首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Polyacrylamide gel isoelectric focusing (PAGE-IEF), cellulose acetate electrophoresis, and histochemical techniques were used to examine the tissue and subcellular distribution, genetics and biochemical properties of aldehyde dehydrogenase (ALDH) isozymes in a didelphid marsupial, the gray short-tail opossum (Monodelphis domestica). At least 14 zones of activity were resolved by PAGE-IEF and divided into five isozyme groups and three ALDH classes, based upon comparisons with properties previously reported for human, baboon, rat, and mouse ALDHs. Opossum liver ALDHs were distributed among cytosol (ALDHs 1 and 5) and large granular (mitochondrial) fractions (ALDHs 2 and 5). Similarly, kidney ALDHs were distributed between the cytosol (ALDH5) and the mitochondrial fractions (ALDHs 2, 4, and 5), whereas a major isozyme (ALDH3), found in high activity in cornea, esophagus, ear pinna, tail, and stomach extracts, was localized predominantly in the cytosol fraction. Phenotypic variants of the latter enzyme were shown to be inherited in a normal Mendelian fashion, with two alleles at a single locus (ALDH3) showing codominant expression. The data provided evidence for genetic identity of corneal, ear pinna, tail, and stomach ALDH3 and supported biochemical evidence from other mammalian species that this enzyme has a dimeric subunit structure.  相似文献   

2.
This report describes the isolation of a heretofore uncharacterized aldehyde dehydrogenase (ALDH) with retinal dehydrogenase activity from rat kidney and the cloning and expression of a cDNA that encodes its human ortholog, the previously unknown ALDH12. The human ALDH12 cDNA predicts a 487-residue protein with the 23 invariant amino acids, four conserved regions, cofactor binding motif (G(209)XGX(3)G), and active site cysteine residue (Cys(287)) that typify members of the ALDH superfamily. ALDH12 seems at least as efficient (V(m)/K(m)) in converting 9-cis-retinal into the retinoid X receptor ligand 9-cis-retinoic acid as two previously identified ALDHs with 9-cis-retinal dehydrogenase activity, rat retinal dehydrogenase (RALDH) 1 and RALDH2. ALDH12, however, has approximately 40-fold higher activity with 9-cis- retinal than with all-trans-retinal, whereas RALDH1 and RALDH2 have equivalent and approximately 4-fold less efficiencies for 9-cis-retinal versus all-trans-retinal, respectively. Therefore, ALDH12 is the first known ALDH to show a preference for 9-cis-retinal relative to all-trans-retinal. Evidence consistent with the possibility that ALDH12 could function in a pathway of 9-cis-retinoic acid biosynthesis in vivo includes biosynthesis of 9-cis-retinoic acid from 9-cis-retinol in cells co-transfected with cDNAs encoding ALDH12 and the 9-cis-retinol/androgen dehydrogenase, cis-retinoid/androgen dehydrogenase type 1. Intense ALDH12 mRNA expression in adult and fetal liver and kidney, two organs that reportedly have relatively high concentrations of 9-cis-retinol, reinforces this notion.  相似文献   

3.
Evidence is presented for six opossum ALDH1A genes, including four ALDH1A1-like genes on chromosome 6 and ALDH1A2- and ALDH1A3-like genes on chromosome 1. Predicted structures for the opossum aldehyde dehydrogenase (ALDH) subunits and the intron–exon boundaries for opossum ALDH genes showed a high degree of similarity with other mammalian ALDHs. Phylogenetic analyses supported the proposed designation of these opossum class 1 ALDHs as ALDH1A-like, ALDH1A2-like, and ALDH1A3-like and are therefore likely to play important roles in retinal and peroxidic aldehyde metabolism. Alignments of predicted opossum ALDH1A amino acid sequences with sheep ALDH1A1 and rat ALDH1A2 sequences demonstrated conservation of key residues previously shown to participate in catalysis and coenzyme binding. Amino acid substitution rates observed for family 1A ALDHs during vertebrate evolution indicated that ALDH1A2-like genes are evolving slower than ALDH1A1- and ALDH1A3-like genes. It is proposed that the common ancestor for ALDH1A genes predates the appearance of birds during vertebrate evolution.  相似文献   

