首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
No genes for any of the known uracil DNA glycosylases of the UDG superfamily are present in the genome of Methanothermobacter thermautotrophicus ΔH, making it difficult to imagine how DNA-U repair might be initiated in this organism. Recently, Mth212, the ExoIII homologue of M. thermautotrophicus ΔH has been characterized as a DNA uridine endonuclease, which suggested the possibility of a novel endonucleolytic entry mechanism for DNA uracil repair. With no system of genetic experimentation available, the problem was approached biochemically. Assays of DNA uracil repair in vitro, promoted by crude cellular extracts, provide unequivocal confirmation that this mechanism does indeed operate in M. thermautotrophicus ΔH.  相似文献   

2.
Hydrolytic deamination of DNA cytosine residues results in U/G mispairs, pre-mutagenic lesions threatening long-term genetic stability. Hence, DNA uracil repair is ubiquitous throughout all extant life forms and base excision repair, triggered by a uracil DNA glycosylase (UDG), is the mechanistic paradigm adopted, as it seems, by all bacteria and eukaryotes and a large fraction of archaea. However, members of the UDG superfamily of enzymes are absent from the extremely thermophilic archaeon Methanothermobacter thermautotrophicus ΔH. This organism, as a hitherto unique case, initiates repair by direct strand incision next to the DNA-U residue, a reaction catalyzed by the DNA uridine endonuclease Mth212, an ExoIII homologue. To elucidate the detailed mechanism, in particular to identify the molecular partners contributing to this repair process, we reconstituted DNA uracil repair in vitro from only four purified enzymes of M. thermautotrophicus ΔH. After incision at the 5′-side of a 2′-d-uridine residue by Mth212 DNA polymerase B (mthPolB) is able to take over the 3′-OH terminus and carry out repair synthesis generating a 5′-flap structure that is resolved by mthFEN, a 5′-flap endonuclease. Finally, DNA ligase seals the resulting nick. This defines mechanism and minimal enzymatic requirements of DNA-U repair in this organism.  相似文献   

3.
The reliable repair of pre-mutagenic U/G mismatches that originated from hydrolytic cytosine deamination is crucial for the maintenance of the correct genomic information. In most organisms, any uracil base in DNA is attacked by uracil DNA glycosylases (UDGs), but at least in Methanothermobacter thermautotrophicus ΔH, an alternative strategy has evolved. The exonuclease III homologue Mth212 from the thermophilic archaeon M. thermautotrophicus ΔH exhibits a DNA uridine endonuclease activity in addition to the apyrimidinic/apurinic site endonuclease and 3′ → 5′exonuclease functions. Mth212 alone compensates for the lack of a UDG in a single-step reaction thus substituting the two-step pathway that requires the consecutive action of UDG and apyrimidinic/apurinic site endonuclease.In order to gain deeper insight into the structural basis required for the specific uridine recognition by Mth212, we have characterized the enzyme by means of X-ray crystallography. Structures of Mth212 wild-type or mutant proteins either alone or in complex with DNA substrates and products have been determined to a resolution of up to 1.2 Å, suggesting key residues for the uridine endonuclease activity. The insertion of the side chain of Arg209 into the DNA helical base stack resembles interactions observed in human UDG and seems to be crucial for the uridine recognition. In addition, Ser171, Asn153, and Lys125 in the substrate binding pocket appear to have important functions in the discrimination of aberrant uridine against naturally occurring thymidine and cytosine residues in double-stranded DNA.  相似文献   

