首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chen HC  Chen CA  Guh JY  Chang JM  Shin SJ  Lai YH 《Life sciences》2000,67(19):2345-2353
The adhesion molecule integrin alpha3beta1 is the major receptor of podocyte to the glomerular capillary basement membrane (GBM). Since progressive alteration of the glomerular extracellular matrix (ECM) compartment leading to GBM thickening is common in diabetic nephropathy, we investigated the cellular distribution of alpha3beta1 integrin in podocytes of patients with diabetic nephropathy and streptozotocin-induced diabetic rats, and we evaluated the effects of high glucose on the cultured rat podocytes. Both human and rat kidneys were stained using the immunoelectron microscopy and immunoperoxidase technique with mouse monoclonal antibodies to human integrin alpha3 subunit. The results showed that both the number of immunogold particles and the staining of integrin alpha3 subunit on podocytes were weaker in patients with diabetic nephropathy than those of control kidneys. The staining of alpha3 on podocytes in the poorly-controlled diabetic rats was also weaker after one and three months of hyperglycemia. However, the staining was identical to controls in rats with only one week of hyperglycemia. High glucose (25 mM) but not streptozotocin in vitro suppressed the alpha3 expression of cultured rat podocytes. Our results demonstrated that the expression of integrin alpha3beta1 on podocytes was suppressed in both human and rats with diabetes, possibly due to the effects of hyperglycemia, and the suppression became more severe with the duration of diabetes.  相似文献   

3.
The function of beta-adrenergic receptor (betaAR) is modulated by the activity status of alpha1-adrenergic receptors (alpha1ARs) via molecular crosstalk, and this becomes evident when measuring cardiac contractile responses to adrenergic stimulation. The molecular mechanism underlying this crosstalk is unknown. We have previously demonstrated that overexpression of alpha1B-adrenergic receptor (alpha1BAR) in transgenic mice leads to a marked desensitization of betaAR-mediated adenylyl cyclase stimulation which is correlated with increased levels of activated protein kinase C (PKC) beta, delta and [J. Mol. Cell. Cardiol. 30 (1998) 1827]. Therefore, we wished to determine which PKC isoforms play a role in heterologous betaAR desensitization and also which isoforms of the betaAR were the molecular target(s) for PKC. In experiments using constitutively activated PKC expression constructs transfected into HEK 293 cells also expressing the beta2AR, constitutively active (CA)-PKC overexpression was first confirmed by immunoblots using specific anti-PKC antibodies. We then demonstrated that the different PKC subtypes lead to a decreased maximal cAMP accumulation following isoproterenol stimulation with a rank order of PKCalpha > or = PKCzeta>PKC>PKCbetaII. However, a much more dramatic desensitization of adenylyl cyclase stimulation was observed in cells co-transfected with different PKC isoforms and beta1AR. Further, the modulation of beta1AR by PKC isoforms had a different rank order than for the beta2AR: PKCbetaII>PKCalpha>PKC>PKCzeta. PKC-mediated desensitization was reduced by mutating consensus cAMP-dependent protein kinase (PKA)/PKC sites in the third intracellular loop and/or the carboxy-terminal tail of either receptor. Our results demonstrate therefore that the beta1AR is the most likely molecular target for PKC-mediated heterologous desensitization in the mammalian heart and that modulation of adrenergic receptor activity in any given cell type will depend on the complement of PKC isoforms present.  相似文献   

4.
Summary The isolated head preparation of the toadfish,Opsanus beta, perfused at constant flow rate was used to investigate the branchial vasoactive responses of the fish to adrenergic and cholinergic agonists. The perfused head maintained a relatively consistent and near in vivo branchial vascular resistance for periods of at least 8 h.Adrenergic stimulation of the isolated head produced a vasodilatory response acting via alpha and beta adrenergic receptor sites. However, the alpha adrenoceptor-mediated (vasoconstrictory) response was not observed before the dominant beta adrenoceptor-mediated (vasodilatory) response.Carbachol caused an increase in perfusion pressure which was inhibited by atrophine; thus indicating that the carbachol effect was via muscarinic receptors. The vasoconstrictory response to carbachol, unlike that of acetylcholine persisted even after withdrawal of the drug apparently due to its strong binding to receptor sites and relatively low susceptibility to attack by acetylcholinesterase.Carbachol and adrenaline influenced each other's individual vasoactive effects thus indicating a possible interaction between sympathetic and parasympathetic neurotransmitters in the regulation of branchial vasomotor tone and, consequently, branchial vascular haemodynamics.  相似文献   

