共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A Detailed RFLP Map of Cotton, Gossypium Hirsutum X Gossypium Barbadense: Chromosome Organization and Evolution in a Disomic Polyploid Genome 总被引:6,自引:1,他引:6
A. J. Reinisch J. M. Dong C. L. Brubaker D. M. Stelly J. F. Wendel A. H. Paterson 《Genetics》1994,138(3):829-847
We employ a detailed restriction fragment length polymorphism (RFLP) map to investigate chromosome organization and evolution in cotton, a disomic polyploid. About 46.2% of nuclear DNA probes detect RFLPs distinguishing Gossypium hirsutum and Gossypium barbadense; and 705 RFLP loci are assembled into 41 linkage groups and 4675 cM. The subgenomic origin (A vs. D) of most, and chromosomal identity of 14 (of 26), linkage groups is shown. The A and D subgenomes show similar recombinational length, suggesting that repetitive DNA in the physically larger A subgenome is recombinationally inert. RFLPs are somewhat more abundant in the D subgenome. Linkage among duplicated RFLPs reveals 11 pairs of homoeologous chromosomal regions-two appear homosequential, most differ by inversions, and at least one differs by a translocation. Most homoeologies involve chromosomes from different subgenomes, putatively reflecting the n = 13 to n = 26 polyploidization event of 1.1-1.9 million years ago. Several observations suggest that another, earlier, polyploidization event spawned n = 13 cottons, at least 25 million years ago. The cotton genome contains about 400-kb DNA per cM, hence map-based gene cloning is feasible. The cotton map affords new opportunities to study chromosome evolution, and to exploit Gossypium genetic resources for improvement of the world's leading natural fiber. 相似文献
5.
以海岛棉无菌苗的胚根、下胚轴和子叶作外植体,对这3种器官在离体培养中愈伤组织诱导、分化以及影响因素进行了研究。结果表明:下胚轴作外植体效果最好,愈伤组织生长块、质地好,有芽的分化,进而可再生出植株。胚根效果很差,愈伤组织产生很少而且很易褐化死亡。子叶效果不好,愈伤组织少、生长慢无分化。外源激素中2.4-D与KT配合使用效果好,愈伤组织可以分化。无菌苗生长状态及培养基中非激素成分对愈伤组织诱导和分化 相似文献
6.
Genetics of Heading Time in Wheat (TRITICUM AESTIVUM L.). II. the Inheritance of Vernalization Response 总被引:1,自引:0,他引:1
下载免费PDF全文

The inheritance of vernalization response was studied in crosses involving four spring wheats (Sonora 64 (S), Pitic 62 (P), Justin (J) and Thatcher (T)) and three winter wheats (Blackhull (B), Early Blackhull (E) and Extra Early Blackhull (EE)).—All winter cultivars were highly responsive to vernalization, and Pitic 62 was the only spring cultivar whose time to heading was significantly accelerated following cold treatments. When vernalized and grown under long days, spring and winter cultivars became comparable in their heading response, indicating that cold requirement is the major attribute differentiating the heading behavior of true spring and true winter wheats.—Inheritance of growth habit in the F1 generation of a five-parent diallel cross showed dominance of the spring character in all spring x winter crosses. Depending on the cross, one or two duplicate major genes governing growth habit were detected in F2, F3 and backcross generations grown in the field under long days in the absence of vernalizing temperatures. In some spring x winter crosses most of the variation in heading time among spring segregates could be attributed to the effects of major genes conditioning growth habit. In other crosses the heading patterns appeared more complex, indicating that genes with smaller effects are also involved in the control of heading response under spring or summer environments.—Evidence was presented supporting the hypothesis that the cultivar Pitic 62 carries a different allele at one of the two major loci governing its spring habit. This allele was associated with some response to vernalization and acted as a dominant gene determining earliness under low temperature vernalization, but as a partially recessive gene determining lateness in the absence of vernalizing temperatures. Genotypes were assigned to five cultivars as follows: S, CC DD; P, CC D'D'; J, cc DD; B and EE, cc dd.—The presence of major and minor genes and of multiple alleles governing response to photoperiod and vernalization was discussed in relation to the genetic manipulation of the heading response and to breeding wheat cultivars with specific or broad adaptation. 相似文献
7.
