首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Partial lactose-fermenting revertants from lactose-negative (lac(-)) mutants of Streptococcus lactis C2 appeared on a lawn of lac(-) cells after 3 to 5 days of incubation at 25 C. The revertants grew slowly on lactose with a growth response similar to that for cryptic cells. In contrast to lac(+)S. lactis C2, the revertants were defective in the accumulation of [(14)C]thiomethyl-beta-d-galactoside, indicating that they were devoid of a transport system. Hydrolysis of o-nitrophenyl-beta-d-galactoside-6-phosphate by toluene-treated cells confirmed the presence of phospho-beta-d-galactosidase (P-beta-gal) in the revertant. However, this enzyme was induced only when the cells were grown in the presence of lactose; galactose was not an inducer. In lac(+)S. lactis C2, enzyme induction occurred in lactose- or galactose-grown cells. The revertants were defective in EII-lactose and FIII-lactose of the phosphoenolpyruvate-dependent phosphotransferase system. Galactokinase activity was detected in cell extracts of lac(+)S. lactis C2, but the activity was 9 to 13 times higher in extracts from the revertant and lac(-), respectively. This suggested that the lac(-) and the revertants use the Leloir pathway for galactose metabolism and that galactose-1-phosphate rather than galactose-6-phosphate was being formed. This may explain why lactose, but not galactose, induced P-beta-gal in the revertants. Because the revertant was unable to form galactose-6-phosphate, induction could not occur. This compound would be formed on hydrolysis of lactose phosphate. The data also indicate that galactose-6-phosphate may serve not only as an inducer of the lactose genes in S. lactis C2, but also as a repressor of the Leloir pathway for galactose metabolism.  相似文献   

2.
3.
We examined the kinetics of beta-galactosidase (EC 3.2.1.23) induction in the yeast Kluyveromyces lactis. Enzyme activity began to increase 10 to 15 min, about 1/10 of a cell generation, after the addition of inducer and continued to increase linearly for from 7 to 9 cell generations before reaching a maximum, some 125- to 150-fold above the basal level of uninduced cells. Thereafter, as long as logarithmic growth was maintained, enzyme levels remained high, but enzyme levels dropped to a value only 5- to 10-fold above the basal level if cells entered stationary phase. Enzyme induction required the constant presence of inducer, since removal of inducer caused a reduction in enzyme level. Three nongratuitous inducers of beta-galactosidase activity, lactose, galactose, and lactobionic acid, were identified. Several inducers of the lac operon of Escherichia coli, including methyl-, isopropyl- and phenyl-1-thio-beta-d-galactoside, and thioallolactose did not induce beta-galactosidase in K. lactis even though they entered the cell. The maximum rate of enzyme induction was only achieved with lactose concentrations of greater than 1 to 2 mM. The initial differential rate of beta-galactosidase appearance after induction was reduced in medium containing glucose, indicating transient carbon catabolite repression. However, glucose did not exclude lactose from K. lactis, it did not cause permanent carbon catabolite repression of beta-galactosidase synthesis, and it did not prevent lactose utilization. These three results are in direct contrast to those observed for lactose utilization in E. coli. Furthermore, these results, along with our observation that K. lactis grew slightly faster on lactose than on glucose, indicate that this organism has evolved an efficient system for utilizing lactose.  相似文献   

4.
AIMS: The aim of the study is to evaluate whether xylanase can be used as a potential reporter gene for cloning and expression studies in Lactococcus. METHODS AND RESULTS: The 750 bp xylanase gene was amplified and subcloned into the unique NheI restriction enzyme site of pMG36e and subsequently transformed into competent Escherichia coli XLI-blue MRF cells and Lactococcus lactis cells. Bacterial culture containing pMG36e-Xy has an enzyme activity of 390 microg xylose ml(-1) culture 30 min(-1), respectively, when compared with 40 microg xylose ml(-1) culture 30 min(-1) for the negative control (plasmidless strain). CONCLUSIONS: The thermostable xylanase gene was successfully expressed in both E. coli and L. lactis. The activity of xylanase can be easily detected by the formation of visible clearing zones around the transformed colonies on Remazol Brilliant Blue-Xylan (RBB-Xylan) agar media. However, there were some significant differences in the optimum growth temperature and plasmid stability in the new clones. SIGNIFICANCE AND IMPACT OF THE STUDY: The constructed reporter vector has the potential to be used as a reporter system for Lactococcus as well as E. coli, and it is an addition to the pool of lactococcal vector systems.  相似文献   