5.
Estradiol valerate (EV)-induced polycystic ovaries (PCO) in rats are associated with higher ovarian release and content of norepinephrine, decreased beta2-adrenoceptors (ARs), and dysregulated expression of alpha1-AR subtypes, all preceded by an increase in the production of ovarian NGF. The aim of this study was to further elucidate the role of NGF in the ovaries by blocking the action of NGF during development of EV-induced PCO in rats. Control and EV-injected rats were treated with intraperitoneal injections of IgG (control and PCO groups) or with anti-NGF antibodies (anti-NGF and PCO anti-NGF groups) every third day for 5 wk starting from the day of PCO induction. Rat weight, estrous cyclicity, ovarian morphology, ovarian mRNA, and protein expression of alpha1-AR subtypes, beta2-AR, the NGF receptor tyrosine kinase A (TrkA), p75 neurotrophin receptor (p75NTR), and tyrosine hydroxylase (TH) were analyzed. Ovaries in both PCO and PCO anti-NGF groups decreased in size as well as in number and size of corpora lutea. mRNA expression of alpha1a-AR and TrkA in the ovaries was lower, whereas expression of alpha1b- and alpha1d-AR and TH was higher, in the PCO group than in controls. Protein quantities of alpha1-ARs, TrkA, p75NTR, and TH were higher in the PCO group compared with controls, whereas the protein content of beta2-AR was lower. Anti-NGF treatment in the PCO group restored all changes in mRNA and protein content, except that of alpha1b-AR and TrkA mRNAs, to control levels. The results indicate that the NGF/NGF receptor system plays a role in the pathogenesis of EV-induced PCO in rats.  相似文献   

6.
Progesterone and certain corticosteroids, such as deoxycorticosterone (DOC) and triamcinolone acetonide (TA), can stimulate gonadotropin surges in rats. The mechanism of these steroids could involve a pituitary or hypothalamic site of action, or both. Progesterone and TA did not alter the ability of GnRH to release LH or FSH either before, during, or after the gonadotropin surge induced by these steroids in estrogen-primed ovariectomized female rats. Furthermore, progesterone, TA and DOC were unable to induce a gonadotropin surge in short-term estrogen-primed castrated male rats. These results suggested a hypothalamic rather than a pituitary site of action of progesterone and corticosteroids in the release of gonadotropins. Since progestin and corticosteroid receptors are present in catecholamine neurons, a role for catecholamine neurotransmission in progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats was examined. Catecholamine synthesis inhibitors and specific alpha 1 (prazosin), alpha 2 (yohimbine), and beta (propranolol) receptor antagonists were used to determine the role of catecholamine neurotransmission in the steroid-induced surges of LH and FSH. Both of the catecholamine synthesis inhibitors, alpha-methyl-p-tyrosine HCl (alpha-MPT), a tyrosine hydroxylase inhibitor, and sodium diethyldithiocarbamate (DDC), an inhibitor of dopamine-beta-hydroxylase, attenuated the ability of progesterone, TA, and DOC to induce LH surges when administered 3 h and 1 h, respectively, before the steroid. DDC also suppressed the ability of progesterone, TA, and DOC to induce FSH surges. Rats treated with alpha-MPT had lower mean FSH values than did steroid controls, but the effect was not significant. Both the alpha 1 and alpha 2 adrenergic antagonists, prazosin and yohimbine, significantly suppressed the ability of progesterone, TA, and DOC to induce LH and FSH surges. In contrast, the beta adrenergic receptor blocker, propranolol, had no effect upon the ability of progesterone, TA, or DOC to facilitate LH and FSH secretion. Finally, the stimulatory effect of progesterone and TA upon LH and FSH release was found to be blocked by prior treatment with a GnRH antagonist, further suggesting hypothalamic involvement. In conclusion, this study provides evidence that the stimulation of gonadotropin release by progesterone and corticosteroids is mediated through a common mechanism, and that this mechanism involves the release of GnRH, most likely through catecholaminergic stimulation. Furthermore, catecholamine neurotransmission, through alpha 1 and alpha 2 but not beta receptor sites, is required for the expression of progesterone and corticosteroid-induced surges of LH and FSH in estrogen-primed ovariectomized rats.  相似文献   