4.
1. Subcellular fractionation of rat, guinea pig and human livers showed that aldehyde dehydrogenase metabolizing gamma-aminobutyraldehyde was exclusively localized in the cytoplasmic fraction in all three mammalian species. 2. Total gamma-aminobutyraldehyde activity of aldehyde dehydrogenase was found to be ca 0.41, 0.3 and 0.24 mumol NADH min-1 g-1 tissue, respectively in rat, guinea pig and human liver, with more than 95% of activity in the cytoplasm. 3. Partially purified cytoplasmic isozyme from rat liver showed similar chromatographic behavior and kinetic properties to the E3 isozyme isolated from human liver. 4. The rat isozyme was insensitive to disulfiram (40 microM) and to magnesium (160 microM) and had Km values of 5 microM (pH 7.4) for gamma-aminobutyraldehyde, 7.5 microM (pH 9.0) for propionaldehyde and 4 microM (pH 7.4) for NAD.  相似文献   

5.
Aldehydes are highly reactive molecules that may have a variety of effects on biological systems. They can be generated from a virtually limitless number of endogenous and exogenous sources. Although some aldehyde-mediated effects such as vision are beneficial, many effects are deleterious, including cytotoxicity, mutagenicity, and carcinogenicity. A variety of enzymes have evolved to metabolize aldehydes to less reactive forms. Among the most effective pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs). ALDHs are a family of NADP-dependent enzymes with common structural and functional features that catalyze the oxidation of a broad spectrum of aliphatic and aromatic aldehydes. Based on primary sequence analysis, three major classes of mammalian ALDHs--1, 2, and 3--have been identified. Classes 1 and 3 contain both constitutively expressed and inducible cytosolic forms. Class 2 consists of constitutive mitochondrial enzymes. Each class appears to oxidize a variety of substrates that may be derived either from endogenous sources such as amino acid, biogenic amine, or lipid metabolism or from exogenous sources, including aldehydes derived from xenobiotic metabolism. Changes in ALDH activity have been observed during experimental liver and urinary bladder carcinogenesis and in a number of human tumors, including some liver, colon, and mammary cancers. Changes in ALDH define at least one population of preneoplastic cells having a high probability of progressing to overt neoplasms. The most common change is the appearance of class 3 ALDH dehydrogenase activity in tumors arising in tissues that normally do not express this form. The changes in enzyme activity occur early in tumorigenesis and are the result of permanent changes in ALDH gene expression. This review discusses several aspects of ALDH expression during carcinogenesis. A brief introduction examines the variety of sources of aldehydes. This is followed by a discussion of the mammalian ALDHs. Because the ALDHs are a relatively understudied family of enzymes, this section presents what is currently known about the general structural and functional properties of the enzymes and the interrelationships of the various forms. The remainder of the review discusses various aspects of the ALDHs in relation to tumorigenesis. The expression of ALDH during experimental carcinogenesis and what is known about the molecular mechanisms underlying those changes are discussed. This is followed by an extended discussion of the potential roles for ALDH in tumorigenesis. The role of ALDH in the metabolism of cyclophosphamidelike chemotherapeutic agents is described. This work suggests that modulation of ALDH activity may an important determinant of the effectiveness of certain chemotherapeutic agents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
New disulphides synthesized on the basis of dithiocarboxylic acid derivatives and heterocyclic thiols containing the fluorine atoms were studied as applied to inhibit aldehyde dehydrogenase (ALDH) isozymes of the rat liver mitochondria. The most effective rat liver inhibitors of ALDH isozymes were revealed. Inhibition of the rat liver isozymes by disulphides I, II, IV, VI-VIII and fluorinated pyridine disulphide was found to be irreversible. The values of isozyme inactivation rate constants are reported. The ALDH inhibition by disulphides I, IV, VI-VIII was competitive both for the cofactor and for the substrate of the reaction. The protective effect of the NAD+ against ALDH I and II inactivation by disulfiram and disulphides I, IV, VI-VIII and X is shown. NADP+ protects isozyme II against inactivation by disulfiram and also disulphides I, VI-VIII.  相似文献   

