首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variants of Micrococcus lysodeikticus resistant to 100 micrograms/ml of gramicidin S with preserved resistance in subcultures on media without the antibiotic were isolated as a result of prolonged adaptation on a solid medium with increasing concentrations of gramicidin. The sensitive and resistant cells did not differ by their ability to bind gramicidin. Under the antibiotic effect permeability of the cytoplasmic membranes of the intact cells in the sensitive bacteria appeared to be impaired to a greater extent than that of the membranes of the cells in the resistant variant. Comparison of the lytic activity of gramicidin and its derivatives with respect to the protoplasts prepared with the cells of the initial and resistant variants of M. lysodeikticus revealed much higher resistance of the resistant variant protoplasts to the membrane-disorganizing effect of the preparations. Malate dehydrogenase and NADH-oxidase in the membrane preparations of the resistant variant cells differed from analogous enzymes from the membranes of the initial strain by the levels of their activity and sensitivity to gramicidin. It is likely that during adaptation of M. lysodeikticus to gramicidin significant changes in the cell cytoplasmic membranes occurred.  相似文献   

2.
It was shown that malate dehydrogenase of isolated membranes of the gramicidin S producer Bacillus brevis var. G.-B. (R.-form) is completely inhibited by the antibiotic (approximately 200 mkg/mg of protein). Succinate and NADH dehydrogenases at concentration up to 1 mg per mg of protein are insensitive to it, while corresponding oxidases are inhibited by the antibiotic not more than by 65 -- 75% apparently due to partial damage of the terminal parts of the respiratory chain. The respiration of the producer intact cells is inhibited by exogenous gramicidin S by not more than 55 -- 60%, while the respiration of antibiotic-sensitive cells of M.lysodeikticus is inhibited completely. It was shown that phosphatidyl ethanolamine (50%), phosphatidyl glycerol (15% and diphosphatidyl glycerol (25%) are the major phospholipid components of the membranes of the given strain of Bac. brevis. It was assumed that the resistance of Bac. brevis cells to gramicidin S is partly due to the constant ratio of the charged and amphoteric phospholipids. Using 31P-NMR spectroscopy, the kinetics of free phosphoric compounds in the cells and cell extracts of Bac. brevis during culture growth and gramicidin S synthesis were studied. The content of carbohydrate monophosphate, remained unaffected, while that of nucleoside di- and triphosphates and dinucleotides was low and at definite density and gramicidin S content (above 100 mkg/ml) fell down below the resolution capacity of the method employed. Evidence for gramicidin S localization of the Bac. brevis membrane and possible causes for the manifestation of the NADH dehydrogenase activity at a certain stage of culture growth are discussed.  相似文献   

3.
Mode of action of gramicidin S on Escherichia coli membrane   总被引:3,自引:0,他引:3  
The action of a cationic antibiotic gramicidin S on the outer and cytoplasmic membranes of Escherichia coli was studied. It was found that gramicidin S disrupted the permeability barrier of the outer membrane, permitting the permeation of an antibiotic ionophore, this being similar to the action of the dimer in compound 48/80 (Katsu, T., Shibata, M. and Fujita, Y. (1985) Biochim. Biophys. Acta 818, 61-66). However, differently from the dimer, gramicidin S further stimulated the efflux of K+ through the cytoplasmic membrane of E. coli. The time course of K+ permeability change accorded well with that of change in the viability of E. coli cells. These changes occurred at temperatures above the phase transition of the cytoplasmic membrane. This temperature range differed greatly from the case of polymyxin B, a polycationic antibiotic acting at temperatures above the phase transition of the outer membrane. We discuss the mode of gramicidin S action on the cytoplasmic membrane of E. coli, in comparison with the results on red blood cells and liposomes.  相似文献   

