共查询到20条相似文献,搜索用时 0 毫秒
1.
In vitro autoradiography was used to examine changes in cannabinoid CB1 receptors (targeted with [3H] CP55,940) in rats treated with the potent cannabinoid agonist HU210. Animals were administered with HU210 (25, 50, 100 μg/kg)
for 4 or 14 days or received a single 100 μg/kg injection of HU210 and sacrificed 24 h later. The acute dose resulted in a
decrease in binding in the caudate putamen and hippocampus. A dose dependent, region-specific reduction (P < 0.0001) in [3H] CP55,940 binding was seen in all brain regions examined after 4 and 14 days treatment. A decrease in body weight was recorded
during the first 4 days of treatment but after this animals began to gain weight. Correlations (0.865 < r < 0.659, P < 0.0001) between body weight on day four and CB1 receptor binding were found in all brain regions examined suggesting that
downregulation of CB1 receptors may contribute to the induction of tolerance to body weight loss induced by HU210. 相似文献
2.
Letizia Palomba Cristoforo Silvestri Roberta Imperatore Giovanna Morello Fabiana Piscitelli Andrea Martella Luigia Cristino Vincenzo Di Marzo 《The Journal of biological chemistry》2015,290(22):13669-13677
The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2′-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL−/− mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels. 相似文献
3.
Tolerance develops rapidly to cannabis, cannabinoids, and related drugs acting at the CB1 cannabinoid receptor. However, little is known about what happens to the receptor as tolerance is developing. In this study, we have found that CB1 receptors are rapidly internalized following agonist binding and receptor activation. Efficacious cannabinoid agonists (WIN 55,212-2, CP 55,940, and HU 210) caused rapid internalization. Methanandamide (an analogue of an endogenous cannabinoid, anandamide) was less effective, causing internalization only at high concentration, whereas delta9-tetrahydrocannabinol caused little internalization, even at 3 microM. CB1 internalized via clathrin-coated pits as sequestration was inhibited by hypertonic sucrose. Internalization did not require activated G protein alpha(i), alpha(o), or alpha(s) subunits. A region of the extreme carboxy terminus of the receptor was necessary for internalization, as a mutant CB1 receptor lacking the last 14 residues did not internalize, whereas a mutant lacking the last 10 residues did. Steps involved in the recycling of sequestered receptor were also investigated. Recovery of CB1 to the cell surface after short (20 min) but not long (90 min) agonist treatment was independent of new protein synthesis. Recycling also required endosomal acidification and dephosphorylation. These results show that CB1 receptor trafficking is dynamically regulated by cannabimimetic drugs. 相似文献
4.
M. Jung R. Calassi M. Rinaldi-Carmona P. Chardenot G. Le Fur P. Soubrié F. Oury-Donat 《Journal of neurochemistry》1997,68(1):402-409
Abstract: This study was undertaken to characterize further the central cannabinoid receptors in rat primary neuronal cell cultures from selected brain structures. By using [3 H]SR 141716A, the specific CB1 receptor antagonist, we demonstrate in cortical neurons the presence of a high density of specific binding sites ( B max = 139 ± 9 fmol/mg of protein) displaying a high affinity ( K D = 0.76 ± 0.09 n M ). The two cannabinoid receptor agonists, CP 55940 and WIN 55212-2, inhibited in a concentration-dependent manner cyclic AMP production induced by either 1 µ M forskolin or isoproterenol with EC50 values in the nanomolar range (4.6 and 65 n M with forskolin and 1.0 and 5.1 n M with isoproterenol for CP 55940 and WIN 55212-2, respectively). Moreover, in striatal neurons and cerebellar granule cells, CP 55940 was also able to reduce the cyclic AMP accumulation induced by 1 µ M forskolin with a potency similar to that observed in cortical neurons (EC50 values of 3.5 and 1.9 n M in striatum and cerebellum, respectively). SR 141716A antagonized the CP 55940- and WIN 55212-2-induced inhibition of cyclic AMP accumulation, suggesting CB1 receptor-specific mediation of these effects on all primary cultures tested. Furthermore, CP 55940 was unable to induce mitogen-activated protein kinase activation in either cortical or striatal neurons. In conclusion, our results show nanomolar efficiencies for CP 55940 and WIN 55212-2 on adenylyl cyclase activity and no effect on any other signal transduction pathway investigated in primary neuronal cultures. 相似文献
5.