7.
The cDNA clone for rat liver microsomal aldehyde dehydrogenase (msALDH) was isolated and sequenced. The deduced amino acid sequence consisting of 484 amino acid residues revealed that the carboxyl-terminal region of msALDH has a hydrophobic segment, which is probably important for the insertion of this enzyme into the endoplasmic reticulum membrane. COS-1 cells transfected with the expression vector pcD containing the full-length cDNA showed that the active enzyme was expressed and localized mainly on the cytoplasmic surface of the endoplasmic reticulum membranes. It has been proposed that ALDH isozymes form a superfamily consisting of class 1, 2, and 3 ALDHs (Hempel, J., Harper, K., and Lindahl, R., (1989) Biochemistry 28, 1160-1167). Comparison of the amino acid sequence of rat liver msALDH with those of rat other class ALDHs showed that msALDH was 24.2, 24.0, and 65.5% identical to phenobarbital-inducible ALDH (variant class 1), mitochondrial ALDH (class 2), and tumor-associated ALDH (class 3), respectively. Several amino acid residues common to the other known ALDHs, however, were found to be conserved in msALDH. Based on these results, we proposed to classify msALDH as a new type, class 4 ALDH.  相似文献   

8.
The molecular biology and enzymology of aldehyde dehydrogenase (ALDH) have been extensively investigated. However, most of the studies have been confined to the mammalian forms, while the sub-mammalian vertebrate ALDHs are relatively unexplored. In the present investigation, an ALDH was purified from the hepatopancreas of grass carp (Ctenopharygodon idellus) by affinity chromatographies on alpha-cyanocinnamate-Sepharose and Affi-gel Blue agarose. The 800-fold purified enzyme had a specific activity of 4.46 U/mg toward the oxidation of acetaldehyde at pH 9.5. It had a subunit molecular weight of 55000. Isoelectric focusing showed a single band with a pI of 5.3. N-terminal amino acid sequencing of 30 residues revealed a positional identity of approximately 70% with mammalian mitochondrial ALDH2. The kinetic properties of grass carp ALDH resembled those of mammalian ALDH2. The optimal pH for the oxidation of acetaldehyde was 9.5. The K(m) values for acetaldehyde were 0.36 and 0.31 microM at pH 7.5 and 9.5, respectively. Grass carp ALDH also possessed esterase activity which could be activated in the presence of NAD(+).  相似文献   

9.
1. Isoelectric focusing (IEF) and zymogram methods were used to examine the tissue distribution, multiplicity and substrate specificities of alcohol dehydrogenases (ADHs), aldehyde dehydrogenases (ALDHs) and ocular oxidases (EOXs) from mammalian anterior eye tissues. 2. Baboon, cattle, pig and sheep corneal extracts exhibited high ALDH activities; the corneal ALDHs were distinct from the major liver ALDHs and distinguished by their preference for medium-chain aldehydes. 3. Baboon and pig corneal extracts also showed high ADH activities, by comparison with ovine and bovine samples. Moreover, the ADHs were distinct from the major liver isozymes in pI value and substrate specificity. 4. Mammalian lens extracts exhibited significant ALDH activity of a form corresponding to the major liver cytosolic isozyme. Minor activity of the corneal enzyme was also observed in some species. 5. Lens ADH phenotypes were species-specific, and consisted of either Class II activity (baboon and sheep), Class III ADH activity (pig), or activities of both ADH classes (cattle). 6. Lens extracts also exhibited a complex pattern of ocular oxidase (EOX) activities following IEF. 7. A role in peroxidatic aldehyde detoxification is proposed for these enzymes in anterior eye tissues.  相似文献   