7.
The adrenergic receptor involved in the action of epinephrine changed dramatically during the process of active proliferation which follows partial hepatectomy. In control or sham-operated animals, the stimulation of glycogenolysis, gluconeogenesis and ureogenesis by epinephrine was mediated through alpha 1-adrenergic receptors. In contrast, in hepatocytes obtained from animals partially hepatectomized 3 days before experimentation, the receptor involved in the stimulation of these metabolic pathways by epinephrine was of the beta-adrenergic type. Interestingly, the adrenergic receptor involved in the metabolic actions of epinephrine, in hepatocytes from rats partially hepatectomized 7 days before experimentation was again of the alpha 1-subtype. Thus, it appears that during the process of liver regeneration which follows partial hepatectomy there is a transition in the type of adrenergic receptor involved in the hepatic actions of catecholamines from beta in the initial stages to later alpha 1. A similar transition seems to occur as the animal ages. Cyclic AMP accumulation in response to beta-adrenergic stimulation was significantly enhanced in hepatocytes obtained from rats partially hepatectomized 3 days before the experiment, as compared to control hepatocytes or cells obtained from animals operated 7 days before experimentation. This enhanced beta-adrenergic sensitivity is probably related to the increased number of beta-adrenergic receptors observed at this stage. However, a clear dissociation between cyclic AMP levels and metabolic effects was evidenced when the different conditions were compared. The number and affinity (for epinephrine or prazosin) of alpha 1-adrenergic receptors did not change at any stage of the process, which indicates that the markedly diminished alpha 1-adrenergic sensitivity observed in hepatocytes obtained from rats partially hepatectomized 3 days before experimentation is probably due to defective generation or intracellular processing of the alpha 1-adrenergic signal, rather than to changes at the receptor level.  相似文献   

8.
Exogenous prostaglandins (PGs) have been shown to have differing effects on frog lung contractility. In this study, prostaglandin synthesis was measured in lung tissues from warm-acclimated (WA, 22 degrees C) and cold-acclimated (CA, 5 degrees C) American bullfrogs, Rana catesbeiana, incubated for 30 min at 5 degrees or 22 degrees C. Media were assayed by radioimmunoassay for PGE2, PGF2 alpha, 6-keto PGF 1 alpha (the metabolite of PGI2), and thromboxane (TX)B2 (the metabolite of TXA2). PGE2 was produced in greatest quantity by tissues from WA and CA animals, at both incubation temperatures. Epinephrine stimulated PGE2, PGF2 alpha, and TXB2 synthesis at 22 degrees C but only stimulated PGE2 production at 5 degrees C. In tissues from CA frogs, epinephrine did not stimulate prostaglandin synthesis at either incubation temperature. Ibuprofen (10(-5) M) inhibited basal and epinephrine-stimulated prostaglandin synthesis in tissues from WA frogs incubated at 22 degrees C. The beta receptor antagonist propranolol (10(-6) M) blocked the epinephrine-stimulated synthesis of PGE2, PGF2 alpha and TXB2, suggesting epinephrine stimulates prostaglandin synthesis through beta receptor activation. The absence of stimulation by epinephrine in lung from CA animals, but not in 5 degrees C incubations of tissues from WA animals, suggests that a modification of beta receptors occurs during prolonged cold exposure.  相似文献   