8.
9.
Cotton is one of the most important crops for its natural textile fibers in the world. However, it often suffered from drought stress during its growth and development, resulting in a drastic reduction in cotton productivity. Therefore, study on molecular mechanism of cotton drought-tolerance is very important for increasing cotton production. To investigate molecular mechanism of cotton drought-resistance, we employed RNA-Seq technology to identify differentially expressed genes in the leaves of two different cultivars (drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6) of cotton. The results indicated that there are about 13.38% to 18.75% of all the unigenes differentially expressed in drought-resistant sample and drought-sensitive control, and the number of differentially expressed genes was increased along with prolonged drought treatment. DEG (differentially expression gene) analysis showed that the normal biophysical profiles of cotton (cultivar J-13) were affected by drought stress, and some cellular metabolic processes (including photosynthesis) were inhibited in cotton under drought conditions. Furthermore, the experimental data revealed that there were significant differences in expression levels of the genes related to abscisic acid signaling, ethylene signaling and jasmonic acid signaling pathways between drought-resistant cultivar J-13 and drought-sensitive cultivar Lu-6, implying that these signaling pathways may participate in cotton response and tolerance to drought stress. 相似文献
10.
11.
12.
K. A. Suiter 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1988,75(2):259-271
Summary Seed protein extracts from 90 accessions of Gossypium arboreum and 70 accessions of Gossypium herbaceum were electrophoretically analyzed for isozyme variation. Eighteen enzyme systems were resolved, ten of which were polymorphic among accessions. No within accession isozyme variation was observed within these highly inbred lines. A minimum of 24 genes encode the isozymes resolved and data is presented for codominant inheritance at 13 loci. Tests for non-random joint segregation in 63 of the 78 possible two-locus combinations from the 13 characterized loci give evidence for four pairs of linked genes (Lap2/Me1 [r=0.160+/-0.027], Lap2/Pgi1 [r= 0.285+/-0.055], Mdh6/Tpi1 [r= 0.197+/-0.028], and 6Pgd2/6Pgd3[r 0.000]. Numerous presumptive duplicate isozyme loci were observed and these were usually expressed as patterns of nonsegregating heteromultimers within accessions. Single gene expression was also observed at several loci. The observed results are in agreement with those of previous cytological investigations which have proposed the polyploid origin of the diploid Old World Gossypiums. 相似文献
13.
14.
A spontaneous mutation isolated from stocks of red clover (cultivarS123) prevents flower initiation unless plants are suppliedexogenously with gibberellin. Mutant plants are also more uprightand densely tillering in their growth habit. Inheritance ofthe non-flowering character was analysed in a series of crossesbetween wild-type S123 and mutant plants. Hybridity followingintercrossing was confirmed using electrophoretic variants ofcytoplasmic phosphoglucose isomerase coded by a- and b-allelesof the nuclear gene Pgi-2. All F1 plants flowered normally andwere heterozygous at the Pgi-2 locus. However, F2 segregationsdid not provide the expected ratios, with flowering plants exceedingpredicted levels. One back-cross involving an F1 plant and themutant parent gave flowering:non flowering and ab:aa Pgi-2 ratiosof 2:1 rather than the expected 1:1. The results are consistentwith the existence of a zygotic lethal factor, originally presentin heterozygous (non-lethal) form in the mutant (non-flowering)parent and tightly linked to the mutated gene. Segregants whichwere non-flowering always displayed the characteristic mutantgrowth form and seeds borne on these plants were lighter incolour than those borne on normal plants. Thus, there existsin red clover a gene designated dig (developmentinfluencing gibberellin) which has several pleiotropic effectsincluding suppressing the initiation of flowering in normallyflorally-inductive environments. There are at least two allelicforms of the gene, F (flowering) and f (non-flowering). 相似文献
15.