4.
The culture of Bacillus brevis var. G-B R-form was grown in the presence of beta-phenyl-beta-alanine, the inhibitor of gramicidin S synthesis, is characterized by enhanced endogenous respiration and the DPI-reductase activity as compared to the culture synthezising antibiotic. The increased synthesis of the antibiotic in the region of the culture transition from the logarithmic growth phase to the linear one is associated with a decrease in the number of viable cells despite the fact that the culture on the whole does not die but continues to grow. The membranes prepared from young gramicidin S-free cells and from the cells enriched with the antibiotic possess identical electron micrograph images, IR spectra and protein sets as determined by polyacrylamide gel electrophoresis in a Na-DS system. However, in young cell membranes NADH and succinate dehydrogenase are insensitive to gramicidin S and only malate dehydrogenase is inhibited by this antibiotic. In aged cell membranes the activities of all mentioned dehydrogenases are suppressed. Malate dehydrogenase from young cells is weakly inhibited by thyrotrycin obtained from Bac. brevis ATCC 10068; succinate dehydrogenase is entirely insensitive to this antibiotic, while NADH-dehydrogenase is almost completely inhibited by it. The specificity of action on the respiratory chain of peptide antibiotics synthesized by the cells of one strain of Bac. brevis is suggestive of a possible regulatory role of these peptides in the metabolism of the producent. Hence the accumulation of gramicidin S which is adsorbed on the membrane and destroys the respiratory chain function to the cause of the low rate of oxygen uptake by the culture of Bac. brevis var. G-B R-form and of the low activities of DPI-reductases.  相似文献   

5.
Ferric iron reductase of Rhodopseudomonas sphaeroides.   总被引:5,自引:1,他引:4  
Partially digested chromosomal DNA of Bacillus brevis ATCC 9999, a producer of the cyclic peptide antibiotic gramicidin S, was ligated into the BamHI site of the Escherichia coli expression vector pUR2-Bam. The ligated molecules were used to transfer E. coli to ampicillin resistance. Of 5 X 10(3) colonies tested by in situ immunoassay for a cross-reaction with antibodies against the gramicidin S synthetase 2, 6 colonies were found to be immunoreactive. A clone designated MK2, which had a 3.9-kilobase insert of B. brevis DNA, directed in E. coli under the lac promoter control the synthesis of polypeptides that were cross-reactive with the antibody to the gramicidin S synthetase 2. Partial purification of the gene products by gel filtration revealed a major fraction with an approximate molecular weight of 140,000 and with specific ornithine-dependent ATP-32PPi and 2'-dATP-32PPi exchange activities. These unique activities of the gramicidin S synthetase 2 were not detected in the E. coli strain harboring the vector.  相似文献   

6.
The previous study of the action of gramicidin S on bacteria (Katsu, T., Kobayashi, H. and Fujita, Y. (1986) Biochim. Biophys. Acta 860, 608-619) prompted us to investigate further the structure-activity relationship of the gramicidin S analogues on membrane permeability. Two types of the gramicidin S analogues were used in the present study: (1) cyclo(-X-D-Leu-D-Lys-D-Leu-L-Pro-)2, where X = Gly, D-Leu and D-cyclohexylalanine (D-cHxAla); (2) N,N'-diacetyl derivative of gramicidin S (diacetyl-gramicidin S) which lacks a cationic moiety of gramicidin S. All the analogues have a beta-sheet conformation as gramicidin S. The following cellular systems were used: Staphylococcus aureus as Gram-positive bacteria, Escherichia coli as Gram-negative bacteria, human erythrocytes, rat liver mitochondria and artificial liposomal membranes. It was found that gramicidin S and one of the type 1 analogues having X = D-cHxAla induced the efflux of K+ through the cytoplasmic membrane of all types of the cells. In addition, these two peptides had the ability to lower the phase transition temperature of dipalmitoylphosphatidylcholine. Accordingly, it was concluded that, if peptides can expand greatly the membrane structure of neutral lipids which constitute main parts of the biological membrane, they can stimulate the permeability of cells without any selectivity. The action of the type 2 peptide, diacetyl-gramicidin S, was strongly cell dependent. Although this peptide stimulated the efflux of K+ from mitochondria, it did not do so efficiently, if at all, from S. aureus, E. coli and erythrocytes. In experiments using liposomes, diacetyl-gramicidin S increased markedly the permeability of liposomes composed of egg phosphatidylcholine. The presence of egg phosphatidylethanolamine or cholesterol reduced its activity. These results on liposomes explained well the low sensitivity of diacetyl-gramicidin S against E. coli and erythrocytes in terms of lipid constituents of the membranes. The mechanism of action of diacetyl-gramicidin S was discussed from the formation of a boundary lipid induced by this peptide.  相似文献   