9.
Using a cDNA microarray technique, we analyzed the expression profile of 1081 genes in the whole heart tissue of rats. The expressions of three classes of genes encoding cellular energy metabolism enzymes, transmembrane receptors, and intracellular kinase network members were reduced by more than 2.5-fold in cardiac tissues from the rats fed with nicotine (3mg/kg/day) for 3 months. The down-regulated 11 genes included mitochondrial ATP synthase beta subunit, mitochondrial H(+) transporting ATP synthase F1 complex alpha subunit isoform 1, liver mitochondrial aldehyde dehydrogenase 2, glutathione-S-transferase mu type 2, corticotropin-releasing factor receptor 2, metabotropic glutamate receptor 2, N-methyl-D-aspartate receptor subtype 2B, muscarinic acetylcholine receptor M3, transmembrane receptor Unc5H1, glycogen synthase kinase 3alpha, and Ca(2+)/calmodulin-dependent protein kinase II beta subunit. It appears that chronic nicotine treatment affects cardiac function by modulating the expressions of genes involved in energy metabolism and signal transduction.  相似文献   

10.
Previous studies have shown that the intrinsic heart rate (IHR) may undergo changes, e.g., decrease after long-term endurance training. The mechanism for this adaptation is not known. In this study, rats were subjected to long-term oral treatment with the beta receptor stimulating drug prenalterol. During the treatment period heart rates at rest and during submaximal exercise were measured. Heart rate after 30 min rest and also 2 min after exercise was higher in the treated animals, due to the beta stimulation. The treated rats had a significantly lower heart rate increase during exercise than untreated controls, consistent with a partial beta-blocking effect of the drug in states with a high endogenous sympathetic activity. Therefore, the animals were not trained but only exposed to the increased stimulation of cardiac beta receptors accomplished by the drug while at rest. After 25 weeks, prenalterol was withdrawn and the IHR was measured in situ after a denervation procedure. The treatment with prenalterol had not altered the IHR. Our previous results from training studies indicate that a heart rate increase above a certain level or the stimulation for a lower setting of the IHR as seen after endurance training. In this study chronic beta receptor stimulation with prenalterol did not influence the IHR, which supports that hypothesis.  相似文献   

11.
We have recently assigned a major stimulatory role to the brain catecholamines (CA) via alpha 1 and beta receptors on CRH-ACTH secretion, e.g. in the physiological response to stress. In the present study, we explored the possible participation in this regulation of post-synaptic alpha 2 receptors in free moving rats, one week after CA denervation of the hypothalamus by bilateral neurotoxic lesions of the noradrenergic ascending brain stem bundles (NAB). Intracerebroventricular (i.c.v.) injection of clonidine (alpha 2 agonist; 1 nmol) induced a 3 fold rise of ACTH release (measured by RIA) above vehicle (PBS) injected controls (p less than 0.001). This stimulatory effect was completely reversed by an i.c.v. pretreatment with the alpha 2 antagonist idazoxan (10 nmol; without action by itself), whereas it was only slightly affected by an i.c.v. pretreatment with a combination of an alpha 1 and beta blocker (prazosin + propranolol; 5/5 nmol; p greater than 0.1). The results strongly suggest the participation of alpha 2 post-synaptic receptors in the central catecholaminergic activation of ACTH secretion.  相似文献   