4.
Bacterial exonuclease III (ExoIII) is a multifunctional enzyme that uses a single active site to perform two conspicuous activities: (i) apurinic/apyrimidinic (AP)-endonuclease and (ii) 3′→5′ exonuclease activities. The AP endonuclease activity results in AP site incision, while the exonuclease activity results in the continuous excision of 3′ terminal nucleobases to generate a partial duplex for recruiting the downstream DNA polymerase during the base excision repair process (BER). The key determinants of functional selection between the two activities are poorly understood. Here, we use a series of mutational analyses and single-molecule imaging to unravel the pivotal rules governing these endo- and exonuclease activities at the single amino acid level. An aromatic residue, either W212 or F213, recognizes AP sites to allow for the AP endonuclease activity, and the F213 residue also participates in the stabilization of the melted state of the 3′ terminal nucleobases, leading to the catalytically competent state that activates the 3′→5′ exonuclease activity. During exonucleolytic cleavage, the DNA substrate must be maintained as a B-form helix through a series of phosphate-stabilizing residues (R90, Y109, K121 and N153). Our work decouples the AP endonuclease and exonuclease activities of ExoIII and provides insights into how this multifunctional enzyme controls each function at the amino acid level.  相似文献   

5.
6.
Endonuclease III from Escherichia coli, yeast (yNtg1p and yNtg2p) and human and E.coli endonuclease VIII have a wide substrate specificity, and recognize oxidation products of both thymine and cytosine. DNA containing single dihydrouracil (DHU) and tandem DHU lesions were used as substrates for these repair enzymes. It was found that yNtg1p prefers DHU/G and exhibits much weaker enzymatic activity towards DNA containing a DHU/A pair. However, yNtg2p, E.coli and human endonuclease III and E.coli endonuclease VIII activities were much less sensitive to the base opposite the lesion. Although these enzymes efficiently recognize single DHU lesions, they have limited capacity for completely removing this damaged base when DHU is present on duplex DNA as a tandem pair. Both E.coli endonuclease III and yeast yNtg1p are able to remove only one DHU in DNA containing tandem lesions, leaving behind a single DHU at either the 3′- or 5′-terminus of the cleaved fragment. On the other hand, yeast yNtg2p can remove DHU remaining on the 5′-terminus of the 3′ cleaved fragment, but is unable to remove DHU remaining on the 3′-terminus of the cleaved 5′ fragment. In contrast, both human endonuclease III and E.coli endonuclease VIII can remove DHU remaining on the 3′-terminus of a cleaved 5′ fragment, but are unable to remove DHU remaining on the 5′-terminus of a cleaved 3′ fragment. Tandem lesions are known to be generated by ionizing radiation and agents that generate reactive oxygen species. The fact that these repair glycosylases have only a limited ability to remove the DHU remaining at the terminus suggests that participation of other repair enzymes is required for the complete removal of tandem lesions before repair synthesis can be efficiently performed by DNA polymerase.  相似文献   

7.
Host base excision repair (BER) proteins that repair oxidative damage enhance HIV infection. These proteins include the oxidative DNA damage glycosylases 8-oxo-guanine DNA glycosylase (OGG1) and mutY homolog (MYH) as well as DNA polymerase beta (Polβ). While deletion of oxidative BER genes leads to decreased HIV infection and integration efficiency, the mechanism remains unknown. One hypothesis is that BER proteins repair the DNA gapped integration intermediate. An alternative hypothesis considers that the most common oxidative DNA base damages occur on guanines. The subtle consensus sequence preference at HIV integration sites includes multiple G:C base pairs surrounding the points of joining. These observations suggest a role for oxidative BER during integration targeting at the nucleotide level. We examined the hypothesis that BER repairs a gapped integration intermediate by measuring HIV infection efficiency in Polβ null cell lines complemented with active site point mutants of Polβ. A DNA synthesis defective mutant, but not a 5′dRP lyase mutant, rescued HIV infection efficiency to wild type levels; this suggeted Polβ DNA synthesis activity is not necessary while 5′dRP lyase activity is required for efficient HIV infection. An alternate hypothesis that BER events in the host genome influence HIV integration site selection was examined by sequencing integration sites in OGG1 and MYH null cells. In the absence of these 8-oxo-guanine specific glycosylases the chromatin elements of HIV integration site selection remain the same as in wild type cells. However, the HIV integration site sequence preference at G:C base pairs is altered at several positions in OGG1 and MYH null cells. Inefficient HIV infection in the absence of oxidative BER proteins does not appear related to repair of the gapped integration intermediate; instead oxidative damage repair may participate in HIV integration site preference at the sequence level.  相似文献   