Ingeborg van der Ploeg Fiona E. Parkinson Bertil B. Fredholm 《Journal of neurochemistry》1992,58(4):1221-1229
In a previous study we showed that in vivo treatment with pertussis toxin could inhibit some, but not all, effects of adenosine in the rat hippocampus. In this study we investigated the effect of pertussis toxin on the binding of adenosine analogues to A1 receptors in rat brain. Intraventricular injection of pertussis toxin (10 micrograms into the lateral ventricle) did not affect A1 receptor binding in any brain region studied, as evaluated by autoradiography. In vitro treatment of brain sections (10 microns) with pertussis toxin for 5 h, under conditions when greater than 80% of the G proteins were ADP ribosylated, did not alter radioligand binding to adenosine A1 receptors. GTP (10 microM) virtually abolished the high-affinity agonist binding to the A1 receptor. On the other hand, in solubilized cortical membrane preparations, pertussis toxin pretreatment induced a complete shift of the A1 receptors to the low-affinity state. This suggests that the ability of pertussis toxin to affect G proteins coupled to A1 receptors in brain depends not only on the distribution of the toxin but also on the configuration of receptors and G proteins. 相似文献
6.
J. C. Brown III H. W. Tse D. A. Skifter J. M. Christie V. J. Andaloro M. C. Kemp J. C. Watkins D. E. Jane D. T. Monaghan 《Journal of neurochemistry》1998,71(4):1464-1470
Abstract: NMDA receptors mediate several important functions in the CNS; however, little is known about the pharmacology, biochemistry, and function of distinct NMDA receptor subtypes in brain tissue. To facilitate the study of native NMDA receptor subpopulations, we have determined the radioligand binding properties of [3 H]homoquinolinate, a potential subtype-selective ligand. Using quantitative receptor autoradiography, NMDA-specific [3 H]homoquinolinate binding selectively labeled brain regions expressing NR2B mRNA (layers I–III of cerebral cortex, striatum, hippocampus, and septum). NMDA-specific [3 H]homoquinolinate binding was low in brain regions that express NR2C and NR2D mRNA (cerebellar granular cell layer, NR2C; glomerular layer of olfactory bulb, NR2C/NR2D; and midline thalamic nuclei, NR2D). In forebrain, the pattern of NMDA-specific [3 H]homoquinolinate binding paralleled NR2B and not NR2A distribution. In addition to NMDA-displaceable binding, there was a subpopulation of [3 H]homoquinolinate binding sites in the forebrain, cerebellum, and choroid plexus that was not displaced by NMDA or l -glutamate. In contrast, we found that the derivative of homoquinolinate, 2-carboxy-3-carboxymethylquinoline, markedly inhibited the NMDA-insensitive binding of [3 H]homoquinolinate without inhibiting the NMDA-sensitive population. [3 H]Homoquinolinate may be useful for selectively characterizing NR2B-containing NMDA receptors in a preparation containing multiple receptor subtypes and for characterizing a novel binding site of unknown function. 相似文献
7.
Abstract: A series of l-phenyl-1 H -3-benzazepine analogues were assessed for enantiomeric and structure-affinity relationships at human putamen D-1 dopamine receptors labelled with [3 H]SCH 23390. Substitution at the 7-position of both 3-H and 3-methyl benzazepine molecules critically affected affinity for these receptors over a 500-fold range. The general rank order of potency of 7-substituents was Cl = Br ≫ CH3 > OH ≥ H. 3-Methyl substituents increased the affinity of 7-H and 7-OH compounds two- to fivefold compared to desmethyl counterparts. The displacement of [3 H]SCH 23390 binding showed substantial enantioselec-tivity; the R-enantiomer of SKF 83566 was 500-fold more potent that its S-antipode. However, the displacement of [3 H]spiperone binding from D-2 sites in the same tissue showed negligible enantioselectivity. Through such structure-affinity relationships, these studies may help to define the topography of the human brain D-1 dopamine receptor and guide the design of more selecive agents for functional studies. 相似文献
8.