5.
Pomegranate (Punica granatum L.) fruits are widely consumed as juice (PJ). The potent antioxidant and anti-atherosclerotic activities of PJ are attributed to its polyphenols including punicalagin, the major fruit ellagitannin, and ellagic acid (EA). Punicalagin is the major antioxidant polyphenol ingredient in PJ. Punicalagin, EA, a standardized total pomegranate tannin (TPT) extract and PJ were evaluated for in vitro antiproliferative, apoptotic and antioxidant activities. Punicalagin, EA and TPT were evaluated for antiproliferative activity at 12.5-100 microg/ml on human oral (KB, CAL27), colon (HT-29, HCT116, SW480, SW620) and prostate (RWPE-1, 22Rv1) tumor cells. Punicalagin, EA and TPT were evaluated at 100 microg/ml concentrations for apoptotic effects and at 10 microg/ml concentrations for antioxidant properties. However, to evaluate the synergistic and/or additive contributions from other PJ phytochemicals, PJ was tested at concentrations normalized to deliver equivalent amounts of punicalagin (w/w). Apoptotic effects were evaluated against the HT-29 and HCT116 colon cancer cell lines. Antioxidant effects were evaluated using inhibition of lipid peroxidation and Trolox equivalent antioxidant capacity (TEAC) assays. Pomegranate juice showed greatest antiproliferative activity against all cell lines by inhibiting proliferation from 30% to 100%. At 100 microg/ml, PJ, EA, punicalagin and TPT induced apoptosis in HT-29 colon cells. However, in the HCT116 colon cells, EA, punicalagin and TPT but not PJ induced apoptosis. The trend in antioxidant activity was PJ>TPT>punicalagin>EA. The superior bioactivity of PJ compared to its purified polyphenols illustrated the multifactorial effects and chemical synergy of the action of multiple compounds compared to single purified active ingredients.  相似文献   

6.
7.
8.
During studies on spontaneous loss of lactose metabolism in Streptococcus lactis C2, it was found that the lactose-negative (lac(-)) mutants were also proteinase negative (prt(-)). This pleiotropic effect was observed in S. diacetilactis 18-16, but not in S. cremoris B1. The lac(-)prt(-) mutants from S. lactis C2 were able to grow in milk, but no pH change or measurable protein breakdown occurred. When the milk was supplemented with glucose, a slow decline in pH occurred. Addition of a protein hydrolysate to milk did not stimulate acid production. When both supplements were added to milk, normal growth and pH change were obtained. When the lac(-)prt(-) mutant of S. lactis C2 was transduced with the temperate phage from the lac(+)prt(+) parent culture, approximately equal numbers of lac(+)prt(-) and lac(+)prt(+) transductants were obtained. When the spontaneous lac(+)prt(-) strain of S. lactis C2 was converted to a lac(-)prt(-) derivative and transduced, similar results were obtained. The co-transduction of the lactose and proteinase markers suggest they are closely associated. The findings indicate that the transducing phage from S. lactis C2 can be used to examine the causes of instability in both the lactose and proteinase enzyme systems of this organism.  相似文献   

9.
Bacteriocin-producing strain Lactococcus lactis K-205 with antibacterial activity up to 2,700 IU/ml (calculated on nisine-producing activity) was isolated from Buryat beverage kurunga. Using genotypic analysis of oligonucleotide sequence of 16S rRNA gene, the strain was identified as L. lactis subsp. lactis. 16S rRNA gene nucleotide sequence of K-205 strain was deposed in GenBankdatabase under the number EF 114305. New K-205 strain as compared with museum nisine-producing strain L. lactis subsp. lactis had wider spectrum of bactericidal as well as fungicidal activity which is a rare characteristic for the natural isolates of this microorganism.  相似文献   

