共查询到20条相似文献,搜索用时 15 毫秒
1.
M Van Poucke A T?rnsten M Mattheeuws A Van Zeveren L J Peelman B P Chowdhary 《Cytogenetics and cell genetics》1999,85(3-4):279-284
Zoo-FISH and somatic cell hybrid panels have earlier demonstrated extended synteny conservation between human chromosome 3 (HSA3) and pig chromosome 13 (SSC13). In the present study, eight human genes viz., ADCY5, CASR, COL7A1, COL8A1, ITIH1, RHO, SIAT1 and XPC, spread along the length of HSA3, were chosen for expanding the comparative map between the two chromosomes. Using human and rat cDNAs, or human- and porcine-specific PCR products as probes, 8 porcine lambda clones were isolated. After subcloning and partial sequence determination, identity of the clones with regards to the specific genes was established. The eight type 1 markers thus obtained were biotin labeled and FISH mapped to pig metaphase spreads. All lambda clones localized to SSC13. In combination with the hitherto published mapping data of coding sequences on SSC13, a preliminary comparative status depicting the relative organization of this chromosome with respect to HSA3 was developed. The comparative map thus obtained bears significance in searching for candidate genes of economically important traits mapped to SSC13. 相似文献
2.
Jennen DG Crooijmans RP Kamps B Açar R Veenendaal A van der Poel JJ Groenen MA 《Animal genetics》2002,33(3):205-210
To improve the physical and comparative map of chicken chromosome 24 (GGA24; former linkage group E49C20W21) bacterial artificial chromosome (BAC) contigs were constructed around loci previously mapped on this chromosome by linkage analysis. The BAC clones were used for both sample sequencing and BAC end sequencing. Sequence tagged site (STS) markers derived from the BAC end sequences were used for chromosome walking. In total 191 BAC clones were isolated, covering almost 30% of GGA24, and 76 STS were developed (65 STS derived from BAC end sequences and 11 STS derived within genes). The partial sequences of the chicken BAC clones were compared with sequences present in the EMBL/GenBank databases, and revealed matches to 19 genes, expressed sequence tags (ESTs) and genomic clones located on human chromosome 11q22-q24 and mouse chromosome 9. Furthermore, 11 chicken orthologues of human genes located on HSA11q22-q24 were directly mapped within BAC contigs of GGA24. These results provide a better alignment of GGA24 with the corresponding regions in human and mouse and identify several intrachromosomal rearrangements between chicken and mammals. 相似文献
3.
An updated linkage and comparative map of porcine chromosome 18 总被引:2,自引:0,他引:2
E. M. G. Campbell S. C. Fahrenkrug J. L. Vallet T. P. L. Smith & G. A. Rohrer 《Animal genetics》2001,32(6):375-379
Swine chromosome 18 (SSC18) has the poorest marker density in the USDA-MARC porcine linkage map. In order to increase the marker density, seven genes from human chromosome 7 (HSA7) expected to map to SSC18 were selected for marker development. The genes selected were: growth hormone releasing hormone receptor (GHRHR), GLI-Kruppel family member (GLI3), leptin (LEP), capping protein muscle Z-line alpha 2 subunit (CAPZA2), beta A inhibin (INHBA), T-cell receptor beta (TCRB) and T-cell receptor gamma (TCRG). Large-insert clones (YACs, BACs and cosmids) that contained these genes, as well as two previously mapped microsatellite markers (SW1808 and SW1984), were identified and screened for microsatellites. New microsatellite markers were developed from these clones and mapped. Selected clones were also physically assigned by fluorescence in situ hybridization (FISH). Fifteen new microsatellite markers were added to the SSC18 linkage map resulting in a map of 28 markers. Six genes have been included into the genetic map improving the resolution of the SSC18 and HSA7 comparative map. Assignment of TCRG to SSC9 has identified a break in conserved synteny between SSC18 and HSA7. 相似文献
4.
