首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Family-based study design will play a key role in identifying rare causal variants, because rare causal variants can be enriched in families with multiple affected subjects. Furthermore, different from population-based studies, family studies are robust to bias induced by population substructure. It is well known that rare causal variants are difficult to detect from single-locus tests. Therefore, burden tests and non-burden tests have been developed, by combining signals of multiple variants in a chromosomal region or a functional unit. This inevitably incorporates some neutral variants into the test statistics, which can dilute the power of statistical methods. To guard against the noise caused by neutral variants, we here propose an ‘adaptive combination of P-values method’ (abbreviated as ‘ADA’). This method combines per-site P-values of variants that are more likely to be causal. Variants with large P-values (which are more likely to be neutral variants) are discarded from the combined statistic. In addition to performing extensive simulation studies, we applied these tests to the Genetic Analysis Workshop 17 data sets, where real sequence data were generated according to the 1000 Genomes Project. Compared with some existing methods, ADA is more robust to the inclusion of neutral variants. This is a merit especially when dichotomous traits are analyzed. However, there are some limitations for ADA. First, it is more computationally intensive. Second, pedigree structures and founders'' sequence data are required for the permutation procedure. Third, unrelated controls cannot be included. We here show that, for family-based studies, the application of ADA is limited to dichotomous trait analyses with full pedigree information.  相似文献   

2.
Genetic variation in human disease and a new role for copy number variants   总被引:3,自引:0,他引:3  
While complex diseases, such as inflammatory bowel disease, do not follow distinctive Mendelian inheritance patterns, there is now considerable evidence from twin and pedigree studies to show that there are significant genetic influences in the development of many such diseases. In times past, this type of information was considered to be interesting, and was used mainly to alert other members of the families that they may also be at increased risk of developing the disease. However, with the ability to evaluate the genetic basis of common disease, this information will have important consequences for the diagnosis, prevention and treatment of the disorder. The genetic basis for common disease is likely to be more complicated than we had previously anticipated, since we now recognise epigenetic causes of disease, and other subtle gene regulatory mechanisms. Copy number variants have been highlighted in this review, as being a phenomenon that we have known about for a long time, but that has not previously been clearly associated with human disease. As complex disease is related to changes in gene expression, any variation in the human genome that alters gene expression is now a candidate for being involved in the disease process.  相似文献   

3.
Simulation of pedigree genotypes by random walks.   总被引:11,自引:10,他引:1       下载免费PDF全文
A random walk method, based on the Metropolis algorithm, is developed for simulating the distribution of trait and linkage marker genotypes in pedigrees where trait phenotypes are already known. The method complements techniques suggested by Ploughman and Boehnke and by Ott that are based on sequential sampling of genotypes within a pedigree. These methods are useful for estimating the power of linkage analysis before complete study of a pedigree is undertaken. We apply the random walk technique to a partially penetrant disease, schizophrenia, and to a recessive disease, ataxia-telangiectasia. In the first case we show that accessory phenotypes with higher penetrance than that of schizophrenia itself may be crucial for effective linkage analysis, and in the second case we show that impressionistic selection of informative pedigrees may be misleading.  相似文献   

4.

Background

Both common and rare genetic variants have been shown to contribute to the etiology of complex diseases. Recent genome-wide association studies (GWAS) have successfully investigated how common variants contribute to the genetic factors associated with common human diseases. However, understanding the impact of rare variants, which are abundant in the human population (one in every 17 bases), remains challenging. A number of statistical tests have been developed to analyze collapsed rare variants identified by association tests. Here, we propose a haplotype-based approach. This work inspired by an existing statistical framework of the pedigree disequilibrium test (PDT), which uses genetic data to assess the effects of variants in general pedigrees. We aim to compare the performance between the haplotype-based approach and the rare variant-based approach for detecting rare causal variants in pedigrees.

