首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tryptophan synthase α2β2 bi-enzyme complex catalyzes the last two steps in the synthesis of l-tryptophan (l-Trp). The α-subunit catalyzes cleavage of 3-indole-d-glycerol 3′-phosphate (IGP) to give indole and d-glyceraldehyde 3′-phosphate (G3P). Indole is then transferred (channeled) via an interconnecting 25 Å-long tunnel, from the α-subunit to the β-subunit where it reacts with l-Ser in a pyridoxal 5′-phosphate-dependent reaction to give l-Trp and a water molecule. The efficient utilization of IGP and l-Ser by tryptophan synthase to synthesize l-Trp utilizes a system of allosteric interactions that (1) function to switch the α-site on and off at different stages of the β-subunit catalytic cycle, and (2) prevent the escape of the channeled intermediate, indole, from the confines of the α- and β-catalytic sites and the interconnecting tunnel. This review discusses in detail the chemical origins of the allosteric interactions responsible both for switching the α-site on and off, and for triggering the conformational changes between open and closed states which prevent the escape of indole from the bienzyme complex.  相似文献   

2.
Indole channeling by tryptophan synthase of neurospora   总被引:4,自引:0,他引:4  
  相似文献   

3.
Allosteric interactions regulate substrate channeling in Salmonella typhimurium tryptophan synthase. The channeling of indole between the alpha- and beta-sites via the interconnecting 25 A tunnel is regulated by allosteric signaling arising from binding of ligand to the alpha-site, and covalent reaction of l-Ser at the beta-site. This signaling switches the alpha- and beta-subunits between open conformations of low activity and closed conformations of high activity. Our objective is to synthesize and characterize new classes of alpha-site ligands (ASLs) that mimic the binding of substrates, 3-indole-d-glycerol 3'-phosphate (IGP) or d-glyceraldehyde 3-phosphate (G3P), for use in the investigation of alpha-site-beta-site interactions. The new synthesized IGP analogues contain an aryl group linked to an O-phosphoethanolamine moiety through amide, sulfonamide, or thiourea groups. The G3P analogue, thiophosphoglycolohydroxamate, contains a hydroxamic acid group linked to a thiophosphate moiety. Crystal structures of the internal aldimine complexed with G3P and with three of the new ASLs are presented. These structural and solution studies of the ASL complexes with the internal aldimine form of the enzyme establish the following. (1) ASL binding occurs with high specificity and relatively high affinities at the alpha-site. (2) Binding of the new ASLs slows the entry of indole analogues into the beta-site by blocking the tunnel opening at the alpha-site. (3) ASL binding stabilizes the closed conformations of the beta-subunit for the alpha-aminoacrylate and quinonoid forms of the enzyme. (4) The new ASLs exhibit allosteric properties that parallel the behaviors of IGP and G3P.  相似文献   

4.
The heme of neuronal nitric oxide synthase (nNOS) participates in O2 activation but also binds self-generated NO, resulting in reversible feedback inhibition. We utilized mutagenesis to investigate if a conserved tryptophan residue (Trp409), which engages in pi-stacking with the heme and hydrogen bonds to its axial cysteine ligand, helps control catalysis and regulation by NO. Mutants W409F and W409Y were hyperactive regarding NO synthesis without affecting cytochrome c reduction, reductase-independent N-hydroxyarginine oxidation, or Arg and tetrahydrobiopterin binding. In the absence of Arg electron flux through the heme was slower in the W409 mutants than in wild-type. However, less NO complex accumulated during NO synthesis by the mutants. To understand the mechanism, we compared the kinetics of heme-NO complex formation, rate of heme reduction, kcat prior to and after NO complex formation, NO binding affinity, NO complex stability, and its reaction with O2. During the initial phase of NO synthesis, heme-NO complex formation was three and five times slower in W409F and W409Y, which corresponded to a slower heme reduction. NO complex formation inhibited wild-type turnover 7-fold but reduced mutant turnover less than 2-fold, giving mutants higher steady-state activities. NO binding kinetics were similar among mutants and wild type, although mutants also formed a 417 nm ferrous-NO complex. Oxidation of ferrous-NO complex was seven times faster in mutants than in wild type. We conclude that mutant hyperactivity primarily derives from slower heme reduction and faster oxidation of the heme-NO complex by O2. In this way Trp409 mutations minimize NO feedback inhibition by limiting buildup of the ferrous-NO complex during the steady state. Conservation of W409 among NOS suggests that this proximal Trp may regulate NO feedback inhibition and is important for enzyme physiologic function.  相似文献   