Yannick Marchalant Philip W. Brownjohn Amandine Bonnet Torsten Kleffmann John C. Ashton 《The journal of histochemistry and cytochemistry》2014,62(6):395-404
Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest—in this case CB2—but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues. 相似文献
9.
Mato S Aso E Castro E Martín M Valverde O Maldonado R Pazos A 《Journal of neurochemistry》2007,103(5):2111-2120
Interaction between brain endocannabinoid (EC) and serotonin (5-HT) systems was investigated by examining 5-HT-dependent behavioral and biochemical responses in CB1 receptor knockout mice. CB1 knockout animals exhibited a significant reduction in the induction of head twitches and paw tremor by the 5-HT2A/C receptor selective agonist (±) DOI, as well as a reduced hypothermic response following administration of the 5-HT1A receptor agonist (±)-8-OH-DPAT. Additionally, exposure to the tail suspension test induced enhanced despair responses in CB1 knockout mice. However, the tricyclic antidepressant imipramine and the 5-HT selective reuptake inhibitor fluoxetine induced similar decreases in the time of immobility in the tail suspension test in CB1 receptor knockout and wild-type mice. No differences were found between both genotypes with regard to 5-HT2A receptor and 5-HT1A receptors levels, measured by autoradiography in different brain areas. However, a significant decrease in the ability of both, the 5-HT1A receptor agonist (±)-8-OH-DPAT and the 5-HT2A/C receptor agonist (−)DOI, to stimulate [35 S]GTPγS binding was detected in the hippocampal CA1 area and fronto-parietal cortex of CB1 receptor knockout mice, respectively. This study provides evidence that CB1 receptors are involved in the regulation of serotonergic responses mediated by 5-HT2A/C and 5-HT1A receptors, and suggests that a reduced coupling of 5-HT1A and 5-HT2A receptors to G proteins might be involved in these effects. 相似文献
10.
Mark Bauer Andrea Chicca Marco Tamborrini David Eisen Raissa Lerner Beat Lutz Oliver Poetz Gerd Pluschke Jürg Gertsch 《The Journal of biological chemistry》2012,287(44):36944-36967
The α-hemoglobin-derived dodecapeptide RVD-hemopressin (RVDPVNFKLLSH) has been proposed to be an endogenous agonist for the cannabinoid receptor type 1 (CB1). To study this peptide, we have raised mAbs against its C-terminal part. Using an immunoaffinity mass spectrometry approach, a whole family of N-terminally extended peptides in addition to RVD-Hpα were identified in rodent brain extracts and human and mouse plasma. We designated these peptides Pepcan-12 (RVDPVNFKLLSH) to Pepcan-23 (SALSDLHAHKLRVDPVNFKLLSH), referring to peptide length. The most abundant Pepcans found in the brain were tested for CB1 receptor binding. In the classical radioligand displacement assay, Pepcan-12 was the most efficacious ligand but only partially displaced both [3H]CP55,940 and [3H]WIN55,212-2. The data were fitted with the allosteric ternary complex model, revealing a cooperativity factor value α < 1, thus indicating a negative allosteric modulation. Dissociation kinetic studies of [3H]CP55,940 in the absence and presence of Pepcan-12 confirmed these results by showing increased dissociation rate constants induced by Pepcan-12. A fluorescently labeled Pepcan-12 analog was synthesized to investigate the binding to CB1 receptors. Competition binding studies revealed Ki values of several Pepcans in the nanomolar range. Accordingly, using competitive ELISA, we found low nanomolar concentrations of Pepcans in human plasma and ∼100 pmol/g in mouse brain. Surprisingly, Pepcan-12 exhibited potent negative allosteric modulation of the orthosteric agonist-induced cAMP accumulation, [35S]GTPγS binding, and CB1 receptor internalization. Pepcans are the first endogenous allosteric modulators identified for CB1 receptors. Given their abundance in the brain, Pepcans could play an important physiological role in modulating endocannabinoid signaling. 相似文献
11.