Results

Extensive simulations in the sequencing setting were carried out to evaluate and compare the haplotype-based approach with the rare variant methods that drew on a more conventional collapsing strategy. As assessed through a variety of scenarios, the haplotype-based pedigree tests had enhanced statistical power compared with the rare variants based pedigree tests when the disease of interest was mainly caused by rare haplotypes (with multiple rare alleles), and vice versa when disease was caused by rare variants acting independently. For most of other situations when disease was caused both by haplotypes with multiple rare alleles and by rare variants with similar effects, these two approaches provided similar power in testing for association.

Conclusions

The haplotype-based approach was designed to assess the role of rare and potentially causal haplotypes. The proposed rare variants-based pedigree tests were designed to assess the role of rare and potentially causal variants. This study clearly documented the situations under which either method performs better than the other. All tests have been implemented in a software, which was submitted to the Comprehensive R Archive Network (CRAN) for general use as a computer program named rvHPDT.  相似文献   

5.
Massively Parallel Sequencing (MPS) allows sequencing of entire exomes and genomes to now be done at reasonable cost, and its utility for identifying genes responsible for rare Mendelian disorders has been demonstrated. However, for a complex disease, study designs need to accommodate substantial degrees of locus, allelic, and phenotypic heterogeneity, as well as complex relationships between genotype and phenotype. Such considerations include careful selection of samples for sequencing and a well-developed strategy for identifying the few "true" disease susceptibility genes from among the many irrelevant genes that will be found to harbor rare variants. To examine these issues we have performed simulation-based analyses in order to compare several strategies for MPS sequencing in complex disease. Factors examined include genetic architecture, sample size, number and relationship of individuals selected for sequencing, and a variety of filters based on variant type, multiple observations of genes and concordance of genetic variants within pedigrees. A two-stage design was assumed where genes from the MPS analysis of high-risk families are evaluated in a secondary screening phase of a larger set of probands with more modest family histories. Designs were evaluated using a cost function that assumes the cost of sequencing the whole exome is 400 times that of sequencing a single candidate gene. Results indicate that while requiring variants to be identified in multiple pedigrees and/or in multiple individuals in the same pedigree are effective strategies for reducing false positives, there is a danger of over-filtering so that most true susceptibility genes are missed. In most cases, sequencing more than two individuals per pedigree results in reduced power without any benefit in terms of reduced overall cost. Further, our results suggest that although no single strategy is optimal, simulations can provide important guidelines for study design.  相似文献   

6.
An individual's disease risk is determined by the compounded action of both common variants, inherited from remote ancestors, that segregated within the population and rare variants, inherited from recent ancestors, that segregated mainly within pedigrees. Next-generation sequencing (NGS) technologies generate high-dimensional data that allow a nearly complete evaluation of genetic variation. Despite their promise, NGS technologies also suffer from remarkable limitations: high error rates, enrichment of rare variants, and a large proportion of missing values, as well as the fact that most current analytical methods are designed for population-based association studies. To meet the analytical challenges raised by NGS, we propose a general framework for sequence-based association studies that can use various types of family and unrelated-individual data sampled from any population structure and a universal procedure that can transform any population-based association test statistic for use in family-based association tests. We develop family-based functional principal-component analysis (FPCA) with or without smoothing, a generalized T(2), combined multivariate and collapsing (CMC) method, and single-marker association test statistics. Through intensive simulations, we demonstrate that the family-based smoothed FPCA (SFPCA) has the correct type I error rates and much more power to detect association of (1) common variants, (2) rare variants, (3) both common and rare variants, and (4) variants with opposite directions of effect from other population-based or family-based association analysis methods. The proposed statistics are applied to two data sets with pedigree structures. The results show that the smoothed FPCA has a much smaller p value than other statistics.  相似文献   