10.
Aldehyde dehydrogenases (ALDHs) convert aldehydes into their corresponding carboxylic acids. ALDH1A1, also known as ALDH class 1 (ALDH1) or retinaldehyde dehydrogenase (RALDH1), prefers retinal to acetaldehyde as a substrate. To investigate the effects of divalent cations on the dehydrogenase activity of Xenopus laevis ALDH1A1, the formation of acetate and retinoic acid from acetaldehyde and retinal, respectively, was investigated in the presence of Ca2+, Mg2+, Mn2+ or Zn2+. All divalent cations tested inhibited the oxidation of acetaldehyde and retinal by ALDH1A1. When acetaldehyde was used as a substrate, the 50% inhibitory concentrations (IC50) were 10, 24, 35 and 220 microM for Zn2+, Mn2+, Mg2+ and Ca2+, respectively. Kinetic studies of ALDH1A1 dehydrogenase activity in the presence or absence of each cation revealed that the inhibition mode by cations was uncompetitive against acetaldehyde, retinal, and NAD+, and that their inhibitory potencies were greater against acetaldehyde than retinal. It was concluded that the divalent cations inhibited X. laevis ALDH1A1 activity in a substrate-dependent manner by affecting a step of the dehydrogenase reaction that occurred after the formation of the ternary complex of the enzyme, substrate, and coenzyme.  相似文献   

11.
Aldehyde dehydrogenase (ALDH) activity was measured in brain and liver of rainbow trout by using 3,4-dihydroxyphenylacetaldehyde (DOPAL, the biogenic aldehyde derived from dopamine) as the substrate. The amount of the corresponding acid produced was quantified by high-performance liquid chromatography with electrochemical detection. Both in brain and liver, the ALDH activity showed a high affinity for the substrate with an apparent Km of 3.7 microM in brain and 2.4 microM in liver. The kinetic experiments with brain ALDH also indicated the presence of an isozyme with a low affinity for DOPAL with a Km around 150 microM. The Vmax of the liver ALDH activity varied between 179 and 536 nmol/min.g, i.e., about 25-75 times higher than that of the low-Km activity in brain. The ALDH activity showed a maximum around pH 8.5, it was stimulated by Mg2+, and disulfiram was found to be a potent inhibitor of the enzyme. The results suggested that the majority of the ALDH activity was located in mitochondria (60-70% with regard to the brain and 70-80% with regard to the liver), while the remaining activity appeared to be cytosolic in both organs. No microsomal ALDH activity could be found.  相似文献   

12.
Abstract

Aldehydes are highly reactive molecules that may have a variety of effects on biological systems. They can be generated from a virtually limitless number of endogenous and exogenous sources. Although some aldehyde-mediated effects such as vision are beneficial, many effects are deleterious, including cytotoxicity, mutagenicity, and carcinogenicity. A variety of enzymes have evolved to metabolize aldehydes to less reactive forms. Among the most effective pathways for aldehyde metabolism is their oxidation to carboxylic acids by aldehyde dehydrogenases (ALDHs).

ALDHs are a family of NADP-dependent enzymes with common structural and functional features that catalyze the oxidation of a broad spectrum of aliphatic and aromatic aldehydes. Based on primary sequence analysis, three major classes of mammalian ALDHs — 1, 2, and 3 — have been identified. Classes 1 and 3 contain both constitutively expressed and inducible cytosolic forms. Class 2 consists of constitutive mitochondrial enzymes. Each class appears to oxidize a variety of substrates that may be derived either from endogenous sources such as amino acid, biogenic amine, or lipid metabolism or from exogenous sources, including aldehydes derived from xenobiotic metabolism.

Changes in ALDH activity have been observed during experimental liver and urinary bladder carcinogenesis and in a number of human tumors, including some liver, colon, and mammary cancers. Changes in ALDH define at least one population of preneoplastic cells having a high probability of progressing to overt neoplasms. The most common change is the appearance of class 3 ALDH dehydrogenase activity in tumors arising in tissues that normally do not express this form. The changes in enzyme activity occur early in tumorigenesis and are the result of permanent changes in ALDH gene expression.

This review discusses several aspects of ALDH expression during carcinogenesis. A brief introduction examines the variety of sources of aldehydes. This is followed by a discussion of the mammalian ALDHs. Because the ALDHs are a relatively understudied family of enzymes, this section presents what is currently known about the general structural and functional properties of the enzymes and the interrelationships of the various forms.

