dependent manner. The response was reduced by removing extracellular Ca2+. Clotrimazole-evoked Ca2+ entry was suppressed by store-operated channel inhibitors (nifedipine, econazole and SK&F96365) and protein kinase C modulators (GF109203X and phorbol, 12-myristate, 13-acetate). In Ca2+-free medium, incubation with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydroquinone abolished clotrimazole-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 abolished clotrimazole-induced [Ca2+]i rise. At 10–40?µM, clotrimazole inhibited cell viability, which was not reversed by chelating cytosolic Ca2+. Clotrimazole at 10 and 30?µM also induced apoptosis. Collectively, in HA59T cells, clotrimazole-induced [Ca2+]i rises by evoking phospholipase C-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via store-operated Ca2+ channels. Clotrimazole also caused apoptosis.  相似文献   

20.
A cDNA encoding a mouse B2 bradykinin (BK) receptor was stably transfected in Chinese hamster ovary (CHO) cells. In two resulting transformants, mouse B2 BK receptor was found to induce a twofold elevation in the inositol-1,4,5-trisphosphate level. In a pertussis toxin-insensitive manner, BK also produced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i). The initial elevation in [Ca2+]i was abolished by thapsigargin pretreatment in Ca2+-free medium. The second phase was dependent on external Ca2+. The BK/inositol trisphosphate- and thapsigargin-sensitive Ca2+ stores required extracellular Ca2+ for refilling. Ca2+ influx induced by BK and thapsigargin was confirmed by Mn2+ entry through Ca2+ influx pathways producing Mn2+ quenching. Genistein, a tyrosine kinase inhibitor, partially decreased the BK-induced [Ca2+]i increase during the sustained phase and the rate of Mn2+ entry. BK had essentially no effect on the intracellular cyclic AMP level. The results suggest that the mouse B2 BK receptor couples to phospholipase C in CHO cells and that its activation results in biphasic [Ca2+]i increases, by mobilization of intracellular Ca2+ and store-depletion-mediated Ca2+ influx, the latter of which is tyrosine phosphorylation-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号