7.
Bhushan S  Perumal NB 《Cytokine》2012,57(1):107-112
Cytokines mediate crucial functions in innate and adaptive immunity. They play valuable roles in immune cell growth and lineage specification, and are associated with various disease pathologies. A large number of low, medium and high throughput studies have implicated association of single nucleotide polymorphisms (SNPs) in cytokine genes with diseases. A preponderance of such experiments has not shown any causality of an identified SNP to the associated disease. Instead, they have identified statistically significant SNP-disease associations; it is likely that some of these cytokine gene variants may directly or indirectly cause the disease phenotype(s). To fill this knowledge gap and derive study parameters for cytokine SNP-disease causality relationships, we have designed and developed the disease associated cytokine SNP database (DACS-DB). DACS-DB has data on 456 cytokine genes, approximately 63,000 SNPs, and 853 SNP-associated diseases. In DACS-DB, among other attributes, we present functional annotation, and heterozygosity allele frequency for the SNPs, and literature-validated SNP association for diseases. Users of the DB can run queries such as the ones to find disease-associated SNPs in a cytokine gene, and all the SNPs involved in a disease. We have developed a web front end (available at http://www.iupui.edu/~cytosnp) to disseminate this information for immunologists, biomedical researchers, and other interested biological researchers. Since there is no such comprehensive collection of disease associated cytokine SNPs, this DB will be vital to understand the role of cytokine SNPs as markers in disease, and more importantly, in causality to disease thus helping to identify drug targets for common inflammatory diseases.  相似文献   

8.
Wijsman EM 《Human genetics》2012,131(10):1555-1563
Rare variation is the current frontier in human genetics. The large pedigree design is practical, efficient, and well-suited for investigating rare variation. In large pedigrees, specific rare variants that co-segregate with a trait will occur in sufficient numbers so that effects can be measured, and evidence for association can be evaluated, by making use of methods that fully use the pedigree information. Evidence from linkage analysis can focus investigation, both reducing the multiple testing burden and expanding the variants that can be evaluated and followed up, as recent studies have shown. The large pedigree design requires only a small fraction of the sample size needed to identify rare variants of interest in population-based designs, and many highly suitable, well-understood, and available statistical and computational tools already exist. Samples consisting of large pedigrees with existing rich phenotype and genome scan data should be prime candidates for high-throughput sequencing in the search of the determinants of complex traits.  相似文献   

9.
Sequencing studies have been discovering a numerous number of rare variants, allowing the identification of the effects of rare variants on disease susceptibility. As a method to increase the statistical power of studies on rare variants, several groupwise association tests that group rare variants in genes and detect associations between genes and diseases have been proposed. One major challenge in these methods is to determine which variants are causal in a group, and to overcome this challenge, previous methods used prior information that specifies how likely each variant is causal. Another source of information that can be used to determine causal variants is the observed data because case individuals are likely to have more causal variants than control individuals. In this article, we introduce a likelihood ratio test (LRT) that uses both data and prior information to infer which variants are causal and uses this finding to determine whether a group of variants is involved in a disease. We demonstrate through simulations that LRT achieves higher power than previous methods. We also evaluate our method on mutation screening data of the susceptibility gene for ataxia telangiectasia, and show that LRT can detect an association in real data. To increase the computational speed of our method, we show how we can decompose the computation of LRT, and propose an efficient permutation test. With this optimization, we can efficiently compute an LRT statistic and its significance at a genome-wide level. The software for our method is publicly available at http://genetics.cs.ucla.edu/rarevariants .  相似文献   

10.
Genomic variants such as Single Nucleotide Polymorphisms and animal pedigree are now used widely in routine genetic evaluations of livestock in many countries. The use of genomic information not only can be used to enhance the accuracy of prediction but also to verify pedigrees for animals that are extensively managed using natural mating and enabling multiple-sire mating groups to be used. By so doing, the rate of genetic gain is enhanced, and any bias associated with incorrect pedigrees is removed. This study used a set of 8 764 sheep genotypes to verify the pedigree based on both the conventional opposing homozygote method as well as a novel method when combined with the inclusion of the genomic relationship matrix (GRM). The genomic relationship coefficients between verified pairs of animals showed on average a relationship of 0.50 with parent, 0.25 with grandparent, 0.13 with great grandparent, 0.50 with full-sibling and 0.27 with half-sibling. Minimum obtained values from these verified pairs were then used as thresholds to determine the pedigree for unverified pairs of animals, to detect potential errors in the pedigree. Using a case study from a population partially genotyped UK sheep, the results from this study illustrate a powerful way to resolve parentage inconsistencies, when combining the conventional ‘opposing homozygote’ method using genomic information together with GRM for pedigree checking. In this way, previously undetected pedigree errors can be resolved.  相似文献   

