首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anchoring of canine linkage groups with chromosome-specific markers   总被引:7,自引:0,他引:7  
A high-resolution genetic map with polymorphic markers spaced frequently throughout the genome is a key resource for identifying genes that control specific traits or diseases. The lack of rigorous selection against genetic disorders has resulted in many breeds of dog suffering from a very high frequency of genetic diseases, which tend to be breed-specific and usually inherited as autosomal recessive or apparently complex genetic traits. Many of these closely resemble human genetic disorders in their clinical and pathologic features and are likely to be caused by mutations in homologous genes. To identify loci important in canine disease genes, as well as traits associated with morphological and behavioral variation, we are developing a genetic map of the canine genome. Here we report on an updated version of the canine linkage map, which includes 341 mapped markers distributed over the X and 37 autosomal linkage groups. The average distance between markers on the map is 9.0 cM, and the linkage groups provide estimated coverage of over 95% of the genome. Fourteen linkage groups contain either gene-associated or anonymous markers localized to cosmids that have been assigned to specific canine chromosomes by FISH. These 14 linkage groups contain 150 microsatellite markers and allow us to assign 40% of the linkage groups to specific canine chromosomes. This new version of the map is of sufficient density and characterization to initiate mapping of traits of interest. Received: 23 February 1999 / Accepted: 28 April 1999  相似文献   

2.
A canine integrated linkage-radiation map has been recently constructed by using microsatellite markers. This map, with a good coverage of the canine genome, allows for a genome-wide search for the extent and distribution of linkage disequilibrium derived from linkage and evolutionary forces. In this study, we genotyped an outbred pedigree between Labrador retriever and Greyhound breeds with a set of microsatellite markers (240) from the canine linkage map. Linkage disequilibrium was measured between all syntenic and nonsyntenic marker pairs. Analysis of syntenic pairs revealed a significant correlation (–0.229, P < 0.001) between linkage disequilibrium and genetic distance (log transformed). Significant linkage disequilibria were observed more frequently between syntenic pairs spaced <40 cM than those paced >40 cM. There is a clear trend for linkage disequilibrium to decline with marker distance. From our results, a genome-wide screen with markers at low to moderate density (1–2 per 10 cM) should take full advantage of linkage disequilibrium for quantitative trait locus mapping in dogs. This study supports the appropriateness of linkage disequilibrium analysis to detect and map quantitative trait loci underlying complex traits in dogs.  相似文献   

3.
Recent advances in mapping the canine genome have led to an increase in the number of linkage studies aimed at dissecting the genetic causes of many hereditary diseases that affect the domestic dog. The first step in developing molecular tools for a whole genome scan was the characterization of a set of microsatellite markers, termed minimal screening set 1 (MSS1), that provided an estimated coverage of 10 cM. A limiting factor in use of the MSS1 is not all of the 172 MSS1 markers have been localized to specific chromosomes. Seventy-five of the markers were positioned on a total of 15 chromosomes with the original publication of the MSS1. The localization based on linkage data of 14 additional MSS1 markers to chromosomes using CRIMAP v. 2.4 to build a linkage map of 113 MSS1 markers that were polymorphic in a kindred of Dalmatians is reported here.  相似文献   

4.
An integrated linkage-radiation hybrid map of the canine genome   总被引:12,自引:0,他引:12  
Purebred dogs are a unique resource for dissecting the molecular basis of simple and complex genetic diseases and traits. As a result of strong selection for physical and behavioral characteristics among the 300 established breeds, modern dogs are characterized by high levels of interbreed variation, complemented by significant intrabreed homogeneity. A high-resolution map of the canine genome is necessary to exploit the mapping power of this unusual resource. We describe here the integration of an expanded canine radiation hybrid map, comprised of 600 markers, with the latest linkage map of 341 markers, to generate a map of 724 markers—the densest map of the canine genome described to date. Through the inclusion of 217 markers on both the linkage and RH maps, the 77 RH groups are reduced to 44 syntenic groups, thus providing comprehensive coverage of most of the canine genome. Received: 10 June 1999 / Accepted: 23 September 1999  相似文献   

5.
70个水稻微卫星标记染色体位置的更正   总被引:1,自引:0,他引:1  
微卫星标记(SSR)因其操作简单和稳定可靠的特点而成为一种重要的分子标记,被广泛应用于遗传作图和种质鉴定等方面。但其在染色体上位置的正确性将直接影响到基因定位的正确性和后续研究的方向。利用美国国家生物信息技术中心(NCBI)网站的Blast程序,将2740个SSR标记的前后引物序列与水稻粳稻品种日本晴基因组进行比对,共发现70个标记位于另一条染色体,对这70个标记重新锚定的染色体进行了更正。这将有助于今后水稻分子标记遗传连锁图的正确构建。  相似文献   

