首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol is a crucial part of excitation–contraction (E‐C) coupling. Excitation–contraction uncoupling, a deficit in Ca2+ release from the SR, is thought to be responsible for at least some of the loss in specific force observed in aging skeletal muscle. Excitation–contraction uncoupling may be caused by alterations in expression of the voltage‐dependent calcium channel α1s (CaV1.1) and β1a (CaVβ1a) subunits, both of which are necessary for E‐C coupling to occur. While previous studies have found CaV1.1 expression declines in old rodents, CaVβ1a expression has not been previously examined in aging models. Western blot analysis shows a substantial increase of CaVβ1a expression over the full lifespan of Friend Virus B (FVB) mice. To examine the specific effects of CaVβ1a overexpression, a CaVβ1a‐YFP plasmid was electroporated in vivo into young animals. The resulting increase in expression of CaVβ1a corresponded to decline of CaV1.1 over the same time period. YFP fluorescence, used as a measure of CaVβ1a‐YFP expression in individual fibers, also showed an inverse relationship with charge movement, measured using the whole‐cell patch‐clamp technique. Specific force was significantly reduced in young CaVβ1a‐YFP electroporated muscle fibers compared with sham‐electroporated, age‐matched controls. siRNA interference of CaVβ1a in young muscles reduced charge movement, while charge movement in old was restored to young control levels. These studies imply CaVβ1a serves as both a positive and negative regulator CaV1.1 expression, and that endogenous overexpression of CaVβ1a during old age may play a role in the loss of specific force.  相似文献   

2.
The coupling mechanism of the gamma-aminobutyric acid (GABA)B receptor, one of the subtypes of GABA receptors, with calcium ion channel and GTP-binding protein was examined using a crude synaptic membrane (P2) fraction from the bovine cerebral cortex and a fraction solubilized with sodium deoxycholate. In the P2 fraction, [3H]GABA binding to the GABAB receptor was increased significantly by the addition of calcium ion, and this enhancement was accentuated further by calcium ion channel blockers such as nicardipine and diltiazem. In contrast, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, did not affect on the calcium ion-induced enhancement of GABAB receptor binding. These results suggest that the GABAB receptor may be functionally coupled with the calcium ion channel, which exhibits an inhibitory modulation against the receptor. On the other hand, GABAB receptor binding, which was noncompetitively inhibited by guanine nucleotides such as GTP, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanosine 5'-(beta, gamma-imido)triphosphate [Gpp(NH)p], and GDP, was competitively inhibited by (-)-baclofen. Although the affinity of (-)-baclofen for the GABAB receptor was decreased in the presence of GTP, pretreatment of the P2 fraction with islet-activating protein (IAP) eliminated the effect of GTP. In addition, GABA and (-)-baclofen induced an increase of GTPase activity in the P2 fraction, and this increase was also eliminated by treatment with IAP. These results suggest that the GABAB receptor may also be functionally coupled with IAP-sensitive GTP-binding protein. Treatment of the P2 fraction with sodium deoxycholate resulted in the highest solubilization of GABAB receptor among various detergents examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: A primary histopathological feature of Alzheimer's disease is the accumulation of β-amyloid (Aβ) in the brain of afflicted individuals. However, Aβ is produced continuously as a soluble protein in healthy individuals where it is detected in serum and CSF, suggesting the existence of cellular clearance mechanisms that normally prevent its accumulation and aggregation. Here, we demonstrate that Aβ forms stable complexes with activated α2-macroglobulin (α2M), a physiological ligand for the low-density lipoprotein receptor-related protein (LRP) that is abundantly expressed in the CNS. These α2M/125I-Aβ complexes are immunoreactive with both anti-Aβ and anti-α2M IgG and are stable under various pH conditions, sodium dodecyl sulfate, reducing agents, and boiling. We demonstrate that α2M/125I-Aβ complexes can be degraded by glioblastoma cells and fibroblasts via LRP, because degradation is partially inhibited by receptor-associated protein (RAP), an antagonist of ligand interactions with LRP. In contrast, the degradation of free 125I-Aβ is not inhibited by RAP and thus must be mediated via an LRP-independent pathway. These results suggest that LRP can function as a clearance receptor for Aβ via a physiological ligand.  相似文献   

4.
Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca2+ entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because O-GlcNAcylation plays pivotal roles in various cellular function, we examined the effect of fluctuation in STIM1 O-GlcNAcylation on SOCE activity. We found that both increase and decrease in STIM1 O-GlcNAcylation impaired SOCE activity. To determine the molecular basis, we established STIM1-knockout HEK293 (STIM1-KO-HEK) cells using the CRISPR/Cas9 system and transfected STIM1 WT (STIM1-KO-WT-HEK), S621A (STIM1-KO-S621A-HEK), or T626A (STIM1-KO-T626A-HEK) cells. Using these cells, we examined the possible O-GlcNAcylation sites of STIM1 to determine whether the sites were O-GlcNAcylated. Co-immunoprecipitation analysis revealed that Ser621 and Thr626 were O-GlcNAcylated and that Thr626 was O-GlcNAcylated in the steady state but Ser621 was not. The SOCE activity in STIM1-KO-S621A-HEK and STIM1-KO-T626A-HEK cells was lower than that in STIM1-KO-WT-HEK cells because of reduced phosphorylation at Ser621. Treatment with the O-GlcNAcase inhibitor Thiamet G or O-GlcNAc transferase (OGT) transfection, which increases O-GlcNAcylation, reduced SOCE activity, whereas treatment with the OGT inhibitor ST045849 or siOGT transfection, which decreases O-GlcNAcylation, also reduced SOCE activity. Decrease in SOCE activity due to increase and decrease in O-GlcNAcylation was attributable to reduced phosphorylation at Ser621. These data suggest that both decrease in O-GlcNAcylation at Thr626 and increase in O-GlcNAcylation at Ser621 in STIM1 lead to impairment of SOCE activity through decrease in Ser621 phosphorylation. Targeting STIM1 O-GlcNAcylation could provide a promising treatment option for the related diseases, such as neurodegenerative diseases.  相似文献   