11.
JRGarbe YDa 《遗传学报》2003,30(12):1193-1195
对于在遗传研究和家系研究中大的系谱结构图还很难分析。系谱的绘制通常是遗传性状的分析研究的第一步。系图可以反映整个群体的结构、每个个体之间的相互关系以及基因流的走向,便于理解遗传性状的本质。因为所用家系数目的增大和复杂性的增加,绘制1个清晰的系谱有时变得十分困难。因此开发了1种名为Pedigraph软件,可以解决这个问题。Pedigraph能够完成对于大的复杂的群体的系谱绘制工作,并能进行相应的系谱分析。初步的测试表明这个软件在研究动植物的遗传育种中是1个有用的工具,同时它也可以用于人类的群体和历史等方面的研究。  相似文献   

12.
Errors in genotype calling can have perverse effects on genetic analyses, confounding association studies, and obscuring rare variants. Analyses now routinely incorporate error rates to control for spurious findings. However, reliable estimates of the error rate can be difficult to obtain because of their variance between studies. Most studies also report only a single estimate of the error rate even though genotypes can be miscalled in more than one way. Here, we report a method for estimating the rates at which different types of genotyping errors occur at biallelic loci using pedigree information. Our method identifies potential genotyping errors by exploiting instances where the haplotypic phase has not been faithfully transmitted. The expected frequency of inconsistent phase depends on the combination of genotypes in a pedigree and the probability of miscalling each genotype. We develop a model that uses the differences in these frequencies to estimate rates for different types of genotype error. Simulations show that our method accurately estimates these error rates in a variety of scenarios. We apply this method to a dataset from the whole-genome sequencing of owl monkeys (Aotus nancymaae) in three-generation pedigrees. We find significant differences between estimates for different types of genotyping error, with the most common being homozygous reference sites miscalled as heterozygous and vice versa. The approach we describe is applicable to any set of genotypes where haplotypic phase can reliably be called and should prove useful in helping to control for false discoveries.  相似文献   

13.
We describe three statistical results that we have found to be useful in case-control genetic association testing. All three involve combining the discovery of novel genetic variants, usually by sequencing, with genotyping methods that recognize previously discovered variants. We first consider expanding the list of known variants by concentrating variant-discovery in cases. Although the naive inclusion of cases-only sequencing data would create a bias, we show that some sequencing data may be retained, even if controls are not sequenced. Furthermore, for alleles of intermediate frequency, cases-only sequencing with bias-correction entails little if any loss of power, compared to dividing the same sequencing effort among cases and controls. Secondly, we investigate more strongly focused variant discovery to obtain a greater enrichment for disease-related variants. We show how case status, family history, and marker sharing enrich the discovery set by increments that are multiplicative with penetrance, enabling the preferential discovery of high-penetrance variants. A third result applies when sequencing is the primary means of counting alleles in both cases and controls, but a supplementary pooled genotyping sample is used to identify the variants that are very rare. We show that this raises no validity issues, and we evaluate a less expensive and more adaptive approach to judging rarity, based on group-specific variants. We demonstrate the important and unusual caveat that this method requires equal sample sizes for validity. These three results can be used to more efficiently detect the association of rare genetic variants with disease.  相似文献   

14.
Background

Short-read resequencing of genomes produces abundant information of the genetic variation of individuals. Due to their numerous nature, these variants are rarely exhaustively validated. Furthermore, low levels of undetected variant miscalling will have a systematic and disproportionate impact on the interpretation of individual genome sequence information, especially should these also be carried through into in reference databases of genomic variation.