The remainder of the review discusses various aspects of the ALDHs in relation to tumorigenesis. The expression of ALDH during experimental carcinogenesis and what is known about the molecular mechanisms underlying those changes are discussed. This is followed by an extended discussion of the potential roles for ALDH in tumorigenesis. The role of ALDH in the metabolism of cyclophosphamidelike chemotherapeutic agents is described. This work suggests that modulation of ALDH activity may be an important determinant of the effectiveness of certain chemotherapeutic agents. The evidence that changes in ALDH are part of an adaptive response of preneoplastic and neoplastic cells to altered cell physiology or stress is then considered. Roles in the metabolism of aldehydes generated from lipid peroxidation and as part of the Ah gene-mediated response to xenobiotic exposure are both discussed. The data are consistent with a role for certain ALDHs in lipid aldehyde metabolism. Biochemical and genetic data also imply that changes in ALDH may be linked, in part, to cellular adaptation to oxidative stress.

Finally, a model of inducible ALDH gene regulation is proposed. The model incorporates current information about ALDH gene expression with the regulation of other genes known to be part of the adaptive responses occurring in neoplastic cells. The model suggests that regulation of class 1 and 3 ALDH gene activity may be complex, involving the tissue-specific ability to respond to a variety of physiological cues. The model also suggests several avenues for future research that should provide a clearer understanding of the regulation of this important gene family in response to a variety of factors.  相似文献   

13.
Aldehyde dehydrogenases (ALDHs) are a family of several isoenzymes expressed in various tissues and in all subcellular fractions. In some tumours, there is an increase of ALDH activity, especially that of class 1 and 3. The increase in the activity of these isoenzymes is correlated with cell growth and drug resistance shown by these cells. It has been observed that hepatoma cells expressing low ALDH3 activity are more susceptible to growth inhibition by low concentration of lipid peroxidation products than hepatoma cells expressing high ALDH3 activity. The products of lipid peroxidation are good substrates for ALDH, but when their intracellular levels are increased in hepatoma cells treated repeatedly with prooxidants, they inhibit ALDH3 and bring about growth inhibition or cell death. As a follow up to the work previously reported on S-methyl 4-amino-4-methylpent-2-ynethioate, a synthetic suicide inhibitor of ALDH1, which induced bcl2 overexpressing cells into apoptosis and exhibited an ED50 of 400 microM, a novel broad spectrum inhibitor of ALDH1 and ALDH3 was synthesised. This new compound (ATEM) is a suicide inhibitor of ALDH1, an irreversible inhibitor of ALDH3 and exhibits an ED50 of 10-25 microM on rat cultured hepatoma cells. Four hours after treatment with 25 microM ATEM, ALDH activity using benzaldehyde or propionaldehyde in hepatoma cells was decreased by 40% and cell number by 15% compared with controls. As cell growth did not resume when the inhibitor was removed from the culture medium, it suggested strongly that ALDHs play a pivotal role in mediating cell death.  相似文献   

14.
Ethylene glycol ethers (EGEs) are primary alcohols commonly used as solvents in numerous household and industrial products. Exposure to EGEs has been correlated with delayed encephalopathy, metabolic acidosis, sub-fertility and spermatotoxicity in humans. In addition, they also cause teratogenesis, carcinogenesis, hemolysis, etc., in various animal models. Metabolism EGEs parallels ethanol metabolism, i.e., EGEs are first converted to 2-alkoxy acetaldehydes (EGE aldehydes) by alcohol dehydrogenases, and then to alkoxyacetic acids by aldehyde dehydrogenases (ALDHs). The acid metabolite of EGEs is considered responsible for toxicities associated with EGEs. The role of human ALDHs in EGE metabolism is not clear; accordingly, we have investigated the ability of five different human ALDHs (ALDH1A1, ALDH2, ALDH3A1, ALDH5A1 and ALDH9A1) to catalyze the oxidation of various EGE aldehydes. The EGE aldehydes used in this study were synthesized via Swern oxidation. All of the human ALDHs were purified from human cDNA clones over-expressing these enzymes in E. coli. The ALDHs tested, so far, differentially catalyze the oxidation of EGE aldehydes to their corresponding acids (K(m) values range from approximately 10 microM to approximately 20.0mM). As judged by V(max)/K(m) ratios, short-chain alkyl-group containing EGE aldehydes are oxidized to their acids more efficiently by ALDH2, whereas aryl- and long-chain alkyl-group containing EGE aldehydes are oxidized to their acid more efficiently by ALDH3A1. Given the product of ALDH-catalyzed reaction is toxic, this process should be considered as a bio-activation (toxification) process.  相似文献   