McCoard SA Fahrenkrug SC Alexander LJ Freking BA Rohrer GA Wise TH Ford JJ 《Animal genetics》2002,33(3):178-185
The objectives of this study were to assign both microsatellite and gene-based markers on porcine chromosome X to two radiation hybrid (RH) panels and to develop a more extensive integrated map of SSC-X. Thirty-five microsatellite and 20 gene-based markers were assigned to T43RH, and 16 previously unreported microsatellite and 15 gene-based markers were added to IMpRH map. Of these, 30 microsatellite and 12 gene-based markers were common to both RH maps. Twenty-two gene-based markers were submitted to BLASTN analysis for identification of orthologues of genes on HSA-X. Single nucleotide polymorphisms (SNPs) were detected for 12 gene-based markers, and nine of these were placed on the genetic map. A total of 92 known loci are present on at least one porcine chromosome X map. Thirty-seven loci are present on all three maps; 31 loci are found on only one map. Location of 33 gene-based markers on the comprehensive map translates into an integrated comparative map that supports conservation of gene order between SSC-X and HSA-X. This integrated map will be valuable for selection of candidate genes for porcine quantitative trait loci (QTLs) that map to SSC-X. 相似文献
5.
A refined physical map of the long arm of human chromosome 16 总被引:3,自引:0,他引:3
L Z Chen P C Harris S Apostolou E Baker K Holman S A Lane J K Nancarrow S A Whitmore R L Stallings C E Hildebrand 《Genomics》1991,10(2):308-312
Mapping of 33 anonymous DNA probes and 12 genes to the long arm of chromosome 16 was achieved by the use of 14 mouse/human hybrid cell lines and the fragile site FRA16B. Two of the hybrid cell lines contained overlapping interstitial deletions in bands q21 and q22.1. The localization of the 12 genes has been refined. The breakpoints present in the hybrids, in conjunction with the fragile site, can potentially divide the long arm of chromosome 16 into 16 regions. However, this was reduced to 14 regions because in two instances there were no probes or genes that mapped between pairs of breakpoints. 相似文献
6.
7.
Buitenhuis AJ Crooijmans RP Bruijnesteijn van Coppenraet ES Veenendaal A Groenen MA van der Poel JJ 《Animal genetics》2002,33(4):249-254
A comparative map was made of chicken chromosome 13 (GGA13) with a part of human chromosome 5 (HSA5). Microsatellite markers specific for GGA13 were used to screen the Wageningen chicken bacterial artificial chromosome (BAC) library. Selected BAC clones were end sequenced and 57 sequence tag site (STS) markers were designed for contig building. In total, 204 BAC clones were identified which resulted in a coverage of about 20% of GGA13. Identification of genes was performed by a bi-directional approach. The first approach starting with sequencing mapped chicken BAC subclones, where sequences were used to identify orthologous genes in human and mouse by a basic local alignment search tool (BLAST) database search. The second approach started with the identification of chicken orthologues of human genes in the HSA5q23-35 region. The chicken orthologous genes were subsequently mapped by fluorescent in situ hybridisation (FISH) and/or single neucleotide polymorphism typing. The total number of genes mapped on GGA13 is increased from 14 to a total of 20 genes. Genes mapped on GGA13 have their orthologues on HSA5q23-5q35 in human and on Mmu11, Mmu13 and Mmu18 in mouse. 相似文献
8.
Niels J. Larsen Helen Hayes Michael Bishop Scott K. Davis Jeremy F. Taylor Brian W. Kirkpatrick 《Mammalian genome》1999,10(5):482-487
Polymorphic microsatellites have been developed in the vicinity of nine genes on bovine chromosome (BTA) 24, all orthologous
to genes on human chromosome (HSA) 18. The microsatellites have been isolated from bacterial and yeast artificial chromosome
clones containing the genes. A linkage map was developed including these polymorphic markers and four anonymous, published
microsatellites. Yeast artificial chromosomes containing six of these genes have also been mapped using fluorescent in situ
hybridization (FISH), thereby tying the linkage map together with the physical map of BTA24. Comparing gene location on HSA18
and BTA24 identifies four regions of conserved gene order, each containing at least two genes. These genes identify six regions
of conserved order between human and mouse, two more than in the human-bovine comparison. The breakpoints between regions
of conserved order for human-bovine are also breakpoints in the human-mouse comparison. The centromere identifies a fifth
conserved region if the BTA24 centromere is orthologous with the HSA18 centromere.
Received: 17 September 1998 / Accepted: 4 December 1998 相似文献
9.