8.
We have identified a novel structure-specific nuclease in highly fractionated extracts of the thermophilic archaeon Methanothermobacter thermautotrophicus (Mth). The 71 kDa protein product of open reading frame mth1090 is a nuclease with ATPase activity, which we call Nar71 (Nuclease-ATPase in Repair, 71 kDa). The nar71 gene is located in a gene neighbourhood proposed by genomics to encode a novel DNA repair system conserved in thermophiles. The biochemical characterization of Nar71 presented here is the first analysis from within this neighbourhood, and it supports the insight from genomics. Nuclease activity of Nar71 is specific for 3′ flaps and flayed duplexes, targeting single-stranded DNA (ssDNA) regions. This activity requires Mg2+ or Mn2+ and is greatly reduced in ATP. In ATP, Nar71 displaces ssDNA, also with high specificity for 3′ flap and flayed duplex DNA. Strand displacement is weak compared with nuclease activity, but in ATPγS it is abolished, suggesting that Nar71 couples ATP hydrolysis to DNA strand separation. ATPase assays confirmed that Nar71 is stimulated by ssDNA, though not double-stranded DNA. Mutation of Lys-117 in Nar71 abolished ATPase and nuclease activity, and we describe a separation-of-function mutant (K68A) that has lost ATPase activity but retains nuclease activity. A model of possible Nar71 function in DNA repair is presented.  相似文献   

9.
The gene for the mismatch-specific uracil DNA glycosylase (MUG) was identified in the Escherichia coli genome as a sequence homolog of the human thymine DNA glycosylase with activity against mismatched uracil base pairs. Examination of cell extracts led us to detect a previously unknown xanthine DNA glycosylase (XDG) activity in E. coli. DNA glycosylase assays with purified enzymes indicated the novel XDG activity is attributable to MUG. Here, we report a biochemical characterization of xanthine DNA glycosylase activity in MUG. The wild type MUG possesses more robust activity against xanthine than uracil and is active against all xanthine-containing DNA (C/X, T/X, G/X, A/X and single-stranded X). Analysis of potentials of mean force indicates that the double-stranded xanthine base pairs have a relatively narrow energetic difference in base flipping, whereas the tendency for uracil base flipping follows the order of C/U > G/U > T/U > A/U. Site-directed mutagenesis performed on conserved motifs revealed that Asn-140 and Ser-23 are important determinants for XDG activity in E. coli MUG. Molecular modeling and molecular dynamics simulations reveal distinct hydrogen-bonding patterns in the active site of E. coli MUG that account for the specificity differences between E. coli MUG and human thymine DNA glycosylase as well as that between the wild type MUG and the Asn-140 and Ser-23 mutants. This study underscores the role of the favorable binding interactions in modulating the specificity of DNA glycosylases.  相似文献   

10.
Apurinic/apyrimidinic (AP) sites are the most frequently found mutagenic lesions in DNA, and they arise mainly from spontaneous base loss or modified base removal by damage-specific DNA glycosylases. AP sites are cleaved by AP endonucleases, and the resultant gaps in the DNA are repaired by DNA polymerase/DNA ligase reactions. We identified the gene product that is responsible for the AP endonuclease activity in the hyperthermophilic euryarchaeon, Pyrococcus furiosus. Furthermore, we detected the physical interaction between P. furiosus AP endonuclease (PfuAPE) and proliferating cell nuclear antigen (PCNA; PfuPCNA) by a pull-down assay and a surface plasmon resonance analysis. Interestingly, the associated 3′–5′ exonuclease activity, but not the AP endonuclease activity, of PfuAPE was stimulated by PfuPCNA. Immunoprecipitation experiments using the P. furiosus cell extracts supported the interaction between PfuAPE and PfuPCNA in the cells. This is the first report describing the physical and functional interactions between an archaeal AP endonuclease and PCNA. We also detected the ternary complex of PfuPCNA, PfuAPE and Pfu uracil-DNA glycosylase. This complex probably functions to enhance the repair of uracil-containing DNA in P. furiosus cells.  相似文献   