10.
Cheng YL  Chang WL  Lee SC  Liu YG  Lin HC  Chen CJ  Yen CY  Yu DS  Lin SZ  Harn HJ 《Life sciences》2003,73(18):2383-2394
Bupleuri radix, a traditional Chinese herb, has been widely used to treat liver diseases such as hepatitis and cirrhosis. The acetone extract of Bupleurum scorzonerifolium (AE-BS) showed a dose-dependently antiproliferative effect on the proliferation of A549 human lung cancer cells. The IC(50) of AE-BS, i.e., the concentration required to inhibit proliferation of A549 cells, was 59 +/- 4.5 microg/ml on day 1. The IC(50) of AE-BS for WI38 human normal lung fibroblast cells, however, was significant higher than that for A549 cells (150 +/- 16 microg/ml, p< 0.01). After 72 hours of exposure, AE-BS (60 microg/ml) significantly reduced A549 cell proliferation to 33 +/- 3.2% of control. In TUNEL assay, A549 cells treated with AE-BS showed typical morphologic features of apoptosis, and the percentage of apoptotic cells was approximately 38 % on day 1. In the TRAP assay, AE-BS-treated cells demonstrated significantly lower telomerase activity on day 3. This result indicates that the AE-BS could suppress the proliferation of lung cancer cells via inhibition of telomerase activity and activation of apoptosis.  相似文献   

11.
Nitrogen heterocyclic compounds are used in the pharmaceutical industry, in medicine and in agriculture for their biological activity. 4-Amino-3-acetylquinoline, a new synthetically prepared quinoline derivative, was the most effective compound in our primary cytotoxic screening. In this study, we evaluated cytotoxic/antiproliferative activity of quinoline using murine leukemia cell line L1210. Its ability to induce apoptosis was studied, too. Quinoline derivative acted cytotoxically on tumor cell line L1210, the IC(100) value were 50 microg/ml (for 24 h), 25 microg/ml (for 48 h) and 10 microg/ml (for 72 h). The IC(50) values was found to be less than 4 microg/ml, a limit put forward by the National Cancer Institute (NCI) for classification of he compound as a potential anticancer drug. The cytotoxic concentrations of 4-amino-3-acetyl quinoline induced morphological changes of L1210 cells and the apoptotic DNA fragmentation.  相似文献   

12.
Transduction of Lactose Metabolism in Streptococcus lactis C2   总被引:26,自引:4,他引:22       下载免费PDF全文
Ultraviolet (UV)-induced phage lysates, from lactose-positive (lac(+)) Streptococcus lactis C2, transduced lactose fermenting ability to lac(-) recipient cells of this organism. Although the phage titer could not be determined due to the absence of an appropriate indicator strain, the number of transductants was proportional to the amount of phage lysate added. Treatment of the lysate with deoxyribonuclease had no effect on this conversion, indicating the observed genetic change was not mediated by free deoxyribonucleic acid. When the lac(+) transductants were isolated and exposed to UV irradiation, lysates with higher transducing ability were obtained. The transducing ability of this lysate was about 100-fold higher than that observed in the original lysates. The lac(+) transductants were unstable since lac(-) segregants occurred at high frequency. The phage lysate from S. lactis C2 also transduced maltose and mannose metabolism to the respective negative recipient cells. The results demonstrate the transduction of carbohydrate markers by a streptococcal phage and establish a genetic transfer system in group N streptococci.  相似文献   

13.
The Kluyveromyces lactis lac4 mutants, lacking the beta-galactosidase gene, cannot assimilate lactose, but grow normally on many other carbon sources. However, when these carbon sources and lactose were simultaneously present in the growth media, the mutants were unable to grow. The effect of lactose was cytotoxic since the addition of lactose to an exponentially-growing culture resulted in 90% loss of viability of the lac4 cells. An osmotic stabilizing agent prevented cells killing, supporting the hypothesis that the lactose toxicity could be mainly due to intracellular osmotic pressure. Deletion of the lactose permease gene, LAC12, abolished the inhibitory effect of lactose and allowed the cell to assimilate other carbon substrates. The lac4 strains gave rise, with unusually high frequency, to spontaneous mutants tolerant to lactose (lar1 mutation: lactose resistant). These mutants were unable to take up lactose. Indeed, lar1 mutation turned out to be allelic to LAC12. The high mutability of the LAC12 locus may be an advantage for survival of K. lactis whose main habitat is lactose-containing niches.  相似文献   