[3H]Fluphenazine was used to label both D-1 and D-2 dopamine receptors in mouse striatal membranes. The D-1 and D-2 specific binding of [3H]fluphenazine was discriminated by the dopamine antagonists SCH-23390 (D-1 selective) and spiperone (D-2 selective). Saturation analyses of these two sites yielded a D-1 receptor density in mouse striatum of 1,400 fmol/mg of protein and a D-2 receptor density of 700 fmol/mg of protein. The affinity of [3H]fluphenazine for the D-2 site was slightly greater than for the D-1 site; the equilibrium dissociation constant (KD) was 0.7 versus 3.2 nM, respectively. Assay conditions are described that reduce nonspecific binding of [3H]fluphenazine to acceptable levels (35% of total binding at 1 nM [3H]fluphenazine). By comparison of displacement curves from a series of dopaminergic and nondopaminergic ligands, the pharmacological specificity of [3H]fluphenazine binding in mouse striatum was demonstrated to be dopaminergic. Only small amounts of dopamine-specific (apomorphine-sensitive) [3H]fluphenazine binding were found in other brain regions. However, chlorpromazine displaced considerable [3H]fluphenazine from all brain regions, including cerebellum, suggesting the presence of a [3H]fluphenazine binding site with a phenothiazine specificity. 相似文献
12.
B. Kenneth Koe Lorraine A. Lebel Carol B. Fox John E. Macor 《Journal of neurochemistry》1992,58(4):1268-1276
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3 H]CP-96,501, was found to bind with a high affinity ( K D , 0.21 n M ) to a single binding site ( n H , 1.0). The receptor density of this site ( B max , 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3 H]5-HT. Competition curves of 16 serotonergic compounds in [3 H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3 H]5-HT or [125 I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3 H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3 H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125 I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3 H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor. 相似文献
13.
Xavier Khawaja Non Evans Yvonne Reilly Christine Ennis Michael C. W. Minchin 《Journal of neurochemistry》1995,64(6):2716-2726
Abstract: The specific binding of [3H]WAY-100635 {N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide trihydrochloride} to rat hippocampal membrane preparations was time, temperature, and tissue concentration dependent. The rates of [3H]WAY-100635 association (k+1 = 0.069 ± 0.015 nM?1 min?1) and dissociation (k?1 = 0.023 ± 0.001 min?1) followed monoexponential kinetics. Saturation binding isotherms of [3H]WAY-100635 exhibited a single class of recognition site with an affinity of 0.37 ± 0.051 nM and a maximal binding capacity (Bmax) of 312 ± 12 fmol/mg of protein. The maximal number of binding sites labelled by [3H]WAY-100635 was ~36% higher compared with that of 8-hydroxy-2-(di-n-[3H]-propylamino)tetralin ([3H]8-OH-DPAT). The binding affinity of [3H]WAY-100635 was significantly lowered by the divalent cations CaCl2 (2.5-fold; p < 0.02) and MnCl2 (3.6-fold; p < 0.05), with no effect on Bmax. Guanyl nucleotides failed to influence the KD and Bmax parameters of [3H]WAY-100635 binding to 5-HT1A receptors. The pharmacological binding profile of [3H]WAY-100635 was closely correlated with that of [3H]8-OH-DPAT, which is consistent with the labelling of 5-hydroxytryptamine1A (5-HT1A) sites in rat hippocampus. [3H]WAY-100635 competition curves with 5-HT1A agonists and partial agonists were best resolved into high- and low-affinity binding components, whereas antagonists were best described by a one-site binding model. In the presence of 50 µM guanosine 5′-O-(3-thiotriphosphate) (GTPγS), competition curves for the antagonists remained unaltered, whereas the agonist and partial agonist curves were shifted to the right, reflecting an influence of G protein coupling on agonist versus antagonist binding to the 5-HT1A receptor. However, a residual (16 ± 2%) high-affinity agonist binding component was still apparent in the presence of GTPγS, indicating the existence of GTP-insensitive sites. 相似文献
14.