Results

We find that sequence variation from short-read sequence data is subject to recurrent-yet-intermittent miscalling that occurs in a sequence intrinsic manner and is very sensitive to sequence read length. The miscalls arise from difficulties aligning short reads to redundant genomic regions, where the rate of sequencing error approaches the sequence diversity between redundant regions. We find the resultant miscalled variants to be sensitive to small sequence variations between genomes, and thereby are often intrinsic to an individual, pedigree, strain or human ethnic group. In human exome sequences, we identify 2–300 recurrent false positive variants per individual, almost all of which are present in public databases of human genomic variation. From the exomes of non-reference strains of inbred mice, we identify 3–5000 recurrent false positive variants per mouse – the number of which increasing with greater distance between an individual mouse strain and the reference C57BL6 mouse genome. We show that recurrently miscalled variants may be reproduced for a given genome from repeated simulation rounds of read resampling, realignment and recalling. As such, it is possible to identify more than two-thirds of false positive variation from only ten rounds of simulation.

Conclusion

Identification and removal of recurrent false positive variants from specific individual variant sets will improve overall data quality. Variant miscalls arising are highly sequence intrinsic and are often specific to an individual, pedigree or ethnicity. Further, read length is a strong determinant of whether given false variants will be called for any given genome – which has profound significance for cohort studies that pool datasets collected and sequenced at different points in time.

  相似文献   

15.
Markov chain Monte Carlo (MCMC) has recently gained use as a method of estimating required probability and likelihood functions in pedigree analysis, when exact computation is impractical. However, when a multiallelic locus is involved, irreducibility of the constructed Markov chain, an essential requirement of the MCMC method, may fail. Solutions proposed by several researchers, which do not identify all the noncommunicating sets of genotypic configurations, are inefficient with highly polymorphic loci. This is a particularly serious problem in linkage analysis, because highly polymorphic markers are much more informative and thus are preferred. In the present paper, we describe an algorithm that finds all the noncommunicating classes of genotypic configurations on any pedigree. This leads to a more efficient method of defining an irreducible Markov chain. Examples, including a pedigree from a genetic study of familial Alzheimer disease, are used to illustrate how the algorithm works and how penetrances are modified for specific individuals to ensure irreducibility.  相似文献   

16.
In this work we develop a novel algorithm for reconstructing the genomes of ancestral individuals, given genotype or sequence data from contemporary individuals and an extended pedigree of family relationships. A pedigree with complete genomes for every individual enables the study of allele frequency dynamics and haplotype diversity across generations, including deviations from neutrality such as transmission distortion. When studying heritable diseases, ancestral haplotypes can be used to augment genome-wide association studies and track disease inheritance patterns. The building blocks of our reconstruction algorithm are segments of Identity-By-Descent (IBD) shared between two or more genotyped individuals. The method alternates between identifying a source for each IBD segment and assembling IBD segments placed within each ancestral individual. Unlike previous approaches, our method is able to accommodate complex pedigree structures with hundreds of individuals genotyped at millions of SNPs.We apply our method to an Old Order Amish pedigree from Lancaster, Pennsylvania, whose founders came to North America from Europe during the early 18th century. The pedigree includes 1338 individuals from the past 12 generations, 394 with genotype data. The motivation for reconstruction is to understand the genetic basis of diseases segregating in the family through tracking haplotype transmission over time. Using our algorithm thread, we are able to reconstruct an average of 224 ancestral individuals per chromosome. For these ancestral individuals, on average we reconstruct 79% of their haplotypes. We also identify a region on chromosome 16 that is difficult to reconstruct—we find that this region harbors a short Amish-specific copy number variation and the gene HYDIN. thread was developed for endogamous populations, but can be applied to any extensive pedigree with the recent generations genotyped. We anticipate that this type of practical ancestral reconstruction will become more common and necessary to understand rare and complex heritable diseases in extended families.  相似文献   