15.
Most mammalian species express high concentrations of ALDH3A1 in corneal epithelium with the exception of the rabbit, which expresses high amounts of ALDH1A1 rather than ALDH3A1. Several hypotheses that involve catalytic and/or structural functions have been postulated regarding the role of these corneal ALDHs. The aim of the present study was to characterize the biochemical properties of the rabbit ALDH1A1. We have cloned and sequenced the rabbit ALDH1A1 cDNA, which is 2,073 bp in length (excluding the poly(A+) tail), and has 5' and 3' nontranslated regions of 46 and 536 bp, respectively. This ALDH1A1 cDNA encodes a protein of 496 amino acids (Mr = 54,340) that is: 86-91% identical to mammalian ALDH1A1 proteins, 83-85% identical to phenobarbital-inducible mouse and rat ALDH1A7 proteins, 84% identical to elephant shrew ALDH1A8 proteins (eta-crystallins), 69-73% identical to vertebrate ALDH1A2 and ALDH1A3 proteins, 65% identical to scallop ALDH1A9 protein (omega-crystallin), and 55-57% to cephalopod ALDH1C1 and ALDH1C2 (omega-crystallins). Recombinant rabbit ALDH1A1 protein was expressed using the baculovirus system and purified to homogeneity with affinity chromatography. We found that rabbit ALDH1A1 is catalytically active and efficiently oxidizes hexanal (Km = 3.5 microM), 4-hydroxynonenal (Km = 2.1 microM) and malondialdehyde (Km = 14.0 microM), which are among the major products of lipid peroxidation. Similar kinetic constants were observed with the human recombinant ALDH1A1 protein, which was expressed and purified using similar experimental conditions. These data suggest that ALDH1A1 may contribute to corneal cellular defense against oxidative damage by metabolizing toxic aldehydes produced during UV-induced lipid peroxidation.  相似文献   

16.
In the rat, a cytosolic isozyme of aldehyde dehydrogenase, designated ALDH-PB, can be induced in the liver by administration of phenobarbital (PB). ALDH-PB activity and mRNA are induced in Long-Evans rats that possess a responsive (R) allele but are not induced in homozygous nonresponsive rats (rr), although the rr genotype is competent to induce other PB-responsive mRNAs. ALDH-PB mRNA is expressed in the basal state (without PB administration) in hepatic tissue in both RR and rr genotypes. We report the complete nucleotide sequence of the rat ALDH-PB mRNA. The protein encoded by the ALDH-PB mRNA is 501 amino acids in length and has a predicted molecular mass of 54,540 daltons. The amino acid sequence predicted from the mRNA demonstrates a strong conservation between the rat ALDH-PB and the human cytosolic aldehyde dehydrogenase hALDH-1. We demonstrate the ALDH-PB, cytochrome P-450b, cytochrome P-450e, and glutathione S-transferase Ya subunit mRNA levels in the liver are altered noncoordinately by administration of PB in RR and rr genotypes. The strikingly different responses to PB administration between the various mRNA species in each of the genotypes suggest that the regulation of specific gene expression by PB may involve multiple pathways.  相似文献   