11.
Nucleases play important roles in all DNA transactions, including replication, repair, and recombination. Many different nucleases from bacterial and eukaryotic organisms have been identified and functionally characterized. However, our knowledge about the nucleases from Archaea, the third domain of life, is still limited. We searched for 3′–5′ exonuclease activity in the hyperthermophilic archaeon, Pyrococcus furiosus, and identified a protein with the target activity. The purified protein, encoded by PF2046, is composed of 229 amino acids with a molecular weight of 25,596, and displayed single-strand specific 3′–5′ exonuclease activity. The protein, designated as PfuExo I, forms a stable trimeric complex in solution and excises the DNA at every two nucleotides from the 3′ to 5′ direction. The amino acid sequence of this protein is conserved only in Thermococci, one of the hyperthermophilic classes in the Euryarchaeota subdomain in Archaea. The newly discovered exonuclease lacks similarity to any other proteins with known function, including hitherto reported 3′–5′ exonucleases. This novel nuclease may be involved in a DNA repair pathway conserved in the living organisms as a specific member for some hyperthermophilic archaea.  相似文献   

12.
Archaeal family-B DNA polymerases bind tightly to deaminated bases and stall replication on encountering uracil in template strands, four bases ahead of the primer-template junction. Should the polymerase progress further towards the uracil, for example, to position uracil only two bases in front of the junction, 3′–5′ proof-reading exonuclease activity becomes stimulated, trimming the primer and re-setting uracil to the +4 position. Uracil sensing prevents copying of the deaminated base and permanent mutation in 50% of the progeny. This publication uses both steady-state and time-resolved 2-aminopurine fluorescence to show pronounced unwinding of primer-templates with Pyrococcus furiosus (Pfu) polymerase–DNA complexes containing uracil at +2; much less strand separation is seen with uracil at +4. DNA unwinding has long been recognized as necessary for proof-reading exonuclease activity. The roles of M247 and Y261, amino acids suggested by structural studies to play a role in primer-template unwinding, have been probed. M247 appears to be unimportant, but 2-aminopurine fluorescence measurements show that Y261 plays a role in primer-template strand separation. Y261 is also required for full exonuclease activity and contributes to the fidelity of the polymerase.  相似文献   

13.
During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an ‘affinity-capture’ procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3′-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3′-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3′-blocked intermediate.  相似文献   

14.
Deamination of DNA bases can occur spontaneously, generating highly mutagenic lesions such as uracil and hypoxanthine. In Escherichia coli two enzymes initiate repair at hypoxanthine residues in DNA. The alkylbase DNA glycosylase, AlkA, initiates repair by removal of the damaged base, whereas endonuclease V, Endo V, hydrolyses the second phosphodiester bond 3′ to the lesion. We have identified and characterised a mouse cDNA with striking homology to the E.coli nfi gene, which also has significant similarities to motifs required for catalytic activity of the UvrC endonuclease. The 37-kDa mouse enzyme (mEndo V) incises the DNA strand at the second phosphodiester bond 3′ to hypoxanthine- and uracil-containing nucleotides. The activity of mEndo V is elevated on single-stranded DNA substrate in vitro. Expression of the mouse protein in a DNA repair-deficient E.coli alkA nfi strain suppresses its spontaneous mutator phenotype. We suggest that mEndo V initiates an alternative excision repair pathway for hypoxanthine removal. It thus appears that mEndo V has properties overlapping the function of alkylbase DNA glycosylase (Aag) in repair of deaminated adenine, which to some extent could explain the absence of phenotypic abnormalities associated with Aag knockout in mice.  相似文献   