Abstract: This study investigated possible D1/D2 interactions in rat and bovine striatal tissue by examining the effects of D2 antagonists on the action of dopamine at D1 dopamine receptors. In addition, the extent to which D2 antagonists may induce an agonist low-affinity state of the D1 receptor was evaluated in comparison with the effects of the guanine nucleotide analogue 5′-guanylylimidodiphosphate [Gpp(NH)p]. In saturation experiments dopamine caused a dose-dependent decrease in rat striatal and bovine caudate D1 receptor density. This effect of dopamine, which has been shown to be sensitive to Gpp(NH)p, was not altered by pretreatment with either of the selective D2 antagonists eticlopride (200 nM) or domperidone (200 nM). Results from displacement experiments show that the affinity of dopamine for D1 receptors and the proportion of receptors in an agonist high-affinity state, are reduced by Gpp(NH)p (100 µM) but not by eticlopride. A molar excess of dopamine (100 µM) promotes the dissociation of (±)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol ([3H]SCH 23390) from rat striatal D1 receptors at a rate that is significantly slower than when dissociation is initiated using 1 µM piflutixol. After pretreatment with Gpp(NH)p, [3H]SCH 23390 dissociation induced by dopamine occurred at an even slower rate. Pretreatment with eticlopride had no effect on the dopamine-induced rate of [3H]SCH 23390 dissociation. These results indicate that all experimental approaches detected dopamine effects at D1 receptors that are Gpp(NH)p sensitive and D2 antagonist insensitive and provide no evidence to support a D1/D2 link operating at the receptor level. 相似文献
15.
Robert D. McQuade Ruth A. Duffy Cheryl C. Anderson Gordon Crosby Vicki L. Coffin Richard E. Chipkin Allen Barnett 《Journal of neurochemistry》1991,57(6):2001-2010
SCH 39166 [(-)-trans-6,7,7a,8,9, 13b-hexahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]naphtho[2, 1b]azepine] has recently been described as a selective D1 antagonist and has entered clinical trials for the treatment of schizophrenia. The tritiated analogue of this compound, [3H]SCH 39166, has now been synthesized and characterized for its in vitro and in vivo binding profiles. [3H]SCH 39166 binds to D1 receptors in a saturable, high-affinity fashion, with a KD of 0.79 nM. In competition studies, D1-selective antagonists like SCH 23390 displaced the binding of [3H]SCH 39166 with nanomolar affinities, whereas antagonists of other receptors exhibited poor affinity. In vivo, [3H]SCH 39166 bound to receptors in rat striatum in a fashion suggestive of D1 selectivity. Further, when the time course for the binding of [3H]SCH 39166 was compared with the behavioral time course of the unlabeled compound, the two durations of action were virtually indistinguishable. Similar studies were performed for SCH 23390 and its tritiated analogue, but the in vivo binding of this radioligand exhibited a duration of action far greater than the behavioral activity of the unlabeled drug. In concert, these data demonstrate that [3H]SCH 39166 selectively labels D1 receptors in vitro and in vivo, and that this drug is superior for in vivo imaging of the D1 receptor. 相似文献
16.
Abstract: Cholinesterases form a family of serine esterases that arise in animals from at least two distinct genes. Multiple forms of these enzymes can be precisely localized and regulated by alternative mRNA splicing and by co- or posttranslational modifications. The high catalytic efficiency of the cholinesterases is quelled by certain very selective reversible and irreversible inhibitors. Owing largely to the important role of acetylcholine hydrolysis in neurotransmission, cholinesterase and its inhibitors have been studied extensively in vivo. In parallel, there has emerged an equally impressive enzyme chemistry literature. Cholinesterase inhibitors are used widely as pesticides; in this regard the compounds are beneficial with concomitant health risk. Poisoning by such compounds can result in an acute but usually manageable medical crisis and may damage the CNS and the PNS, as well as cardiac and skeletal muscle tissue. Some inhibitors have been useful for the treatment of glaucoma and myasthenia gravis, and others are in clinical trials as therapy for Alzheimer's dementia. Concurrently, the most potent inhibitors have been developed as highly toxic chemical warfare agents. We review treatments and sequelae of exposure to selected anticholinesterases, especially organophosphorus compounds and carbamates, as they relate to recent progress in enzyme chemistry. 相似文献
17.