6.
A first-generation genetic linkage map of the baboon (Papio hamadryas) genome was developed for use in biomedical and evolutionary genetics. Pedigreed baboons (n = 694) were selected from the breeding colony maintained by the Southwest Foundation for Biomedical Research. To facilitate comparison with the human genome, the baboon linkage map consists primarily of human microsatellite loci amplified using published human PCR primers. Genotypes for 325 human microsatellites and 6 novel baboon microsatellites were used in linkage analyses performed with the MultiMap expert system. The resulting sex-averaged meiotic recombination map covers all 20 baboon autosomes, with average spacing among loci of 7.2 cM. Direct comparison among homologous (orthologous) loci reveals that, for 7 human autosomes, locus order is conserved between humans and baboons. For the other 15 autosomes, one or more rearrangements distinguish the two genomes. The total centimorgan distances among homologous markers are 28.0% longer in the human genome than in the baboon, suggesting that rates of recombination may be higher in humans. This baboon linkage map is the first reported for any nonhuman primate species and creates opportunities for mapping quantitative trait loci in baboons, as well as for comparative evolutionary analyses of genome structure.  相似文献   

7.
Modern dog breeds possess large numbers of genetic diseases for which there are currently few candidate genes or diagnostic tests. Linkage of a microsatellite marker to a disease phenotype is often the only available tool to aid in the development of screening tests for disease carriers. Detection of linkage to a specific disease phenotype requires screening of large numbers of markers across known affected and unaffected animals. To establish high throughput genome scanning this study placed 100 canine microsatellite markers, arranged by fragment size and fluorescent dye label, into 12 PCR multiplexed panels. The highest degree of multiplexing was 11 markers per panel while the lowest was five markers per panel; each panel was run in one gel lane on automated DNA sequencers. Selection of the markers was based upon chromosomal or linkage group locations, degree of polymorphism, PCR multiplex compatibility and ease of interpretation. The marker set has an average spacing of 22.25 centiMorgan (cM). Marker polymorphism was evaluated across 28 American Kennel Club (AKC) recognized breeds. The utility of buccal swab vs. blood samples was also validated in this study as all template DNA was derived from swabs obtained and submitted by participating dog breeders and owners. The PCR multiplexed microsatellite panels and sampling method described in this report will provide investigators with a cost effective and expedient means of pursuing linkage studies of specific canine genetic diseases.  相似文献   

8.
《Animal biotechnology》2013,24(2):223-235
ABSTRACT

Modern dog breeds possess large numbers of genetic diseases for which there are currently few candidate genes or diagnostic tests. Linkage of a microsatellite marker to a disease phenotype is often the only available tool to aid in the development of screening tests for disease carriers. Detection of linkage to a specific disease phenotype requires screening of large numbers of markers across known affected and unaffected animals. To establish high throughput genome scanning this study placed 100 canine microsatellite markers, arranged by fragment size and fluorescent dye label, into 12 PCR multiplexed panels. The highest degree of multiplexing was 11 markers per panel while the lowest was five markers per panel; each panel was run in one gel lane on automated DNA sequencers. Selection of the markers was based upon chromosomal or linkage group locations, degree of polymorphism, PCR multiplex compatibility and ease of interpretation. The marker set has an average spacing of 22.25?centiMorgan (cM). Marker polymorphism was evaluated across 28 American Kennel Club (AKC) recognized breeds. The utility of buccal swab vs. blood samples was also validated in this study as all template DNA was derived from swabs obtained and submitted by participating dog breeders and owners. The PCR multiplexed microsatellite panels and sampling method described in this report will provide investigators with a cost effective and expedient means of pursuing linkage studies of specific canine genetic diseases.  相似文献   

9.
Abstract Maps of the canine genome are now developing rapidly. Most of the markers on the current integrated canine radiation hybrid/genetic linkage/cytogenetic map are highly polymorphic microsatellite (type II) markers that are very useful for mapping disease loci. However, there is still an urgent need for the mapping of gene-based (type I) markers that are required for comparative mapping, as well as identifying candidate genes for disease loci that have been genetically mapped. We constructed an adult brain cDNA library as a resource to increase the number of gene-based markers on the canine genome map. Eighty-one percent of the 2700 sequenced expressed sequence tags (ESTs) represented unique sequences. The canine brain ESTs were compared with sequences in public databases to identify putative canine orthologs of human genes. One hundred nine of the canine ESTs were mapped on the latest canine radiation hybrid (RH) panel to determine the location of the respective canine gene. The addition of these new gene-based markers revealed three conserved segments (CS) between human and canine genomes previously detected by fluorescence in situ hybridization (FISH), but not by RH mapping. In addition, five new CS between dog and human were identified that had not been detected previously by RH mapping or FISH. This work has increased the number of gene-based markers on the canine RH map by approximately 30% and indicates the benefit to be gained by increasing the gene content of the current canine comparative map.  相似文献   