7.
Effects of moenomycin on Escherichia coli   总被引:2,自引:0,他引:2  
The antibiotic moenomycin is a valuable biochemical tool for studying the metabolism of peptidoglycan and the autolytic system in Escherichia coli, since as a specific inhibitor of peptidoglycan polymerases it can efficiently promote cell lysis. In liquid media the bacteriolytic effect on E. coli K12 was dependent on the concentration of moenomycin, on growth phase and on growth rate. Before lysis cells underwent major morphological alterations. In sucrose-containing medium complete transformation to osmotically sensitive spheroplasts was easily achieved by addition of moenomycin. The minimum inhibitory concentration of the antibiotic varied with the strain of E. coli and was highly dependent on the growth medium. A tritiated derivative of moenomycin, [3H]decahydromoenomycin A, was prepared and found to have the same inhibiting efficiency. Its binding to E. coli membranes and membrane proteins was investigated. The absence of irreversible binding suggested that moenomycin might be a competitive inhibitor of the peptidoglycan polymerases. Spontaneous moenomycin resistant variants were isolated at a frequency of about 10(-9).  相似文献   

8.
The study on the possibility of eliminating gramicidin S from the bacterial cells which had adsorbed it showed that a part of the labeled antibiotic bound by the bacteria may be washed out with buffer or salines. When the cells which had adsorbed gramicidin S were treated with lecithin emulsion, a significant part of the bound antibiotic was transferred to the lecithin liposomes. This turned the gramicidin S effect to the cells: significant but not complete reduction of the membrane barrier properties and dehydrogenase reactivation. Elimination of gramicidin S also reduced the colony forming capacity in a part of the cells.  相似文献   

9.
The work was concerned with studying the effect of gramicidin S derivatives with modified free amino groups of ornithine residues on bacterial cells and protoplasts. The substitution of the amino groups with neutral or carboxyl-containing groups eliminated or sharply decreased the antibacterial activity of gramicidin S, its binding to the cells, and the ability to change the permeability of the cytoplasmic membranes of the intact cells. However, the neutral derivatives and the derivative with acidic properties showed a considerable lytic activity when they were incubated with the protoplasts of Micrococcus lysodeikticus, Bacillus megaterium and Bacillus subtilis. Hence, these compounds preserved a certain membranotropic level. Those gramicidin S derivatives with modified ornithine amino groups which possessed basic properties were similar to gramicidin S in the antibiotic activity, the modified permeability of the membranes, the ability to bind with the cells, and the lytic action on the protoplasts.  相似文献   

10.
Cell walls of Staphylococcus aureus R9/80 resistant to gramicidin S and actinomycin D were investigated. The strain was isolated after passages of a previously isolated strain of S. aureus with resistance to gramicidin and definite changes in the cell walls, a medium with increasing concentrations of actinomycin being used for the passages. The data on the study of the cell walls of the strain with the double resistance were compared with the results of the investigation of the cell walls of the strain susceptible to gramicidin, the gramicidin resistant strain (initial for strain R9/80) and the actinomycin adapted strain that also showed changes in the cell walls. The cell walls of the resistant strains had no significant changes in the peptidoglycane and glucosamine levels, as well as in the peptidoglycane amino acid composition. Teichoic acids of all the strains had different levels of substitution of ribite by D-alanine (a factor influencing the negative charge of teichoic acids and the wall at large). It was noted that all the strains resistant to the tested antibiotics had lower levels of teichoic acids in the cell walls. The resistant cells showed some increase of the lipid component in the walls: from 1.6% in the susceptible strain to 2.1-2.9% in the resistant cells. The main trend of the changes in the resistance development was revealed to be the thickening of the cell wall and its consolidation. The development of resistance to gramicidin, actinomycin and to both the antibiotics provoked respectively a 2.4-, 4- and 5.4-fold increase of the content of the main cell component. i.e. peptidoglycane in the cell biomass. The barrier role of the cell walls in the resistant strains and their ability to bind the antibiotic is discussed.  相似文献   

11.
Viability, antibiotic properties and variation of 4 variants of Bac. brevis var. G.-B. were studied after lyophilization and storage for a year in the lyophilized state. It was shown that the spores and vegetative cells of S and P- variants not synthesizing gramicidin S were somewhat more stable than the spores and cells of R and P+ variants producing the antibiotic. The latter dissociated by 10 per cent towards the cells producing and not producing gramicidin. The developmental rate of the lyophilized vegetative cells was higher than that of the lyophilized spores. Under analogous cultivation conditions they produced higher amounts of the biomass and antibiotic. The lyophilization method described may be recommended for the maintenance of viability and stability of the spores and vegetative cells of Bacillus brevis var. G.-B. producing gramicidin S.  相似文献   