5.
The tryptophan synthases from Escherichia coli and Salmonella typhimurium are tetrameric enzymes, with an elongated TrpA.TrpB.TrpB.TrpA structure. Structural studies have identified residues 277-283 of TrpB as a potentially important region for the allosteric communication between the TrpA and TrpB subunits and for the transport of indole between their active sites through a hydrophobic tunnel. To explore the functional role of this region, we analyzed the effects of 19 single and double mutations in TrpB on the tryptophan synthase (TSase) and serine deaminase (SDase) activities of the TrpB2 dimer, either in the presence or in the absence of the TrpA subunit. The mutations of residues 273-283 could be divided into 4 classes. Mutations 1278A, F280G and M282A decreased the SDase and TSase activities of TrpB2 to similar extents. F280A decreased the SDase activity of TrpB2 more than its TSase activity, whereas the reverse was true for Y279L. F280A decreased the activation factor of TrpB2 by TrpA, whereas F280G increased it. The reaction steps and intramolecular contacts that could be affected by the mutations are described. The sequence 278-IYFGM-282, which is present in E. coli and S. typhimurium, is only found in 5 out of 42 organisms, whereas the sequence VLHGX is found in 21 organisms. Our results identified several mutations that could be used as structural probes to analyze precisely the roles of residues 278-282 and their evolution.  相似文献   

6.
In the tryptophan synthase bienzyme complex, indole produced by substrate cleavage at the alpha-site is channeled to the beta-site via a 25 A long tunnel. Within the beta-site, indole and l-Ser react with pyridoxal 5'-phosphate in a two-stage reaction to give l-Trp. In stage I, l-Ser forms an external aldimine, E(Aex1), which converts to the alpha-aminoacrylate aldimine, E(A-A). Formation of E(A-A) at the beta-site activates the alpha-site >30-fold. In stage II, indole reacts with E(A-A) to give l-Trp. The binding of alpha-site ligands (ASLs) exerts strong allosteric effects on the reaction of substrates at the beta-site: the distribution of intermediates formed in stage I is shifted in favor of E(A-A), and the binding of ASLs triggers a conformational change in the beta-site to a state with an increased affinity for l-Ser. Here, we compare the behavior of new ASLs as allosteric effectors of stage I with the behavior of the natural product, d-glyceraldehyde 3-phosphate. Rapid kinetics and kinetic isotope effects show these ASLs bind with affinities ranging from micro- to millimolar, and the rate-determining step for conversion of E(Aex1) to E(A-A) is increased by 8-10-fold. To derive a structure-based mechanism for stage I, X-ray structures of both the E(Aex1) and E(A-A) states complexed with the different ASLs were determined and compared with structures of the ASL complexes with the internal aldimine [Ngo, H., Harris, R., Kimmich, N., Casino, P., Niks, D., Blumenstein, L., Barends, T. R., Kulik, V., Weyand, M., Schlichting, I., and Dunn, M. F. (2007) Biochemistry 46, 7713-7727].  相似文献   

7.
The functional and structural role of the conserved Asn49 of theta class maize glutathione S-transferase was investigated by site-directed mutagenesis. Asn49 is located in the type I beta turn formed by residues 49-52, and is involved in extensive hydrogen-bonding interactions between alpha helix 2 and the rest of the N-terminal domain. The substitution of Asn49 with Ala induces positive cooperativity for 1-chloro-2,4-dinitrobenzene (CDNB) binding as reflected by a Hill coefficient of 1.9 (S(0.5)CDNB = 0.43 mm). The positive cooperativity is also confirmed by following the isothermic binding of 1-hydroxyl-2,4-dinitrobenzene (HDNB) by UV-difference spectroscopy. In addition, the mutated enzyme exhibits: (a) an increase in the Km(GSH) value of about 6.5-fold, and decrease in kcat value of about fourfold; (b) viscosity-independent kinetic parameters; (c) lower thermostability, and (d) increased susceptibility to proteolytic attack by trypsin, when compared to the wild-type enzyme. It is concluded that Asn49 affects the rate-limiting step of the catalytic reaction, and contributes significantly to the structural and binding characteristics of both the glutathione binding site (G-site) and the electrophile substrate binding site (H-site) by affecting the structural integrity of a type I beta turn (comprising residues 49-52) and probably the flexibility of the highly mobile short 310 helical segment of alpha helix 2 (residues 35-46). These structural perturbations are probably transmitted, via Phe51 and Phe65, to alpha helix H3" of the adjacent subunit which contains key residues that interact with the electrophile substrate and contribute to the monomer-monomer contact region. This may accounts for the positive cooperativity observed.  相似文献   