Genetics of Heading Time in Wheat (TRITICUM AESTIVUM L.). I. the Inheritance of Photoperiodic Response
下载免费PDF全文

The inheritance of photoperiodic response was studied in crosses involving four spring wheats (Sonora 64, Pitic 62, Justin and Thatcher) and three winter wheats (Blackhull, Early Blackhull and Extra Early Blackhull). The parental cultivars were classified into a photoperiod-sensitive group (Justin, Thatcher, Blackhull and Early Blackhull) and a relatively photoperiod-insensitive group (Sonora 64, Pitic 62 and Extra Early Blackhull) based on their heading response when vernalized and grown under different daylength regimes.-F(1) data indicated that daylength insensitivity is not always dominant over day-length sensitivity and that the dominance relationship with respect to photoperiodic response depends on the alleles present in the parents. The heading patterns after vernalization and growth under short days of F(1), F(2), F(3) and backcross generations of a 4-parent diallel cross involving Justin, Sonora 64, Extra Early Blackhull and Blackhull could be satisfactorily explained on the basis of two major loci with three alleles at each locus. The genotype for each parent was suggested in terms of these loci. Genes with minor effects also influenced the photoperiodic response in a quantitative manner.-Diallel cross analysis of the number of days to heading (log scale) indicated significant additive and dominance genetic variances, a high average degree of dominance for earliness (photoperiod insensitivity) and a preponderance of recessive alleles in the parents acting in the direction of lateness (photoperiod sensitivity). Estimation of the genetic components of variation contained in the generation means of individual crosses (untransformed data) showed that, besides additivity and dominance, epistasis was also an important factor in the genetic control of photoperiodic response in wheat. 相似文献
16.
17.
Osmotic Adjustment in Cotton (Gossypium hirsutum L.) Leaves and Roots in Response to Water Stress
下载免费PDF全文

The relative magnitude of adjustment in osmotic potential (ψs) of water-stressed cotton (Gossypium hirsutum L.) leaves and roots was studied using plants raised in pots of sand and grown in a growth chamber. One and three water-stress preconditioning cycles were imposed by withholding water, and the subsequent adjustment in solute potential upon relief of the stress and complete rehydration was monitored with thermocouple psychrometers. Both leaves and roots exhibited a substantial adjustment in ψs in response to water stress with the former exhibiting the larger absolute adjustment. The osmotic adjustment of leaves was 0.41 megapascal compared to 0.19 megapascal in the roots. The roots, however, exhibited much larger percentage osmotic adjustments of 46 and 63% in the one and three stress cycles, respectively, compared to 22 and 40% in the leaves in similar stress cycles. The osmotically adjusted condition of leaves and roots decreased after relief of the single cycle stress to about half the initial value within 3 days, and to the well-watered control level within 6 days. In contrast, increasing the number of water-stress preconditioning cycles resulted in significant percentage osmotic adjustment still being present after 6 days in roots but not in the leaves. The decrease in ψs of leaves persisted longer in field-grown cotton plants compared to plants of the same age grown in the growth chamber. The advantage of decreased ψs in leaves and roots of water-stressed cotton plants was associated with the maintenance of turgor during periods of decreasing water potentials. 相似文献
18.
T. S. Sabnis 《Molecular & general genetics : MGG》1932,62(1):213-231
19.
A Semidian Rhythm in the Flowering Response of Pharbitis nil to Far-Red Light: II. The Involvement of Phytochrome 总被引:1,自引:2,他引:1
The semidian (~12 h) periodicity in the effect of far-red (FR) interruptions of the light period preceding inductive darkness on flowering in Pharbitis nil appears to be mediated by phytochrome: (a) promotion by interruptions 2 hours before inductive darkness (−2 hours) and inhibition at −8 hours are greater the higher the proportion of FR/R+FR during the interruption; (b) brief FR exposures followed by darkness are even more effective than FR throughout; (c) the effect of brief FR is reversed by subsequent R; (d) R interruptions of an FR background are most promotive at −8 hours, when FR is most inhibitory. Promotive FR interruptions at −2 or −14 hours shorten the critical dark period whereas inhibitory FR interruptions at −8 hours lengthen it. We conclude that the semidian rhythm is controlled by a `timing pool' of phytochrome FR absorbing form (Pfr) which disappears rapidly in darkness: four different estimates from our experiments indicate that Pfr was reduced to the level set by FR within 20 to 45 minutes in darkness. However, flowering may also be influenced by a `metabolic pool' of Pfr with a delayed loss in darkness, the time of which can be advanced or retarded by shifting the semidian rhythm. 相似文献