15.
Despite the progress in understanding the base excision repair (BER) pathway it is still unclear why known mutants deficient in DNA glycosylases that remove oxidised bases are not sensitive to oxidising agents. One of the back-up repair pathways for oxidative DNA damage is the nucleotide incision repair (NIR) pathway initiated by two homologous AP endonucleases: the Nfo protein from Escherichia coli and Apn1 protein from Saccharomyces cerevisiae. These endonucleases nick oxidatively damaged DNA in a DNA glycosylase-independent manner, providing the correct ends for DNA synthesis coupled to repair of the remaining 5′-dangling nucleotide. NIR provides an advantage compared to DNA glycosylase-mediated BER, because AP sites, very toxic DNA glycosylase products, do not form. Here, for the first time, we have characterised the substrate specificity of the Apn1 protein towards 5,6-dihydropyrimidine, 5-hydroxy-2′-deoxyuridine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine deoxynucleotide. Detailed kinetic comparisons of Nfo, Apn1 and various DNA glycosylases using different DNA substrates were made. The apparent Km and kcat/Km values of the reactions suggest that in vitro DNA glycosylase/AP lyase is somewhat more efficient than the AP endonuclease. However, in vivo, using cell-free extracts from paraquat-induced E.coli and from S.cerevisiae, we show that NIR is one of the major pathways for repair of oxidative DNA base damage.  相似文献   

16.
DNA is constantly damaged by endogenous and environmental influences. Deaminated adenine (hypoxanthine) tends to pair with cytosine and leads to the A:T→G:C transition mutation during DNA replication. Endonuclease V (EndoV) hydrolyzes the second phosphodiester bond 3′ from deoxyinosine in the DNA strand, and was considered to be responsible for hypoxanthine excision repair. However, the downstream pathway after EndoV cleavage remained unclear. The activity to cleave the phosphodiester bond 5′ from deoxyinosine was detected in a Pyrococcus furiosus cell extract. The protein encoded by PF1551, obtained from the mass spectrometry analysis of the purified fraction, exhibited the corresponding cleavage activity. A putative homolog from Thermococcus kodakarensis (TK0887) showed the same activity. Further biochemical analyses revealed that the purified PF1551 and TK0887 proteins recognize uracil, xanthine and the AP site, in addition to hypoxanthine. We named this endonuclease Endonuclease Q (EndoQ), as it may be involved in damaged base repair in the Thermococcals of Archaea.  相似文献   

17.
Repair of clustered uracil DNA damages in Escherichia coli   总被引:2,自引:2,他引:0       下载免费PDF全文
Multiply damaged sites (MDS) are defined as greater than/equal to two lesions within 10–15 bp and are generated in DNA by ionizing radiation. In vitro repair of closely opposed base damages ≥2 bp apart results in a double strand break (DSB). This work extends the in vitro studies by utilizing clusters of uracil DNA damage as model lesions to determine whether MDS are converted to DSBs in bacteria. Lesions were positioned within the firefly luciferase coding region, transformed into bacteria (wild-type, uracil DNA glycosylase-deficient, ung, or exonuclease III and endonuclease IV-deficient, xthnfo) and luciferase activity measured following repair. DSB formation was expected to decrease activity. Two closely opposed uracils separated by ≤7 bp decreased luciferase activity in wild-type and xthnfo, but not ung bacteria. Growth of bacteria to obtain plasmid-containing colonies demonstrated that the plasmid was destroyed following the mis-repair of two uracils positioned 7 bp apart. This study indicates a DSB is formed when uracil DNA glycosylase initiates repair of two closely opposed uracils ≤7 bp apart, even in the absence of the major apurinic endonucleases. This work supports the in vitro studies and demonstrates that DNA repair is not always advantageous to cells.  相似文献   