8.
9.
D Ferrari  L H Yang  E W Miles  M F Dunn 《Biochemistry》2001,40(25):7421-7432
Substrate channeling in the tryptophan synthase bienzyme is regulated by allosteric interactions. Allosteric signals are transmitted via a scaffolding of structural elements that includes a monovalent cation-binding site and salt-bridging interactions between the side chains of betaAsp 305, betaArg 141, betaLys 167, and alphaAsp 56 that appear to modulate the interconversion between open and closed conformations. betaAsp 305 also interacts with the hydroxyl group of the substrate L-Ser in some structures. One possible functional role for betaAsp 305 is to ensure the allosteric transmission that triggers the switching of alphabeta-dimeric units between open and closed conformations of low and high activity. This work shows that substitution of betaAsp 305 with Ala (betaD305A) decreases the affinity of the beta-site for the substrate L-Ser, destabilizes the enzyme-bound alpha-aminoacrylate, E(A-A), and quinonoid species, E(Q), and changes the nucleophile specificity of the beta-reaction. The altered specificity provides a biosynthetic route for new L-amino acids derived from substrate analogues. betaD305A also shows an increased rate of formation of pyruvate upon reaction with L-Ser relative to the wild-type enzyme. The formation of pyruvate is strongly inhibited by the binding of benzimidazole to E(A-A). Upon reaction with L-Ser and in the presence of the alpha-site substrate analogue, alpha-glycerol phosphate, the Na(+) form of betaD305A undergoes inactivation via reaction of nascent alpha-aminoacrylate with bound PLP. This work establishes important roles for betaAsp 305 both in the conformational change between open and closed states that takes place at the beta-site during the formation of the E(A-A) and in substrate binding and recognition.  相似文献   

10.
M K Geck  J F Kirsch 《Biochemistry》1999,38(25):8032-8037
A novel method is presented that establishes definitively the existence or nonexistence of direct metabolite transfer between consecutive enzymes in a metabolic sequence. The procedure is developed with the specific example of channeling of oxaloacetate between Escherichia coli aspartate aminotransferase (AATase) and malate dehydrogenase (MDH). The assay is carried out in the presence of a large excess of inactive variants of AATase. These mutants would outcompete the much smaller quantities of wild-type AATase for any docking sites on MDH and thus decrease the rate of the coupled L-aspartate to oxaloacetate to malate sequence only if the direct metabolite transfer mechanism is operative. The results show that oxaloacetate is not transferred directly from AATase to MDH because no decrease in rate was observed in the presence of approximately 100 microM inactive mutants. This concentration is 10 times the physiological AATase concentration, which was determined in this work. The methodology can be applied generally.  相似文献   

11.
Tryptophan synthase from Escherichia coli (L-serine hydro-lyase (adding indole), EC 4.2.1.20) synthesizes L-trypotophan from indoleglycerol phosphate and L-serine, releasing glyceraldehyde 3-phosphate, or from indole and L-serine. The latter reaction (B reaction), catalyzed either by the beta2 species or by the (alpha2 beta2) complex, has been studied by steady-state methods. A sequential mechanism is indicated. Inhibition experiments with the substrate analogue benzimidazole were carried out in order to distinguish between random and ordered mechanisms. The results are compatible with a random sequential mechanism. The dissociation constants of the enzyme-substrate complexes are evaluated. When catalyzed by the tetrameric complex (alpha2 beta2) the B reaction is inhibited by higher concentrations of the substrate indole. This inhibition does not follow the usual substrate inhibition pattern. The question whether the binding of indole to the alpha-subunit exerts an inhibitory effect on the beta2 species, possibly by reversing the activation by the alpha subunit of the beta2 species, is discussed.  相似文献   