17.
Genome-wide association studies are routinely conducted to identify genetic variants that influence complex disorders. It is well known that failure to properly account for population or pedigree structure can lead to spurious association as well as reduced power. We propose a method, ROADTRIPS, for case-control association testing in samples with partially or completely unknown population and pedigree structure. ROADTRIPS uses a covariance matrix estimated from genome-screen data to correct for unknown population and pedigree structure while maintaining high power by taking advantage of known pedigree information when it is available. ROADTRIPS can incorporate data on arbitrary combinations of related and unrelated individuals and is computationally feasible for the analysis of genetic studies with millions of markers. In simulations with related individuals and population structure, including admixture, we demonstrate that ROADTRIPS provides a substantial improvement over existing methods in terms of power and type 1 error. The ROADTRIPS method can be used across a variety of study designs, ranging from studies that have a combination of unrelated individuals and small pedigrees to studies of isolated founder populations with partially known or completely unknown pedigrees. We apply the method to analyze two data sets: a study of rheumatoid arthritis in small UK pedigrees, from Genetic Analysis Workshop 15, and data from the Collaborative Study of the Genetics of Alcoholism on alcohol dependence in a sample of moderate-size pedigrees of European descent, from Genetic Analysis Workshop 14. We detect genome-wide significant association, after Bonferroni correction, in both studies.  相似文献   

18.
Previously we have conducted a genome-wide search for inflammatory bowel disease susceptibility loci in a large European cohort. Results from this study demonstrated suggestive evidence of linkage to loci at chromosomes 1q, 6p, and 10p and replicated linkages on chromosomes 12 and 16. Recently, NOD2/CARD15 on chromosome 16q12 has been found to be strongly associated with Crohn's disease. In order to determine if there are other loci in the genome that interact with the three associated functional variants in CARD15 (R702W, G908R, 1007fs), we have stratified our large inflammatory bowel disease genome scan cohort by dividing pedigrees into two groups stratified by CARD15 variant genotype. The two pedigree groups were analysed using non-parametric allele sharing methods. The group of pedigrees that contained one of the three CARD15 variants had two suggestive linkage results occurring in 6p (lod = 3.06 at D6S197, IBD phenotype) and 10p (lod=2.29 at D10S197, CD phenotype). In addition, at 16q12 where CARD15 is located, the original genome scan had a peak lod score of 2.18 at D16S415 (CD phenotype). The stratified pedigree cohort containing one of three CARD15 variants had a peak lod score of 0.90 at D16S415 (CD phenotype), accounting for approximately less than half of the genetic evidence for linkage at this locus. This result is in agreement with the existence of a substantial number of private variants at the NOD2/CARD15 locus. Interaction with NOD2/CARD15 needs to be considered in future gene identification efforts on chromosomes 6 and 10.  相似文献   

19.
Sul JH  Han B  He D  Eskin E 《Genetics》2011,188(1):181-188
The advent of next generation sequencing technologies allows one to discover nearly all rare variants in a genomic region of interest. This technological development increases the need for an effective statistical method for testing the aggregated effect of rare variants in a gene on disease susceptibility. The idea behind this approach is that if a certain gene is involved in a disease, many rare variants within the gene will disrupt the function of the gene and are associated with the disease. In this article, we present the rare variant weighted aggregate statistic (RWAS), a method that groups rare variants and computes a weighted sum of differences between case and control mutation counts. We show that our method outperforms the groupwise association test of Madsen and Browning in the disease-risk model that assumes that each variant makes an equally small contribution to disease risk. In addition, we can incorporate prior information into our method of which variants are likely causal. By using simulated data and real mutation screening data of the susceptibility gene for ataxia telangiectasia, we demonstrate that prior information has a substantial influence on the statistical power of association studies. Our method is publicly available at http://genetics.cs.ucla.edu/rarevariants.  相似文献   

20.
Although many methods are available to test sequence variants for association with complex diseases and traits, methods that specifically seek to identify causal variants are less developed. Here we develop and evaluate a Bayesian hierarchical regression method that incorporates prior information on the likelihood of variant causality through weighting of variant effects. By simulation studies using both simulated and real sequence variants, we compared a standard single variant test for analyzing variant-disease association with the proposed method using different weighting schemes. We found that by leveraging linkage disequilibrium of variants with known GWAS signals and sequence conservation (phastCons), the proposed method provides a powerful approach for detecting causal variants while controlling false positives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号