Genome-wide scans have mapped economically important quantitative trait loci (QTL) for mastitis susceptibility in dairy cattle at the telomeric end of bovine chromosome 18 (BTA18). In order to increase the density of markers in this chromosomal region and to improve breakpoint resolution in the human-bovine comparative map, this study describes the chromosomal assignment of seven newly developed gene-associated markers and five microsatellites and eight previously mapped sequence tagged site markers near these QTL. The orientation of KCNJ14, BAX, CD37, NKG7, LIM2, PRKCG, TNNT1, MGC2705, RPL28, EPN1, ZNF582, ZIM2, STK13, ZNF132 and SLC27A5 on the 3000-rad radiation hybrid (RH) map of BTA18 is homologous to the organization found on the corresponding 10 Mbp of human chromosome 19q (HSA19q). The resulting bovine RH map with a length of 20.9 cR spans over about 11 cM on the bovine linkage map. The location of KCNJ14 and SLC27A5 flanking the RH map on BTA18q25-26 has been confirmed by fluorescence in situ hybridization. The data of this refined human-bovine comparative map should improve selection of candidate genes for mastitis susceptibility in dairy cattle. 相似文献
10.
Anette Rink Elizabeth M. Santschi Katie M. Eyer Benjamin Roelofs Markus Hess Myra Godfrey Elif K. Karajusuf Martine Yerle Denis Milan Craig W. Beattie 《Mammalian genome》2002,13(10):578-587
We have constructed a first-generation EST radiation hybrid comparative map of the porcine genome by assigning 1058 markers
to the IMpRH7000 panel. Chromosomal localization was determined with a 2pt LOD of 4.8 for 984 markers, using the IMpRH mapping
tool. Annotated ESTs represent 46.2% or 489 of the markers. Marker distribution was not stochastic and ranged from 0.41 for
SSC8 to 1.77 for SSC12, respectively. Two hundred fifty-one markers assigned to the physical map of the pig did not find a
homologous sequence in V22 of the human genome assembly, indicative of gaps in the assembled human genome sequence. The comparative
porcine/human map covers 3290 MB, or 98.3% of the presumed size of the human genome. However, 60 breakpoints were identified
between chromosomes, as well as 90 micro-rearrangements within synteny groups. Six porcine chromosomes—SSC2, 5, 6, 7, 12,
and 14—correspond to the three gene-richest human chromosomes, HSA17, 19, and 22, and show above average marker density. Porcine
Chrs 1, 8, 11, and X display a low DNA/marker ratio and correspond to the 'genome deserts' on HSA 18, 4, 13, and X. 相似文献
11.
We present herein a bovine chromosome 24 (BTA24) radiation hybrid (RH) map using 40 markers scored on a panel of 90 RHs. Of these markers, 29 loci were ordered with odds of at least 1000:1 in a framework map. An average retention frequency of 17.4% was observed, with relatively higher frequencies near the centromere. The length of the comprehensive map was 640 centiray5000 (cR5000) with an average marker interval of approximately 17.3 cR5000. The observed locus order is generally consistent with currently published bovine linkage and physical maps. Nineteen markers were either Type I loci or closely associated with expressed sequences and thus could be used to compare the BTA24 RH map with human mapping information. All genes located on BTA24 were located on human chromosome 18, and previously reported regions of conserved synteny were extended. The comparative data revealed the presence of at least six conserved regions between these chromosomes. 相似文献
12.
13.
Shi XW Fitzsimmons CJ Genêt C Prather R Whitworth K Green JA Tuggle CK 《Animal genetics》2001,32(4):205-209
A comparative study of human chromosome 17 (HSA17) and pig chromosome 12 (SSC12) was conducted using both somatic cell hybrid panel (SCHP) and radiation hybrid (RH) panel analysis. Sequences from an expressed sequence tag (EST) project in pig reproduction were examined and six genes and ESTs originally believed to map to HSA17 were selected for this study. The genes/ESTs were TATA box binding protein-associated factor (TAF2N/RBP56), alpha-2-plasmin inhibitor (SERPINF2/PLI), H3 histone family 3B (H3F3B), aminopeptidase puromycin sensitive (NPEPPS), an expressed sequence tag (ESTMI015) and P311 protein (P311). The SCHP analysis mapped five genes/ESTs (TAF2N, H3F3B, SERPINF2, NPEPPS and ESTMI015) to SSC12q11-q15 and SSC12p11-p15 with 100% concordance, and assigned P311 to SSC2 (1/2q24)-q29 with 100% concordance. Radiation hybrid analysis of all six genes confirmed the SCHP mapping results, with average retention frequency of 25%. Recent human sequence data demonstrated that P311 is actually located on HSA5q. As HSA5q and SSC2q show conserved syntenic regions predicted from bi-directional painting, our P311 mapping data is consistent with these results. An expanded comparative SSC12 RH map integrating the five new type I markers and 23 previously mapped loci was established using a LOD score threshold of 4.8. The gene order of the five genes/ESTs on the SSC12 framework RH map (H3F3B-ESTMI015-NPEPPS-TAF2N-SERPINF2) is identical to the HSA17 GB4 map but with inversion of the map as conventionally drawn. 相似文献
14.