12.
13.
Adrenergic receptor agonists and antagonists were employed to establish (a) which receptor subtypes mediate the cyclic AMP response to norepinephrine in hypothalamic and preoptic area slices from gonadectomized female rats and (b) which receptor subtypes might be modulated by the steroid hormone estradiol. Slice cyclic AMP levels were elevated by the beta receptor agonist isoproterenol, but not by alpha 1 (phenylephrine, methoxamine) or alpha 2 (clonidine) agonists. However, the alpha agonist phenylephrine potentiated the effect of the beta agonist isoproterenol on slice cyclic AMP accumulation. In slices from rats given no hormone treatment, the beta antagonist propranolol inhibited norepinephrine-stimulated cyclic AMP production, while the alpha 1 antagonist prazosin was without effect. In contrast, the cyclic AMP response to norepinephrine in slices from estradiol-treated rats was blocked more effectively by prazosin than by propranolol. Estradiol treatment also attenuated the production of cyclic AMP by the beta agonist isoproterenol. The data suggest (a) that norepinephrine induction of cyclic AMP accumulation in hypothalamic and preoptic area slices is mediated by beta receptors and potentiated by alpha receptor activation and (b) that estradiol depresses beta and increases alpha 1 receptor function in slices from brain regions associated with reproductive physiology.  相似文献   

14.
The effects of estradiol-17 beta on androgen uptake, metabolism and binding were studied in rat epididymis in vivo in comparison with cyproterone acetate. Steroids (250 ug/100 g body weight) were injected 5 min prior to 3H-testosterone in castrate rats. Estradiol-17 beta inhibited 3H-testosterone uptake into epididymal cytosol by 58% as compared to 38% by cyproterone acetate. 3H-Testosterone uptake into epididymal nuclei was inhibited 95% by estradiol-17 beta and 83% by cyproterone acetate. Total bound radioactivity in cytosol fractions was reduced to a greater extent by estradiol-17 beta than cyproterone acetate when either 3H-testosterone or 3H-dihydrotestosterone was injected. Binding of 3H-dihydrotestosterone to nuclear receptors was completely abolished by estradiol-17 beta; whereas approximately 20% binding remained in the nuclear extract after cyproterone acetate treatment. Metabolism of 3H-testosterone in vivo was also altered by estradiol-17 beta, resulting in diminished conversion to 3H-dihydrotestosterone. Cyproterone acetate, on the other hand, did not affect 3H-testosterone metabolism. Estradiol-17 beta and cyproterone acetate inhibited in vitro binding of 3H-dihydrotestosterone to the intracellular cytoplasmic receptor, but not the intraluminal androgen binding protein (ABP). These data suggest that estradiol-17 beta may have a more potent antiandrogenic effect on the epididymis than cyproterone acetate due to inhibition of 5 alpha reduction of testosterone as well as binding to the androgen receptor.  相似文献   

15.
Heart cells were cultured from newborn rats, and the contractile activity (CA) and beating frequency (BF) were recorded using an electrooptical technique. Myocardial cells were found to be highly sensitive to Prostacyclin (PGI2) since a 10(-11) M concentration increased the BF and CA. Increasing the concentration (2.7 x 10(-10) to 2.7 x 10(-8) M) resulted in a dose-dependent decrease in CA and BF. The stable product of the non-enzymatic degradation of PGI2 (6 Keto PGF1 alpha) was found to be completely ineffective, and the stable product of the enzymatic PGI2 metabolism (6 Keto PGE1) exerted only a dose-dependent (10(-6) to 10(-5) M) positive inotropic effect. PGI2 was also effective in the presence of serum instead of culture medium but the decrease in CA was less marked than in culture medium, probably due to protein-binding of the drug. When the CA was decreased by PGI2, perfusion with the intracellular calcium-releasing and phosphodiesterase inhibiting agent, caffeine, reversed the PGI2-induced negative inotropic effect. These results suggest that PGI2 participates in the regulation of the heart cell contractility. Its metabolite 6 Keto PGEI could also influence heart cell contractility but higher concentrations are needed. Moreover myocardial intracellular calcium availability seems to be influenced by PGI2.  相似文献   