17.
18.
Human aldehyde dehydrogenase (ALDH) family may contribute to metabolism of hydrocarbons, biogenic amines, retinoids, steroids, and lipid peroxidation. We previously reported kinetic properties of human cytosolic ALDH1 and mitochondrial ALDH2 towards oxidation of the straight-chain and branched-chain aliphatic aldehydes with various chain lengths [S.J. Yin, M.F. Wang, C.L. Han, S.L. Wang, Substrate binding pocket structure of human aldehyde dehydrogenases: a substrate specificity approach, Adv. Exp. Med. Biol. 372 (1995) 9-16]. We present here substrate specificities for aromatic and heterocyclic aldehydes with purified human liver ALDH1 and ALDH2, and also with yeast mitochondrial ALDH2 for comparison. Kinetic assay for human ALDHs was performed in 50mM HEPES, pH 7.5 and 25 degrees C, containing 0.5mM NAD(+), 1.7% (v/v) acetonitrile (as a solvent carrier for aldehydes) and varied concentrations of substrate, and for yeast ALDH2 the assay was determined in the same reaction mixture except containing 3mM NAD(+) and addition of 200 mM KCl. With respect to phenylacetaldehyde, 2-phenylpropionaldehyde, benzaldehyde, p-nitrobenzaldehyde, cinnamaldehyde, 2-furaldehyde and indole-3-acetaldehyde, human liver ALDH1 exhibited K(M) ranging from 0.25 to 4.8 microM, V(max) of 0.34-2.4U/mg, and catalytic efficiency, V(max)/K(M), 0.070-3.9U/(mg microM); human ALDH2 exhibited K(M) ranging from less than 0.15-0.74 microM, V(max) of 0.039-0.51 U/mg, and V(max)/K(M), 0.15-1.0U/(mg microM). Human ALDH1 and ALDH2 exhibited substate inhibition constants (K(i)) for phenylacetaldehyde, 95 and 430 microM, respectively. Yeast ALDH2 exhibited K(M) for straight-chain aliphatic aldehydes (C1-C10), 2.3-210 microM, and substrate inhibition constants (C2-C10), 79-2900 microM, with a trend of being smaller K(M) and K(i) for longer chain lengths; and K(M) for cinnamaldehyde, benzaldehyde, and 2-furaldehyde, 5.0, 79, and 1000 microM, respectively. Therefore human ALDH1/ALDH2 and yeast ALDH2 can contribute to detoxification or metabolism of various exogenous/endogenous aliphatic and aromatic aldehydes. The systematic changes in kinetic parameters for oxidation of structurally related aldehydes may reflect subtle functional topographic distinctions of substrate pocket for human and yeast ALDHs.  相似文献   

19.
In isozyme systems in general, the pattern of tissue-dependent expression of a given type of isozyme is uniform in various mammalian species. In contrast, a major cytosolic aldehyde dehydrogenase isozyme, termed ALDH1, which is strongly expressed in the livers of humans and other mammals, is hardly detectable in rat liver. Thirteen nucleotides existing in the 5′-promoter region of human, marmoset, and mouseALDH1 genes are absent in the four rat strains examined. When the 13 nucleotides were deleted from a chloramphenicol acetyltransferase expression construct, which contained the 5′-promoter region of the humanALDH1 gene and a low-background promoterless chloramphenicol acetyltransferase expression vector, the expression activity was severely diminished in human hepatic cells. Thus, deletion of the 13 nucleotides in the promoter region of the gene can account for the lack of ALDH1 expression in rat liver.  相似文献   

20.
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes catalyzing the conversion of various aldehydes to the corresponding acids using the coenzymes NAD+ or NADP+. While mammalian ALDHs have been studied extensively, the non-mammalian ALDHs, notably those of teleostean origin, remain relatively unexplored. In our previous study on grass carp (Ctenopharyngodon idellus) liver ALDH, a significant amount of the ALDH activity did not adsorb on the alpha-cyanocinnamate Sepharose column which binds ALDH2. The objective of the present study was to purify the ALDH which accounts for this unadsorbed activity. Further chromatography on Affi-gel Blue agarose, followed by size exclusion on Superdex 200 successfully isolated this aldehyde-oxidizing activity. The protein was a homo-tetramer with a subunit molecular mass of 58 kDa. N-terminal sequencing of the first 21 amino acid residues, followed by blastp analysis on the NCBI database revealed the protein as antiquitin. The optimal pH for the oxidation of acetaldehyde was 9.5. At this pH, the Vmax and the Km values for acetaldehyde were 1.95 U/mg and 2.00 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号