12.
Effect of cyclopeptide antibiotic gramicidin S on some enzymes and physical state of isolated Micrococcus lysodeikticus membranes is studied. Malate and lactate dehydrogenases were monotonously inhibited under the increase of gramicidin S concentration, while the activity of NADH-dehydrogenase firstly decreased and then reversed to the initial level under further increase of gramicidin S concentration. The oxygen uptake under oxidation of NADH and malate with membranes almost completely inhibited by the antibiotic, while the activity of ascorbate-TMPD-oxidase activity slightly inhibited by the same concentration of gramicidin. The addition of Triton X-100 completely eliminated the inhibitory effect of gramicidin on malate dehydrogenase. The introduction into the membrane of spine probes (2,2,6,6-tetramethyl-4-palmitoylamidopiperidine-1-oxile and 2(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxyazolidinyloxile) revealed that gramicidin caused the condensation of membrane lipid component. It is suggested that ionic interaction of gramicidin S with membrane phospholipids brings to "a freezing" of lipids which is a direct cause of impairing the activity of membrane respiration enzymes and the change of their position in the lipid matrix, thus inhibiting energy-producing processes in cell.  相似文献   

13.
The cyclopeptide antibiotic gramicidin S taken at a concentration of 100--200 mkg/mg membrane protein rapidly increases the permeability of M. lysodeikticus protoplast membranes for substrates of respiratory chain and exogenous cytochromes c. Prolonged incubation of gramicidin S with protoplasts results in their lysis which is more fast at low temperatures. In contrast to natural gramicidin, a derivative of gramicidin S with acetylated amino groups does not inhibit either the micrococcus membrane dehydrogenase or the whole of respiratory chain and does not affect the osmotic barrier of protoplasts. Aliphatic diamines (at concentrations up to 0.1 M) and Ca2+ ions (10(-2) M) do not affect the functioning of the respiratory chain in isolated micrococcus membranes. Another derivative of the antibiotic with an increased distance of loaded amino groups from the cyclopeptide framework (diglycyl gramicidin S) affects the membrane in a way similar to that of natural gramicidin. Washing of gramicidin-treated membranes with NaCl enhances the inhibitory effect of the antibiotic on membrane enzymes. The data obtained suggest that in addition to ionic interactions some hydrophobic interactions also occur during gramicidin S binding to the bacterial membrane, probably at the expense of a hydrophobic peptide ring. It is assumed that gramicidin S, similar to Ca2+ and some other membranotropic agents provides for phase separation of negatively charged phospholipids from other groups of phospholipids, manifesting itself in an appearance of "frozen" sites on the membrane which destroys its barrier properties. This is due to the formation of ionic bonds of negatively charged phospholipids. Simultaneously, unlike Ca2+, gramicidin S, when interacting with membrane proteins, prevents their redistribution in more liquid parts of the membrane, which results in a situation when the respiratory enzymes become surrounded by alkyl chains with restricted motion.  相似文献   

14.
Gramicidin S response of metal resistant mutants of E. coli B and the effect of concentrations of Cu2+, Ag+, Co2+ and Cd2+ on the growth and sensitivity of E. coli B to cationic antibiotics, i.e. gramicidin S2+ and streptomycin2+, were studied. It was shown that the metal-cumulating mutants of E. coli B with two different mechanisms of cross resistance to Cu2+, Cd2+ and Ag+ had higher sensitivity to gramicidin S than the initial wild type strain of E. coli B. It was found that in the threshold or higher doses the salts of Cu, Ag, Co and Cd increased the gramicidin S antimicrobial action on actively metabolizing cells of E. coli B. Analysis of the experimental data as well as the literature ones suggested that the synergic action of gramicidin S and the heavy metals stemmed from an increase in the cationic conductivity of the cytoplasma membrane modified by the metals in the threshold doses which induced an increase in the transport and accumulation of the cations in the bacterial cells by the electric field gradient (with the negative sign inside). Withdrawal of Ca2+ and Mg2+ from the E. coli outer structures into the cytoplasm impaired the barrier properties of the outer membrane and promoted binding of the gramicidin S cations to the liberated anionic groups of the E. coli outer structures and potentiation of the gramicidin S antimicrobial activity as was shown in our experiments.  相似文献   

15.
To emphasise the role of outer and inner membranes in the resistance of Pseudomonas aeruginosa to bactericidal activity of various disinfectants, spheroplasts and whole cells were compared. Spheroplasts are more sensitive than whole cells to quaternary ammonium compounds such as didecyl dimethyl ammonium bromide (DDAB) and C16-benzalkonium chloride. The outer membrane acts as a barrier to prevent these disinfectants from entering the cell. It seems to have no influence on activities of smaller molecules such as C12, C14-benzalkonium chlorides and sodium dichloroisocyanurate. For tri-sodium phosphate, the presence of outer membrane emphasized the action of the molecule. Moreover, resistance of DDAB-adapted spheroplasts to bactericidal activity of DDAB is higher than the resistance of non-adapted spheroplasts. This suggests that the inner membrane could also play a role in resistance to DDAB.  相似文献   