10.
High throughput genotyping technologies.   总被引:4,自引:0,他引:4  
A comprehensive genetic map containing several hundred microsatellite markers resulted from a large microsatellite mapping project. This was the first real study that introduced high throughput methods to the genetic community. This map and the concurrent technological advances, which will briefly be reviewed, led to further numerous mapping investigations of simple and complex diseases. The annotated draft sequence of approximately three billion base pairs (bp) of the human genome has been completed much sooner than many imagined, due to considerable technological advancements and the international enterprise that resulted. This was a major development for the genetics community, but is only the precursor to the next phase of studying and understanding the variation within the human genome. The awareness of the differences may help us understand the effects on the genetics of the variation between individuals and disease. It is these variations at the nucleotide level that determine the physiological differences, or phenotypes of each individual, including all biological functions at the cellular and body level. Single nucleotide polymorphisms (SNPs) will provide the next high density map, and be the genetic tool to study these genetic variations. There are many sources of SNPs and exhaustive numbers of methods of SNP detection to be considered. The focus in this paper will be on the merits of selected, varied SNP typing methodologies that are emerging to genotype many individuals with the required huge number of SNPs to make the study of complex diseases and pharmacogenomics a practical and economically viable option.  相似文献   

11.
A Linkage Map of the Canine Genome   总被引:2,自引:0,他引:2  
A genetic linkage map of the canine genome has been developed by typing 150 microsatellite markers using 17 three-generation pedigrees, composed of 163 F2individuals. One hundred and thirty-nine markers were linked to at least one other marker with a lod score ≥ 3.0, identifying 30 linkage groups. The largest chromosome had 9 markers spanning 106.1 cM. The average distance between markers was 14.03 cM, and the map covers an estimated 2073 cM. Eleven markers were informative on the mapping panel, but were unlinked to any other marker. These likely represent single markers located on small, distinct canine chromosomes. This map will be the initial resource for mapping canine traits of interest and serve as a foundation for development of a comprehensive canine genetic map.  相似文献   

12.
L. Cheng  L. Liu  X. Yu  D. Wang  J. Tong 《Animal genetics》2010,41(2):191-198
Common carp (Cyprinus carpio) is an important fish for aquaculture, but genomics of this species is still in its infancy. In this study, a linkage map of common carp based on Amplified Fragment Length Polymorphism (AFLP) and microsatellite (SSR) markers has been generated using gynogenetic haploids. Of 926 markers genotyped, 151 (149 AFLPs, two SSRs) were distorted and eliminated from the linkage analyses. A total of 699 AFLP and 20 microsatellite (SSR) markers were assigned to the map, which comprised 64 linkage groups and covered 5506.9 cM Kosambi, with an average interval distance of 7.66 cM Kosambi. The normality tests on interval map distances showed a non‐normal marker distribution. Visual inspection of the map distance distribution histogram showed a cluster of interval map distances on the left side of the chart, which suggested the occurrence of AFLP marker clusters. On the other hand, the lack of an obvious cluster on the right side showed that there were a few big gaps which need more markers to bridge. The correlation analysis showed a highly significant relatedness between the length of linkage group and the number of markers, indicating that the AFLP markers in this map were randomly distributed among different linkage groups. This study is helpful for research into the common carp genome and for further studies of genetics and marker‐assisted breeding in this species.  相似文献   

13.
We report construction of second-generation integrated genetic linkage and radiation hybrid (RH) maps in the domestic cat (Felis catus) that exhibit a high level of marker concordance and provide near-full genome coverage. A total of 864 markers, including 585 coding loci (type I markers) and 279 polymorphic microsatellite loci (type II markers), are now mapped in the cat genome. We generated the genetic linkage map utilizing a multigeneration interspecies backcross pedigree between the domestic cat and the Asian leopard cat (Prionailurus bengalensis). Eighty-one type I markers were integrated with 247 type II markers from a first-generation map to generate a map of 328 loci (320 autosomal and 8 X-linked) distributed in 47 linkage groups, with an average intermarker spacing of 8 cM. Genome coverage spans approximately 2,650 cM, allowing an estimate for the genetic length of the sex-averaged map as 3,300 cM. The 834-locus second-generation domestic cat RH map was generated from the incorporation of 579 type I and 255 type II loci. Type I markers were added using targeted selection to cover either genomic regions underrepresented in the first-generation map or to refine breakpoints in human/feline synteny. The integrated linkage and RH maps reveal approximately 110 conserved segments ordered between the human and feline genomes, and provide extensive anchored reference marker homologues that connect to the more gene dense human and mouse sequence maps, suitable for positional cloning applications.  相似文献   