18.
DNA single-strand breaks containing 3′-8-oxoguanine (3′-8-oxoG) ends can arise as a consequence of ionizing radiation and as a result of DNA polymerase infidelity by misincorporation of 8-oxodGMP. In this study we examined the mechanism of repair of 3′-8-oxoG within a single-strand break using purified base excision repair enzymes and human whole cell extracts. We find that 3′-8-oxoG inhibits ligation by DNA ligase IIIα or DNA ligase I, inhibits extension by DNA polymerase β and that the lesion is resistant to excision by DNA glycosylases involved in the repair of oxidative lesions in human cells. However, we find that purified human AP-endonuclease 1 (APE1) is able to remove 3′-8-oxoG lesions. By fractionation of human whole cell extracts and immunoprecipitation of fractions containing 3′-8-oxoG excision activity, we further demonstrate that APE1 is the major activity involved in the repair of 3′-8-oxoG lesions in human cells and finally we reconstituted repair of the 3′-8-oxoG-containing oligonucleotide duplex with purified human enzymes including APE1, DNA polymerase β and DNA ligase IIIα.  相似文献   

19.
Endonuclease V is an enzyme that initiates a conserved DNA repair pathway by making an endonucleolytic incision at the 3′-side 1 nt from a deaminated base lesion. DNA cleavage analysis using mutants defective in DNA binding and Mn2+ as a metal cofactor reveals a novel 3′-exonuclease activity in endonuclease V [Feng,H., Dong,L., Klutz,A.M., Aghaebrahim,N. and Cao,W. (2005) Defining amino acid residues involved in DNA-protein interactions and revelation of 3′-exonuclease activity in endonuclease V. Biochemistry, 44, 11486–11495.]. This study defines the enzymatic nature of the endonuclease and exonuclease activity in endonuclease V from Thermotoga maritima. In addition to its well-known inosine-dependent endonuclease, Tma endonuclease V also exhibits inosine-dependent 3′-exonuclease activity. The dependence on an inosine site and the exonuclease nature of the 3′-exonuclease activity was demonstrated using 5′-labeled and internally-labeled inosine-containing DNA and a H214D mutant that is defective in non-specific nuclease activity. Detailed kinetic analysis using 3′-labeled DNA indicates that Tma endonuclease V also possesses non-specific 5′-exonuclease activity. The multiplicity of the endonuclease and exonuclease activity is discussed with respect to deaminated base repair.  相似文献   

20.
In DNA, the deamination of dAMP generates 2′-deoxyinosine 5′-monophosphate (dIMP). Hypoxanthine (HX) residues are mutagenic since they give rise to A·T→G·C transition. They are excised, although with different efficiencies, by an activity of the 3-methyladenine (3-meAde)-DNA glycosylases from Escherichia coli (AlkA protein), human cells (ANPG protein), rat cells (APDG protein) and yeast (MAG protein). Comparison of the kinetic constants for the excision of HX residues by the four enzymes shows that the E.coli and yeast enzymes are quite inefficient, whereas for the ANPG and the APDG proteins they repair the HX residues with an efficiency comparable to that of alkylated bases, which are believed to be the primary substrates of these DNA glycosylases. Since the use of various substrates to monitor the activity of HX-DNA glycosylases has generated conflicting results, the efficacy of the four 3-meAde-DNA glycosylases of different origin was compared using three different substrates. Moreover, using oligonucleotides containing a single dIMP residue, we investigated a putative sequence specificity of the enzymes involving the bases next to the HX residue. We found up to 2–5-fold difference in the rates of HX excision between the various sequences of the oligonucleotides studied. When the dIMP residue was placed opposite to each of the four bases, a preferential recognition of dI:T over dI:dG, dI:dC and dI:dA mismatches was observed for both human (ANPG) and E.coli (AlkA) proteins. At variance, the yeast MAG protein removed more efficiently HX from a dI:dG over dI:dC, dI:T and dI:dA mismatches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号