16.
alpha 1- and beta-adrenergic receptor properties of intact hepatocytes from adult male and female rats were evaluated in ligand binding studies using [3H]prazosin and [3H]CGP-12177 (4-(t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazole-2-one-HCl), a hydrophilic beta antagonist. Prior work had suggested that the response of hepatocytes from males to alpha 1-adrenergic stimulation was greater than that of cells from females. However, little sexual difference in prazosin affinity, number of binding sites or kinetics of association/dissociation with the cells was found. Epinephrine, [3H]prazosin competition for binding sites on intact cells was performed at 2 degrees C and 80-90% of agonist sites remained in a high affinity state with an epinephrine Kd comparable to that previously found in glucose release and phosphorylase alpha activation studies. Agonist Kd inferred from these competition experiments also showed no sexual dimorphism. These data suggest that the greater rise in the concentration of cytosolic free calcium and release of 45Ca from cells of males in response to epinephrine stimulation is not due to male/female alpha 1-receptor differences but, rather, may be a function of the previously observed sexual difference in cell calcium metabolism. [3H]CGP binding to hepatocytes from females was stereospecific, saturable and identified a single, high affinity site. Comparable sites were not found on cells from males, however, [3H]CGP binding to crude membrane preparations from both sexes was identical. This suggests that the loss of hepatic beta-receptor function in the adult male is due to an inaccessibility of beta-receptors at the external surface of the plasma membrane of the intact cell. Further studies with other beta-receptor ligands are being carried out to confirm these initial findings.  相似文献   

17.
The purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex was reduced and dissociated into functional alpha beta heterodimers by a combination of alkaline pH and dithiothreitol treatment. Insulin treatment of the isolated alpha beta heterodimeric complex was observed to induce the complete reassociation to an alpha 2 beta 2 heterotetrameric state when analyzed by nondenaturing Bio-Gel A-1.5m gel filtration chromatography. Nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I-insulin affinity cross-linked and 32P-autophosphorylated alpha beta heterodimers demonstrated that the insulin-dependent reassociation to the alpha 2 beta 2 heterotetrameric state occurred both covalently and noncovalently under these conditions. Comparison by reducing and nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the insulin-dependent covalent reassociation to an alpha 2 beta 2 heterotetrameric complex was due to the formation of a disulfide linkage(s) between the alpha beta heterodimers. beta subunit autophosphorylation of the control alpha 2 beta 2 heterotetrameric insulin receptor preparation was maximally stimulated within 5 min of insulin preincubation and occurred exclusively in the Mr = 400,000 alpha 2 beta 2 complex. Similarly, maximal insulin-stimulated beta subunit autophosphorylation of the alpha beta heterodimeric preparation occurred within 5 min of insulin pretreatment in the Mr = 210,000 alpha beta complex. However, 4 h of insulin pretreatment of the alpha beta heterodimer preparation induced the formation (6-fold) of a covalent 32P-labeled alpha 2 beta 2 heterotetrameric complex. Maximal stimulation of substrate phosphorylation for the alpha 2 beta 2 heterotetrameric complex was also observed to occur within 5 min of insulin treatment, whereas maximal insulin-stimulated substrate phosphorylation of the alpha beta heterodimeric complex required greater than 4 h. These data demonstrate that (i) insulin treatment can induce the reassociation of the alpha beta heterodimeric complex into a covalent alpha 2 beta 2 heterotetrameric state, and (ii) insulin-dependent protein kinase activation of the alpha beta heterodimeric insulin receptor correlates with the covalent reassociation into a disulfide-linked alpha 2 beta 2 heterotetrameric complex.  相似文献   