12.
The transmission of regulatory signals between the alpha- and beta-subunits of the tryptophan synthase alpha 2 beta 2 complex from Salmonella typhimurium has been investigated by monitoring the luminescence properties of the enzyme in the presence and in the absence of the alpha-subunit ligand DL-alpha-glycerol 3-phosphate, the alpha- and beta-subunit substrate indole, and the beta-subunit substrate analog L-histidine. The beta-subunit contains as intrinsic probes Trp-177 and pyridoxal 5'-phosphate, whereas the alpha-subunit has been mutagenized by replacing Ala-129 with a Trp residue. In contrast to the inertness of L-histidine, DL-alpha-glycerol 3-phosphate was found (i) to alter the phosphorescence spectrum of Trp-129, (ii) to shift the fluorescence thermal quenching profile of both Trp-177 and coenzyme to higher temperature, (iii) to slow down the triplet decay kinetics of Trp-177 in fluid solution, and (iv) to affect the equilibrium between different conformations of the enzyme. These findings provide direct evidence that DL-alpha-glycerol 3-phosphate binding affects the structure of the alpha-subunit and, in the presence of coenzyme, induces a conformational change in the beta-subunit that leads to a considerably more rigid structure. As opposed to DL-alpha-glycerol 3-phosphate, the shortening of the phosphorescence lifetime upon indole binding suggests that this substrate increases structural fluctuations in the beta-subunit. Implications for the mechanism of the allosteric regulation between alpha- and beta-subunits are discussed.  相似文献   

13.
Wang ZQ  Wei CC  Santolini J  Panda K  Wang Q  Stuehr DJ 《Biochemistry》2005,44(12):4676-4690
Nitric oxide synthases (NOSs) are flavo-heme enzymes that require (6R)-tetrahydrobiopterin (H(4)B) for activity. Our single-catalytic turnover study with the inducible NOS oxygenase domain showed that a conserved Trp that interacts with H(4)B (Trp457 in mouse inducible NOS) regulates the kinetics of electron transfer between H(4)B and an enzyme heme-dioxy intermediate, and this in turn alters the kinetics and extent of Arg hydroxylation [Wang, Z.-Q., et al. (2001) Biochemistry 40, 12819-12825]. To investigate the impact of these effects on NADPH-driven NO synthesis by NOS, we generated and characterized the W457A mutant of inducible NOS and the corresponding W678A and W678F mutants of neuronal NOS. Mutant defects in protein solubility and dimerization were overcome by purifying them in the presence of sufficient Arg and H(4)B, enabling us to study their physical and catalytic profiles. Optical spectra of the ferric, ferrous, heme-dioxy, ferrous-NO, ferric-NO, and ferrous-CO forms of each mutant were similar to that of the wild type. However, the mutants had higher apparent K(m) values for H(4)B and in one mutant for Arg (W457A). They all had lower NO synthesis activities, uncoupled NADPH consumption, and a slower and less prominent buildup of enzyme heme-NO complex during steady-state catalysis. Further analyses showed the mutants had normal or near-normal heme midpoint potential and heme-NO complex reactivity with O(2), but had somewhat slower ferric heme reduction rates and markedly slower reactivities of their heme-dioxy intermediate. We conclude that the conserved Trp (1) has similar roles in two different NOS isozymes and (2) regulates delivery of both electrons required for O(2) activation (i.e., kinetics of ferric heme reduction by the NOS flavoprotein domain and reduction of the heme-dioxy intermediate by H(4)B). However, its regulation of H(4)B electron transfer is most important because this ensures efficient coupling of NADPH oxidation and NO synthesis by NOS.  相似文献   