5.
Abstract: An analogue of colchicine,β-lumicolchicine, does not bind tubulin or disrupt microtubules. However, this compound is not pharmacologically completely inactive. β-Lumicolchicine was found to competitively inhibit [3H]flunitrazepam binding and to enhance muscimol-stimulated 36Cr-uptake in mouse cerebral cortical microsacs. It also markedly potentiated GABA responses in Xenopusoocytes expressing human α1β2γ2S, but not α1β2, GABAA receptor subunits; this potentiation was reversed by the benzodiazepine receptor antagonist flumazenil. These results strongly suggest a direct effect of β-Lumicolchicine on the GABAA receptor/chloride channel complex and caution that it possesses pharmacological effects, despite its inability to disrupt microtubules. Furthermore, β-Lumicolchicine is structurally unrelated to benzodiazepines or quinolines and may provide a novel approach to the synthesis of ligands for this receptor.  相似文献   

6.
7.
Pressure overload-induced cardiac hypertrophy occurs in response to chronic blood pressure increase, and dysfunction of CaV1.2 calcium channel involves in cardiac hypertrophic processes by perturbing intracellular calcium concentration ([Ca2+]i) and calcium-dependent signaling. As a carbohydrate-binding protein, galectin-1 (Gal-1) is found to bind with CaV1.2 channel, which regulates vascular CaV1.2 channel functions and blood pressure. However, the potential roles of Gal-1 in cardiac CaV1.2 channel (CaV1.2CM) and cardiomyocyte hypertrophy remain elusive. By whole-cell patch clamp, we find Gal-1 decreases the ICa,L with or without isoproterenol (ISO) application by reducing the channel membrane expression in neonatal rat ventricular myocytes (NRVMs). Moreover, Gal-1 could inhibit the current densities of CaV1.2CM by an alternative exon 9*-dependent manner in heterologously expressed HEK293 cells. Of significance, overexpression of Gal-1 diminishes ISO or KCl-induced [Ca2+]i elevation and attenuates ISO-induced hypertrophy in NRVMs. Mechanistically, Gal-1 decreases the ISO or Bay K8644-induced phosphorylation of intracellular calcium-dependent signaling proteins δCaMKII and HDAC4, and inhibits ISO-triggered translocation of HDAC4 in NRVMs. Pathologically, we observe that the expressions of Gal-1 and CaV1.2E9* channels are synchronously increased in rat hypertrophic cardiomyocytes and hearts. Taken together, our study indicates that Gal-1 reduces the channel membrane expression to inhibit the currents of CaV1.2CM in a splice-variant specific manner, which diminishes [Ca2+]i elevation, and attenuates cardiomyocyte hypertrophy by inhibiting the phosphorylation of δCaMKII and HDAC4. Furthermore, our work suggests that dysregulated Gal-1 and CaV1.2 alternative exon 9* might be attributed to the pathological processes of cardiac hypertrophy, and provides a potential anti-hypertrophic target in the heart.  相似文献   

8.
9.
Abstract: δ-Receptor agonists induce a concentration-dependent increase in intracellular calcium concentration ([Ca2+]i) in ND8-47 cells by activating dihydropyridine-sensitive Ca2+ channels. The role of G proteins in transducing the opioid effect has been studied. Pretreatment of cells with pertussis toxin (100 ng/ml, 24 h) almost completely blocked [d -Ser2,Leu5]enkephalin-Thr (DSLET)-induced increase in [Ca2+]i. Cholera toxin (10 nM, 24 h) had no effect on DSLET-induced response. Pretreatment of the cells with 1 µM DSLET for 1 h resulted in a 30% inhibition of DSLET-induced increase in [Ca2+]i and a 78% inhibition after exposure for 24 h. After 1 h of exposure to DSLET, there was a decrease in agonist affinity with no significant changes in receptor density. Cells exposed to 1 µM DSLET for 24 h demonstrate a nearly 90% decrease in [3H]diprenorphine binding, with a decrease in affinity for agonist at the remaining binding sites. G protein subunits αi2, αi3, αs, and αq were detected in ND8-47 cell membranes by western blot; αo and αi1 were not present. Chronic DSLET treatment had no significant effect on the quantity of each of the α-subunits. These results suggest that the DSLET-induced increase in [Ca2+]i is mediated through pertussis toxin-sensitive G proteins (probably Gi2 or Gi3) and the attenuation of this response in chronically treated cells is associated with a relatively rapid reduction in receptor affinity to DSLET and a slow reduction in receptor density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号