16.
Phospholipid fractions were isolated from the cells of Bacillus brevis var. G.-B. variants, some, of which produced gramicidin S and some did not. As was found by thin layer chromatography, phosphatidyl ethanolamine predominated in the fraction of phospholipids. Interaction of the isolated phospholipids with gramicidin S in vitro resulted in a loss of the antibiotic activity. Presumably, formation of a complex between the polypeptide and phospholipids may decrease the actual concentration of gramicidin S in cells producing the antibiotic.  相似文献   

17.
AIMS: To assess the activity of Brevibacillus brevis (formerly Bacillus brevis) Nagano and the antibiotic it produces, gramicidin S, against the plant pathogen Botrytis cinerea. METHODS AND RESULTS: Germination and growth of Bot. cinerea were assessed in the presence of B. brevis or gramicidin S in liquid media, on solid media and on leaf sections of Chinese cabbage. Germination was 10-fold more sensitive to gramicidin S than growth. Inhibition of Bot. cinerea was greater in liquid media compared with on solid media. Activity of gramicidin S against Bot. cinerea on leaf sections was much lower than in vitro. In vitro inhibition of Bot. cinerea by B. brevis Nagano was similar to equivalent levels of gramicidin. CONCLUSIONS: Antibiosis, via gramicidin S, is the mode of antagonism exhibited by B. brevis Nagano against Bot. cinerea in vitro. SIGNIFICANCE AND IMPACT OF THE STUDY: The mode of antagonism of B. brevis against Bot. cinerea was elucidated. The differing activity of gramicidin S against Bot. Cinerea in vitro and on leaf sections indicates one mechanism by which biocontrol activity may differ between laboratory and field conditions.  相似文献   

18.
K. Nose  M. Ono    D. Mizuno 《Journal of bacteriology》1970,101(1):102-107
Cells of Escherichia coli W3110 and its thymineless mutant, both of which are colicin E2 sensitive, were treated with colicin E2, and then converted to spheroplasts. These spheroplasts seemed to be more stable than those from untreated cells; suspensions of spheroplasts of untreated cells were lysed spontaneously and the turbidity was reduced by approximately 45% on incubation with ethylenediaminetetraacetic acid-lysozyme, whereas suspensions of spheroplasts of colicin E2-treated cells showed 25% reduction in turbidity. This change was irreversible and 5 min of treatment with colicin E2 at 37 C was necessary for stabilization. This process was inhibited by 2,4-dinitrophenol or streptomycin. Cells harboring the colicin E2 factor were not affected by treatment in this way with colicin E2. Alteration of composition of phospholipids was not observed.  相似文献   

19.
The radiosensitivity of P(+) variant Bacillus brevis var. G.-B. cells cultured under condition of normal and inhibited gramicidin S synthesis, antibiotically high-active strain and high radioresistant cells has been studied. It has been shown that the radioresistance of bacterial cells correlates, in general, with their antibiotic activity: the antibiotic superproduced is more radioresistant than P(+) variant, the inhibition of antibiotic synthesis by beta-phenil-beta-alanin rises a little the sensitivity of P(+) variant cells. But the radioresistant fraction of P(+) variant contains the lower antibiotic amount than the whole population. It has been concluded that the radioprotective action of gramicidin S can not be the only reason of the above-mentioned differences in radiosensitivity.  相似文献   

20.
Comparative study of two staphylococcus aureus 209P strains--resistant and susceptible to gramicidin S demonstrated that peptidoglycanes of two strains differ by ratio glycine/serine at peptide bridges. Besides peptidoglycanes significantly differ by amidation of alfa-carboxyles of glutamic acid in muropeptide. This peptidoglycane modification of resistant cells along with enhanced content of etherized D-alanine in teichoic acid provides lower negative charge of cell wall components. It may influence the cell wall ability to react with positively charged gramicidin molecules. It was shown that isolated cell walls and peptidoglycane of resistant cells binds significantly less gramicidin than cell walls and peptodoglyce of susceptable cells. Simultaneous determination of gramicidin binding by intact S. aureus cells and their killing revealed that lower ability of resistant cells to bind gramicidin is significant but not critical factor of gramicidin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号