14.
Second‐generation, sex‐specific genetic linkage maps were generated for the economically important estuarine‐dependent marine fish Sciaenops ocellatus (red drum). The maps were based on F1 progeny from each of two single‐pair mating families. A total of 237 nuclear‐encoded microsatellite markers were mapped to 25 linkage groups. The female map contained 226 markers, with a total length of 1270.9 centiMorgans (cM) and an average inter‐marker interval of 6.53 cM; the male map contained 201 markers, with a total length of 1122.9 cM and an average inter‐marker interval of 6.03 cM. The overall recombination rate was approximately equal in the two sexes (♀:♂ = 1.03:1). Recombination rates in a number of linkage intervals, however, differed significantly between the same sex in both families and between sexes within families. The former occurred in 2.4% of mapped intervals, while the latter occurred in 51.2% of mapped intervals. Sex‐specific recombination rates varied within chromosomes, with regions of both female‐biased and male‐biased recombination. Original clones from which the microsatellite markers were generated were compared with genome sequence data for the spotted green puffer, Tetraodon nigroviridis; a total of 43 matches were located in 17 of 21 chromosomes of T. nigroviridis, while seven matches were in unknown portions of the T. nigroviridis genome. The map for red drum provides a new, useful tool for aquaculture, population genetics, and comparative genomics of this economically important marine species.  相似文献   

15.
We have characterized a subset of 172 microsatellite markers from the canine map, termed 'Minimal Screening Set 1' (Canine MSS-1), which we propose be used for initial genome-wide genetic linkage studies. Three hierarchical criteria were used to select markers from the current meiotic linkage and radiation hybrid maps for MSS-1. Markers were selected that (1) provided as complete coverage as possible of the canine genome, (2) were highly informative, and (3) have been ordered in linkage groups with a high degree of statistical support. This resulting screening set spans all reported meiotic linkage and RH groups, leaving only 10 known gaps > or = 20 cM. The average polymorphic information content (PIC) value of markers tested is 0.74. Coverage estimates suggest 42% of the genome is within 5 cM of at least one marker in the minimal screening set, 77% of the genome is within 10 cM. This minimal mapping set therefore provides an efficient and cost effective way to begin screening pedigrees of interest for genetic linkage.  相似文献   

16.
In an effort to extend our understanding of the evolutionary relationship between the canine and human genomes, we have developed and positioned 52 new gene-associated polymorphic markers on the canine meiotic linkage map. Canine-specific PCR primers were developed from the consensus of published sequences of several mammalian genomes and were designed to span intronic regions, thus optimizing the probability that a polymorphic site was included. The resulting markers were analyzed on a panel of three-generation canine reference families and the data were incorporated into the current meiotic linkage map. The data were compared with those generated by three chromosome paint studies in an effort to understand the distribution and frequency of microrearrangements within the canine genome. Forty-eight of 52 genes map to a chromosomal region predicted to contain genes from the corresponding region of the human genome according to all published reciprocal chromosome paint studies. Meiotic linkage mapping data for three genes can be used to resolve discrepancies between the published reciprocal chromosome paint studies, and for an additional two genes, meiotic mapping data allow evolutionary breakpoints to be more precisely defined. We conclude that microrearrangements of evolutionarily conserved segments between the canine and human genomes are rare, occurring for less than 0.5% of gene data reported to date. In addition, we have found that the placement of genes on the meiotic linkage map is a useful mechanism for resolving discrepancies between existing data sets. Received: 7 February 2001 / Accepted: 9 May 2001  相似文献   

17.
The half-smooth tongue sole (Cynoglossus semilaevis, hereafter, “tongue sole”) is a marine flatfish with great commercial importance for fisheries and aquaculture in China. It has also been a promising model for the study of sex determination mechanisms in fish. Here, we report the construction of a genetic linkage map for the tongue sole, based on 137 markers including 103 AFLP markers, 33 microsatellite markers, and one female-specific DNA marker. Twenty-six linkage groups (LGs) were found. The total map length was 934.6 cM (Kosambi), with an average spacing of 8.4 cM, covering 64.4% of the estimated genome size. Furthermore, a female-specific SCAR marker, CseF-382, was mapped on LG5. This study represents the first genetic linkage map in the tongue sole. This map has great potential in the identification of quantitative traits loci and sex-related genes and marker-assisted selection in the tongue sole. Meanwhile, the new set of polymorphic microsatellite markers developed in this study is not only useful for genetic mapping but also of critical importance for studies on genetic diversity and broodstock management in tongue sole.  相似文献   