George Battaglia Michael Shannon Bjug Borgundvaag Milt Titeler 《Journal of neurochemistry》1983,41(2):538-542
Abstract: [3 H]Prazosin binding to α1 receptors in homogenates of rat prefrontal cortical tissue and porcine pituitary neurointermediate lobe tissue was investigated. Competition curves produced by coincubating adrenergic agonists and antagonists with 0.5 n M [3 H]prazosin and tissue revealed some anomalous binding properties. In the brain and pituitary tissue, agonist competition curves produced "shallow" slopes, with Hill coefficients significantly lower than unity. The IC50 of the agonists epinephrine, norepinephrine, and clonidine for inhibition of 0.5 n M [3 H]prazosin binding were significantly lower in the porcine pituitary than in the rat brain. Most antagonists, such as prazosin, chlorpromazine, and piperoxan, produced "steep" competition curves with Hill coefficients close to unity, with two notable exceptions. WB-4101 and phentolamine produced competition curves with Hill coefficients significantly less than unity in the rat brain preparation. Ketanserin, an antagonist, displayed a sevenfold higher affinity for the a, sites in the pituitary tissue than in the brain tissue. These anomalies in the binding results may indicate the presence of an endogenous modulatory factor affecting agonist and antagonist affinities for the a, receptor. 相似文献
18.
Activation of Muscarinic and of α1 -Adrenergic Receptors on Astrocytes Results in the Accumulation of Inositol Phosphates 总被引:3,自引:4,他引:3
Brian Pearce Martin Cambray-Deakin Christine Morrow Jill Grimble Sean Murphy 《Journal of neurochemistry》1985,45(5):1534-1540
Astrocyte-enriched cultures prepared from the newborn rat cortex incorporated [3H]myo-inositol into intracellular free inositol and inositol lipid pools. Noradrenaline and carbachol stimulated the turnover of these pools resulting in an increased accumulation of intracellular [3H]inositol phosphates. The effects of noradrenaline and carbachol were dose-dependent and blocked by specific alpha 1-adrenergic and muscarinic cholinergic receptor antagonists, respectively. The increase in [3H]inositol phosphate accumulation caused by these receptor antagonists was virtually unchanged when cultures were incubated in Ca2+-free medium, but was abolished when EGTA was also present in the Ca2+-free medium. Cultures of meningeal fibroblasts, the major cell type contaminating the astrocyte cultures, also accumulated [3H]myo-inositol, but no increased accumulation of [3H]inositol phosphates was found in response to either noradrenaline or carbachol. 相似文献
19.
We have investigated the binding of 3-[125I]iododizocilpine ([125I]iodo-MK-801) to the N-methyl-D-aspartate (NMDA) receptor in well-washed rat brain membranes. [125I]Iododizocipline binding was displaced by the following: dizocilpine greater than thienylphencyclidine greater than phencyclidine greater than ketamine. Binding of [125I]iododizocilpine was enhanced by glutamate, glycine, and spermidine, whose actions could be reversed by CGS-19755, 7-chlorokynurenate, and arcaine, respectively. [125I]Iododizocilpine binding was also enhanced by a number of divalent cations, including Ba2+, Ca2+, Mg2+, Mn2+, and Sr2+, and several monovalent cations, including Na+ and K+. These cations enhanced [125I]iododizocilpine binding by an action at the polyamine site. In addition, the inhibitory effects associated with high concentrations of these cations was markedly reduced compared to those found in previous studies with [3H]dizocilpine. Analysis of the ability of spermidine, Mg2+, and Sr2+ to alter the inhibition of [125I]iododizocilpine by arcaine gave pA2 values of 5.41, 4.47, and 4.93, corresponding to EC50 concentrations of 3.9, 34.7, and 12.0 microM, respectively, suggesting that physiological concentrations of Mg2+ may occupy the polyamine site. These results demonstrate that [125I]iododizocilpine is a useful probe for the NMDA receptor. Moreover, its high specific activity and relative insensitivity to the inhibitory actions of divalent cations should make [125I]iododizocilpine a valuable ligand for the study of NMDA receptors in intact cellular systems. 相似文献
20.
Gloria Gonzalez-Calero Mairena Martin Ana Cubero Antonio Andrés 《Journal of neurochemistry》1990,55(1):106-113
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein. 相似文献