14.
In the oxygenase domain of mouse inducible nitric-oxide synthase (iNOSoxy), a conserved tryptophan residue, Trp-457, regulates the kinetics and extent of l-Arg oxidation to N(omega)-hydroxy-l-arginine (NOHA) by controlling electron transfer between bound (6R)-tetrahydrobiopterin (H(4)B) cofactor and the enzyme heme Fe(II)O(2) intermediate (Wang, Z. Q., Wei, C. C., Ghosh, S., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) Biochemistry 40, 12819-12825). To investigate whether NOHA oxidation to citrulline and nitric oxide (NO) is regulated by a similar mechanism, we performed single turnover reactions with wild type iNOSoxy and mutants W457F and W457A. Ferrous proteins containing NOHA plus H(4)B or NOHA plus 7,8-dihydrobiopterin (H(2)B), were mixed with O(2)-containing buffer, and then heme spectral transitions and product formation were followed versus time. All three proteins formed a Fe(II)O(2) intermediate with identical spectral characteristics. In wild type, H(4)B increased the disappearance rate of the Fe(II)O(2) intermediate relative to H(2)B, and its disappearance was coupled to the formation of a Fe(III)NO immediate product prior to formation of ferric enzyme. In W457F and W457A, the disappearance rate of the Fe(II)O(2) intermediate was slower than in wild type and took place without detectable build-up of the heme Fe(III)NO immediate product. Rates of Fe(II)O(2) disappearance correlated with rates of citrulline formation in all three proteins, and reactions containing H(4)B formed 1.0, 0.54, and 0.38 citrulline/heme in wild type, W457F, and W457A iNOSoxy, respectively. Thus, Trp-457 modulates the kinetics of NOHA oxidation by iNOSoxy, and this is important for determining the extent of citrulline and NO formation. Our findings support a redox role for H(4)B during NOHA oxidation to NO by iNOSoxy.  相似文献   

15.
16.
Serine hydroxymethyltransferase: origin of substrate specificity.   总被引:5,自引:0,他引:5  
All forms of serine hydroxymethyltransferase, for which a primary structure is known, have five threonine residues near the active-site lysyl residue (K229) that forms the internal aldimine with pyridoxal phosphate. For Escherichia coli serine hydroxymethyltransferase each of these threonine residues has been changed to an alanine residue. The resulting five mutant enzymes were purified and characterized with respect to kinetic and spectral properties. The mutant enzymes T224A and T227A showed no significant changes in kinetic and spectral properties compared to the wild-type enzyme. The T225A and T230A enzymes exhibited differences in Km and kcat values but exhibited the same spectral properties as the wild-type enzyme. The four threonine residues at positions 224, 225, 227, and 230 do not play a critical role in the mechanism of the enzyme. The T226A enzyme had nearly normal affinity for substrates and coenzymes but had only 3% of the catalytic activity of the wild-type enzyme. The spectrum of the T226A enzyme in the presence of amino acid substrates showed a large absorption maximum at 343 nm with only a small absorption band at 425 nm, unlike the wild-type enzyme whose enzyme-substrate complexes absorb at 425 nm. Rapid reaction studies showed that when amino acid substrates and substrate analogues were added to the T226A enzyme, the internal aldimine absorbing at 422 nm was rapidly converted to a complex absorbing at 343 nm in a second-order process. This was followed by a very slow first-order formation of a complex absorbing at 425 nm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The alpha subunit is bound with negative cooperativity to the holo beta 2 subunit of tryptophan synthase in phosphate buffer. Thus it is feasible to measure separately the rates of formation both of the stable alpha beta 2 subcomplex from beta 2, and of the mature alpha 2 beta 2 complex from alpha beta 2, using stopped-flow techniques. Addition of each alpha subunit proceeds in two steps; an initial alpha beta protomer is formed rapidly, which subsequently isomerizes slowly to the equilibrium state. The rates of dissociation of both the alpha beta 2 and alpha 2 beta 2 complexes were measured by trapping released alpha subunit with enzymically inactive reduced beta 2 subunit. The reversal of the slow isomerization both determines the rate of dissociation, and accounts for the high overall affinity of the beta protomer for the alpha subunit. The data fit to a sequential assembly mechanism consisting of seven protein species and yields values for most of the rate constants and all of the microscopic equilibrium constants. Negative cooperativity arises from a weaker initial binding of the second alpha subunit, as expressed by its larger off-constant, possibly due to steric hindrance. The kinetics of binding of L-serine and indolepropanol phosphate during the assembly process shows that the beta protomer is already partially activated in the initial alpha beta complex. Full activation is achieved in the slow isomerization reaction. In contrast, the alpha subunit gains high affinity for indolepropanol phosphate only in the isomerization reaction. These observations indicate that the isomerization involves synchronous conformation changes of both alpha and beta protomers.  相似文献   