18.
A genetic and cytogenetic map for the duck (Anas platyrhynchos)   总被引:5,自引:0,他引:5  
Huang Y  Zhao Y  Haley CS  Hu S  Hao J  Wu C  Li N 《Genetics》2006,173(1):287-296
A genetic linkage map for the duck (Anas platyrhynchos) was developed within a cross between two extreme Peking duck lines by linkage analysis of 155 polymorphic microsatellite markers, including 84 novel markers reported in this study. A total of 115 microsatellite markers were placed into 19 linkage groups. The sex-averaged map spans 1353.3 cM, with an average interval distance of 15.04 cM. The male map covers 1415 cM, whereas the female map covers only 1387.6 cM. All of the flanking sequences of the 155 polymorphic loci--44 monomorphic loci and a further 41 reported microsatellite loci for duck--were blasted against the chicken genomic sequence, and corresponding orthologs were found for 49. To integrate the genetic and cytogenetic map of the duck genome, 28 BAC clones were screened from a chicken BAC library using the specific PCR primers and localized to duck chromosomes by FISH, respectively. Of 28 BAC clones, 24 were detected definitely on duck chromosomes. Thus, 11 of 19 linkage groups were localized to 10 duck chromosomes. This genetic and cytogenetic map will be helpful for the mapping QTL in duck for breeding applications and for conducting genomic comparisons between chicken and duck.  相似文献   

19.
A genetic linkage map is a powerful research tool for mapping traits of interest and is essential to understanding genome evolution. The aim of this study is to provide an expanded genetic linkage map of common carp to effectively carry out quantitative trait loci analysis and conduct comparative mapping analysis between lineages. Here, we constructed a genetic linkage map of common carp (Cyprinus carpio L.) using microsatellite and single-nucleotide polymorphism (SNP) markers in a 159 sibling family. A total of 246 microsatellites and 306 SNP polymorphic markers were genotyped in this family. Linkage analysis using JoinMap 4.0 organized 427 markers (186 microsatellites and 241 SNPs) to 50 linkage groups, ranging in size from 1.4 to 130.1 cM. Each group contained 2-30 markers. The linkage map covered a genetic distance of 2,039.2 cM and the average interval for markers within the linkage groups was approximately 6.4 cM. In addition, comparative genome analysis within five model teleost fish revealed a high percentage (74.7%) of conserved loci corresponding to zebrafish chromosomes. In most cases, each zebrafish chromosome comprised two common carp linkage groups. The comparative analysis also revealed independent chromosome rearrangements in common carp and zebrafish. The linkage map will be of great assistance in mapping genes of interest and serve as a reference to approach comparative mapping and enable further insights into the comprehensive investigations of genome evolution of common carp.  相似文献   

20.
Although linkage maps are important tools in evolutionary biology, their availability for wild populations is limited. The population of song sparrows (Melospiza melodia) on Mandarte Island, Canada, is among the more intensively studied wild animal populations. Its long‐term pedigree data, together with extensive genetic sampling, have allowed the study of a range of questions in evolutionary biology and ecology. However, the availability of genetic markers has been limited. We here describe 191 new microsatellite loci, including 160 high‐quality polymorphic autosomal, 7 Z‐linked and 1 W‐linked markers. We used these markers to construct a linkage map for song sparrows with a total sex‐averaged map length of 1731 cM and covering 35 linkage groups, and hence, these markers cover most of the 38–40 chromosomes. Female and male map lengths did not differ significantly. We then bioinformatically mapped these loci to the zebra finch (Taeniopygia guttata) genome and found that linkage groups were conserved between song sparrows and zebra finches. Compared to the zebra finch, marker order within small linkage groups was well conserved, whereas the larger linkage groups showed some intrachromosomal rearrangements. Finally, we show that as expected, recombination frequency between linked loci explained the majority of variation in gametic phase disequilibrium. Yet, there was substantial overlap in gametic phase disequilibrium between pairs of linked and unlinked loci. Given that the microsatellites described here lie on 35 of the 38–40 chromosomes, these markers will be useful for studies in this species, as well as for comparative genomics studies with other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号