Middleton R Aldenhoven J Chen Y Backofen B Moran C 《Cytogenetic and genome research》2003,102(1-4):128-132
Conserved segments have been identified by ZOO-FISH between pig chromosome 9 (SSC9) and human chromosomes 1, 7 and 11. To assist in the identification of positional candidate genes for QTL on SSC9, the comparative map was further developed. Primers were designed from porcine EST sequence homologous to genes in regions of human chromosomes 1, 7 and 11. Porcine ESTs were then physically assigned using the INRA somatic cell hybrid panel (INRASCHP) and the high-resolution radiation hybrid panel (IMpRH). Seventeen genes (PEPP3, RAB7L1, FNBP2, MAPKAPK2, GNAI1, ABCB1, STEAP, AKAP9, CYP51A1, SGCE, ROBO4, SIAT4C, GLUL, CACNA1E, PTGS2, C1orf16 and ETS1) were mapped to SSC9, while GUSB, CPSF4 and THG-1 were assigned to SSC3. 相似文献
15.
Improving the comparative map of porcine chromosome 10 with respect to human chromosomes 1, 9 and 10
ZOO-FISH mapping shows human chromosomes 1, 9 and 10 share regions of homology with pig chromosome 10 (SSC10). A more refined comparative map of SSC10 has been developed to help identify positional candidate genes for QTL on SSC10 from human genome sequence. Genes from relevant chromosomal regions of the public human genome sequence were used to BLAST porcine EST databases. Primers were designed from the matching porcine ESTs to assign them to porcine chromosomes using the INRA somatic cell hybrid panel (INRA-SCHP) and the INRA-University of Minnesota Radiation Hybrid Panel (IMpRH). Twenty-eight genes from HSA1, 9 and 10 were physically mapped: fifteen to SSC10 (ACO1, ATP5C1, BMI1, CYB5R1, DCTN3, DNAJA1, EPHX1, GALT, GDI2, HSPC177, OPRS1, NUDT2, PHYH, RGS2, VIM), eleven to SSC1 (ADFP, ALDHIB1, CLTA, CMG1, HARC, PLAA, STOML2, RRP40, TESK1, VCP and VLDLR) and two to SSC4 (ALDH9A1 and TNRC4). Two anonymous markers were also physically mapped to SSC10 (SWR1849 and S0070) to better connect the physical and linkage maps. These assignments have further refined the comparative map between SSC1, 4 and 10 and HSA1, 9 and 10. 相似文献
16.
Antoniou E Gallagher D Taylor J Davis S Womack J Grosz M 《Cytogenetic and genome research》2002,97(1-2):128-132
A comparative genome map is necessary for the implementation of comparative positional candidate gene cloning in cattle. We have developed a medium density comparative gene map of bovine chromosome 25 (BTA25). A radiation hybrid (RH) panel was used to map nine microsatellites and nine genes. Eight of the nine comparative loci were also mapped by FISH. These results were combined with data from published articles to create a comprehensive comparative map of BTA25 with human chromosomes 7 (HSA7) and 16 (HSA16). This map should facilitate the cloning of genes of interest on bovine chromosome 25. 相似文献
17.