18.
The purified human placenta alpha 2 beta 2 heterotetrameric insulin receptor was reduced and dissociated into a functional alpha beta heterodimeric complex by a combination of alkaline pH and dithiothreitol treatment. In the presence of Mn/MgATP, insulin binding to the isolated alpha beta heterodimeric insulin receptor was found to induce the formation of a covalent disulfide-linked alpha 2 beta 2 heterotetrameric complex. In the absence of insulin, a noncovalent association of the alpha beta heterodimeric insulin receptor complex into an alpha 2 beta 2 heterotetrameric state required the continuous presence of both a divalent metal ion (Mn or Mg) and an adenine nucleotide (ATP, ADP, or AMPPCP). Thus, Mn/MgATP binding and not insulin receptor autophosphorylation was responsible for the noncovalent association into the alpha 2 beta 2 heterotetrameric state. However, the divalent metal ions or NaATP separately was ineffective in inducing the noncovalent association between the alpha beta heterodimers. The specific sulfhydryl agent iodoacetamide (IAN) was observed to inhibit the insulin-dependent covalent association of the alpha beta heterodimers without affecting the Mn/MgATP-induced noncovalent association into the alpha 2 beta 2 heterotetrameric state. Insulin treatment of the isolated alpha beta heterodimeric complex in the presence of IAN demonstrated that the Mn/MgATP-induce noncovalent association into the alpha 2 beta 2 heterotetrameric state was sufficient for insulin stimulation of beta-subunit autophosphorylation and exogenous substrate protein kinase activity. These data indicate that although interaction between the individual insulin receptor alpha beta heterodimers is necessary for insulin stimulation of protein kinase activity it does not require covalent disulfide bond formation.  相似文献   

19.
Summary Glucagon increased alanine amino transferase (AAT) activity in perfused rat liver by about 90% over control. Propranolol, the beta receptor antagonist, abolished the effect of glucagon on this enzyme. Well known beta receptor agonists like isoproterenol, norepinephrine and epinephrine also increased the enzyme activity under identical condition and the enhancement was similarly abolished by propranolol. These experiments suggest that the effect of glucagon on AAT was mediated through beta adrenergic receptor. However, the interesting observation was that phenylephrine, alpha receptor agonist and phenoxybenzamine and tolazoline, two alpha receptor antagonists, increased the AAT activity like glucagon in perfusion experiments and the effects of all these three agents were also abolished by propranolol. Glucagon, when perfused with phenoxybenzamine showed some additive effect. From all these results we are proposing that in our system phenoxybenzamine is acting as beta agonist although it is known to be an alpha antagonist.  相似文献   

20.
Enhanced expression of both integrin alpha v beta 3 and platelet-derived growth factor receptor (PDGFr) has been described in glioblastoma tumors. We therefore explored the possibility that integrin alpha v beta 3 cooperates with PDGFr to promote cell migration in glioblastoma cells, and extended the study to identify the Src family members that are activated on PDGF stimulation. Glioblastoma cells utilize integrins alpha v beta 3 and alpha v beta 5 to mediate vitronectin attachment. We found that physiologic PDGF stimulation (83 pm, 10 min) of vitronectin-adherent cells promoted the specific recruitment of integrin alpha v beta 3-containing focal adhesions to the cell cortex and alpha v beta 3-mediated cell motility. Analysis of PDGFr immunoprecipitates indicated an association of the PDGFr beta with integrin alpha v beta 3, but not integrin alpha v beta 5. Cells plated onto collagen or laminin, which engage different integrins, exhibited significantly less migration on PDGF stimulation, indicating a cooperation of alpha v beta 3 and the PDGFr beta in glioblastoma cells that promotes migration. Further analysis of the cells plated onto vitronectin indicated that PDGF stimulation caused an increase in Src kinase activity, which was associated with integrin alpha v beta 3. In the vitronectin-adherent cells, Lyn was associated preferentially with alpha v beta 3 both in the presence and absence of PDGF stimulation. In contrast, Fyn was associated with both alpha v beta 3 and alpha v beta 5. Moreover, PDGF stimulation increased the activity of Lyn, but not Fyn, in vitronectin-adherent cells, and the activity of Fyn, but not Lyn, in laminin-adherent cells. Using cells attached to mAb anti-alpha v beta 3 or mAb anti-integrin alpha 6, we confirmed the activation of specific members of the Src kinase family with PDGF stimulation. Down-regulation of Lyn expression by siRNA significantly inhibited the cell migration mediated by integrin alpha v beta 3 in PDGF-stimulated cells, demonstrating the PDGFr beta cooperates with integrin alpha v beta 3 in promoting the motility of vitronectin-adherent glioblastoma cells through a Lyn kinase-mediated pathway. Notably, the data indicate that engagement of different integrins alters the identity of the Src family members that are activated on stimulation with PDGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号