18.
Tryptophan synthase from Salmonella typhimurium is a bifunctional alpha 2 beta 2 complex that catalyzes the formation of L-tryptophan. We have characterized over the temperature range from 160 to 293 K the fluorescence and phosphorescence properties of the single tryptophan present at position 177 of the beta-subunit and of the pyridoxal 5'-phosphate bound through a Schiff's base in the beta-active site. The comparison between the fluorescence of the pyridoxal phosphate bound either to the protein or to valine free in solution indicates substantial protection for the coenzyme against thermal quenching and a greater intensity of the ketoenamine tautomer band. Trp-177 is highly luminescent, and its proximity to the pyridoxal moiety leads to an over 50% quenching of its fluorescence with both reduced and native coenzyme. The Trp phosphorescence spectrum possesses a narrow, well-defined, 0-0 vibrational band centered at 418.5 nm, a wavelength that indicates strong polar interactions with neighboring charges. The observation of delayed fluorescence in the native complex implies that the excited triplet state is involved in a process of triplet-singlet energy transfer to the ketoenamine tautomer. The rate of energy transfer, heterogeneous in low-temperature glasses with rate constants of 2.26 and 0.07 s-1, becomes homogeneous in fluid solutions as the coenzyme tautomer interconversion is likely faster than the phosphorescence decay. In both apo- and holo-alpha 2 beta 2, the phosphorescence from Trp-177 is long-lived even at ambient temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Substrate channeling in the tryptophan synthase bienzyme complex from Salmonella typhimurium is regulated by allosteric interactions triggered by binding of ligand to the alpha-site and covalent reaction at the beta-site. These interactions switch the enzyme between low-activity forms with open conformations and high-activity forms with closed conformations. Previously, allosteric interactions have been demonstrated between the alpha-site and the external aldimine, alpha-aminoacrylate, and quinonoid forms of the beta-site. Here we employ the chromophoric l-Trp analogue, trans-3-indole-3'-acrylate (IA), and noncleavable alpha-site ligands (ASLs) to probe the allosteric properties of the internal aldimine, E(Ain). The ASLs studied are alpha-d,l-glycerol phosphate (GP) and d-glyceraldehyde 3-phosphate (G3P), and examples of two new classes of high-affinity alpha-site ligands, N-(4'-trifluoromethoxybenzoyl)-2-aminoethyl phosphate (F6) and N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), that were previously shown to bind to the alpha-site by optical spectroscopy and X-ray crystal structures [Ngo, H., Harris, R., Kimmich, N., Casino, P., Niks, D., Blumenstein, L., Barends, T. R., Kulik, V., Weyand, M., Schlichting, I., and Dunn, M. F. (2007) Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex, Biochemistry 46, 7713-7727]. The binding of IA to the beta-site is stimulated by the binding of GP, G3P, F6, or F9 to the alpha-site. The binding of ASLs was found to increase the affinity of the beta-site of E(Ain) for IA by 4-5-fold, demonstrating for the first time that the beta-subunit of the E(Ain) species undergoes a switching between low- and high-affinity states in response to the binding of ASLs.  相似文献   

20.
M Roy  S Keblawi  M F Dunn 《Biochemistry》1988,27(18):6698-6704
The reactions of the indole analogues indoline and aniline with the Escherichia coli tryptophan synthase alpha-aminoacrylate Schiff base intermediate have been characterized by UV-visible and 1H NMR absorption spectroscopy and compared with the interactions of indole and the potent inhibitor benzimidazole. Indole, via the enamine functionality of the pyrrole ring, reacts with the alpha-aminoacrylate intermediate, forming a transient quinonoid species with lambda max 476 nm as the new C-C bond is synthesized. Conversion of this quinonoid to L-tryptophan is the rate-limiting step in catalysis [Lane, A., & Kirschner, K. (1981) Eur. J. Biochem. 120, 379-398]. Both aniline and indoline undergo rapid N-C bond formation with the alpha-aminoacrylate to form quinonoid intermediates; benzimidazole binds rapidly and tightly to the alpha-aminoacrylate but does not undergo covalent bond formation. The indoline and aniline quinonoids (lambda max 464 and 466 nm, respectively) are formed via nucleophilic attack on the electrophilic C-beta of the alpha-aminoacrylate. The indoline quinonoid decays slowly, yielding a novel, new amino acid, dihydroisotryptophan. The aniline quinonoid is quasi-stable, and no new amino acid product was detected. We conclude that nucleophilic attack requires the precise alignment of bonding orbitals between nucleophile and the alpha-aminoacrylate intermediate. The constraints imposed by the geometry of the indole subsite force the aromatic rings of indoline, aniline, and benzimidazole to bind in the same plane as indole; thus nucleophilic attack occurs with the N-1 atoms of indoline and aniline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号