This study reports a high-resolution comparative map between human chromosomes and porcine chromosomes 2 (SSC2) and 16 (SSC16), pointing out new homologies and evolutionary breakpoints. SSC2 is of particular interest because of the presence of several important QTLs. Among 226 porcine ESTs selected according to their expected localization, 151 were RH mapped and ordered on SSC2. This study confirmed the extensive conservation between SSC2 and HSA11 and HSA19 and refined the homology with HSA5 (three blocks defined). Furthermore the SSC2q pericentromeric region was shown to be homologous to another human chromosome (HSA1). A complex organization of these syntenies was demonstrated on SSC2q. Our strategy led us to improve also the SSC16 RH map by adding 45 markers. Two-color fluorescence in situ hybridization of markers representative of each synteny confirmed block order. Finally, 29 breakpoints were identified in both species, and porcine BACs containing two breakpoints were isolated. 相似文献
18.
A high-resolution radiation hybrid map of porcine chromosome 6 总被引:2,自引:0,他引:2
Cao H Robinson JA Jiang Z Melville JS Golovan SP Jones MW Verrinder Gibbins AM 《Animal genetics》2004,35(5):367-378
A high-resolution comprehensive map was constructed for porcine chromosome (SSC) 6, where quantitative trait loci (QTL) for reproduction and meat quality traits have been reported to exist. A radiation hybrid (RH) map containing 105 gene-based markers and 15 microsatellite markers was constructed for this chromosome using a 3000-rad porcine/hamster RH panel. In total, 40 genes from human chromosome (HSA) 1p36.3-p22, 29 from HSA16q12-q24, 17 from HSA18p11.3-q12 and 19 from HSA19q13.1-q13.4 were assigned to SSC6. All primers for these gene markers were designed based on porcine gene or EST sequences, and the orthologous status of the gene markers was confirmed by direct sequencing of PCR products amplified from separate Meishan and Large White genomic DNA pools. The RH map spans SSC6 and consists of six linkage groups created by using a LOD score threshold of 4. The boundaries of the conserved segments between SSC6 and HSA1, 16, 18 and 19 were defined more precisely than previously reported. This represents the most comprehensive RH map of SSC6 reported to date. Polymorphisms were detected for 38 of 105 gene-based markers placed on the RH map and these are being exploited in ongoing chromosome wide scans for QTL and eventual fine mapping of genes associated with prolificacy in a Meishan x Large White multigenerational commercial population. 相似文献
19.
We have constructed a high-density comparative radiation hybrid map of the interstitial region of bovine chromosome 5 (BTA5) using a recently constructed 12,000-rad, whole-genome, cattle-hamster radiation hybrid (WGRH) panel. Sixty-two bovine EST markers were selected which have orthologous sequences on human chromosomes 12 and 22 (HSA12 and HSA22). Sixty markers were included in the multi-point framework map at LOD 3.0. Our comprehensive RH map contains more than twice as many markers (88) than previous generation maps. Because of a higher marker density and increased resolution of the RH(12,000) panel, all markers were placed into a single linkage group based on two-point analysis at a LOD score 6.0. As a result, this new comparative map reveals new blocks of synteny and extensive gene order alterations between species. Breakpoints of synteny are located with high accuracy. Overall, this work reveals widespread chromosomal rearrangements between bovine, human and mouse genomes. 相似文献
20.
Bosak N Yamomoto R Fujisaki S Faraut T Kiuchi S Hiraiwa H Hayashi T Yasue H 《Cytogenetic and genome research》2005,108(4):317-321
The human chromosome (HSA)19q region has been shown to correspond to swine chromosome (SSC) 6q11-->q21 by bi-directional chromosomal painting and gene mapping. However, since the precise correspondence has not been determined, 26 genes localized in HSA19q13.3-->q13.4 were assigned to the SSC6 region mainly by radiation hybrid (RH) mapping, and additionally, by somatic cell hybrid panel (SCHP) mapping, and fluorescent in situ hybridization (FISH). Out of the 26 genes, 24 were assigned to a swine RH map with LOD scores greater than 6 (threshold of significance). The most likely order of the 24 genes along SSC6 was calculated by CarthaGene, revealing that the order is essentially the same as that in HSA19q13.3-->q13.4. For AURKC and RPS5 giving LOD scores not greater than 6, SCHP mapping and FISH were additionally performed; SCHP mapping assigned AURKC and RPS5 to SSC6q22-->q23 and SSC6q21, respectively, which is consistent with the observation of FISH. Consequently, all the genes (26 genes) examined in the present study were shown to localize in SSC6q12-->q23, and the order of the genes along the chromosomes was shown to be essentially the same in swine and human, though several intrachromosomal rearrangements were observed between the species. 相似文献