14.
A gratuitous induction system in the yeast Kluyveromyces lactis was evaluated for the expression of intracellular and extracellular products during fed-batch culture. The Escherichia coli lacZ gene (beta-galactosidase; intracellular) and MFalpha1 leader-BPTI cassette (bovine pancreatic trypsin inhibitor; extracellular) were placed under the control of the inducible K. lactis LAC4 promotor, inserted into partial-pKD1 plasmids, and transformed into a ga1-209 K. lactis strain. To obtain a high level of production, culture conditions for growth and expression were initially evaluated in tube cultures. A selective medium containing 5 g/L glucose (as carbon source) and 0.5 g/L galactose (as inducer) demonstrated the maximum activity of both beta-galactosidase and secreted BPTI. This level of expression had no significant effect on the growth of the recombinant cells; growth rate dropped by approximately 11%, whereas final biomass concentrations remained the same. In shake-flask culture, biomass concentration, beta-galactosidase activity, and BPTI secreted activity were 4 g/L, 7664 U/g dry cell, and 0.32 mg/L, respectively. Fed-batch culture (with a high glucose concentration and a low galactose [inducer] concentration feed) resulted in a 6.5-fold increase in biomass, a 23-fold increase in beta-galactosidase activity, and a 3-fold increase in BPTI secreted activity. The results demonstrate the success of gratuitous induction during high-cell-density fed-batch culture of K. lactis. A very low concentration of galactose feed was sufficient for a high production level.  相似文献   

15.
A chloroform extract of the leaves of Juniperas taxifolia exhibited a marked antiproliferative effect on human promyelocytic leukemia HL-60 cells at a concentration of 2.5 microg/ml. Deoxypodophyllotoxin (4) was identified in the extract as an outstanding antiproliferative compound, and five diterpenes (1-3, 5, and 6) were isolated as known compounds with weak or no cytotoxicity. These compounds were examined for their respective apoptosis- and differentiation-inducing activities toward HL-60 cells by DNA fragmentation and NBT-reducing assays, respectively. Among them, 7alpha-hydroxysandaracopimaric acid (6) was found to have a potent differentiation-inducing activity in a dose-dependent manner at 0.125-2 microg/ml (0.39-6.29 microM), together with apoptosis-inducing activity at concentrations of more than 2.5 microg/ml (7.86 microM). Deoxypodophyllotoxin (4) that exerted cytotoxic and apoptosis-inducing activities at 2 ng/ml (5 nM) did not induce differentiation at the same concentration, and the other diterpenes (1-3 and 5) showed no effect on cell differentiation, even at 5 microg/ml. It was thus demonstrated for the first time that 7alpha-hydroxysandaracopimaric acid was an effective differentiation-inducing compound toward HL-60 cells.  相似文献   

16.
The aim of this work was to identify genes in Lactococcus lactis subsp. lactis IL1403 and Lactococcus lactis subsp. cremoris Wg2 important for adsorption of the 936-species phages bIL170 and phi 645, respectively. Random insertional mutagenesis of the two L. lactis strains was carried out with the vector pGh9:ISS1, and integrants that were resistant to phage infection and showed reduced phage adsorption were selected. In L. lactis IL1403 integration was obtained in the ycaG and rgpE genes, whereas in L. lactis Wg2 integration was obtained in two genes homologous to ycbC and ycbB of L. lactis IL1403. rgpE and ycbB encode putative glycosyltransferases, whereas ycaG and ycbC encode putative membrane-spanning proteins with unknown functions. Interestingly, ycaG, rgpE, ycbC, and ycbB are all part of the same operon in L. lactis IL1403. This operon is probably involved in biosynthesis and transport of cell wall polysaccharides (WPS). Binding and infection studies showed that phi645 binds to and infects L. lactis Wg2, L. lactis IL1403, and L. lactis IL1403 strains with pGh9:ISS1 integration in ycaG and rgpE, whereas bIL170 binds to and infects only L. lactis IL1403 and cannot infect Wg2. These results indicate that phi 645 binds to a WPS structure present in both L. lactis IL1403 and L. lactis Wg2, whereas bIL170 binds to another WPS structure not present in L. lactis Wg2. Binding of bIL170 and phi 645 to different WPS structures was supported by alignment of the receptor-binding proteins of bIL170 and phi 645 that showed no homology in the C-terminal part.  相似文献   

17.
Xylose metabolism, a variable phenotype in strains of Lactococcus lactis, was studied and evidence was obtained for the accumulation of mutations that inactivate the xyl operon. The xylose metabolism operon (xylRAB) was sequenced from three strains of lactococci. Fragments of 4.2, 4.2, and 5.4 kb that included the xyl locus were sequenced from L. lactis subsp. lactis B-4449 (formerly Lactobacillus xylosus), L. lactis subsp. lactis IO-1, and L. lactis subsp. lactis 210, respectively. The two environmental isolates, L. lactis B-4449 and L. lactis IO-1, produce active xylose isomerases and xylulokinases and can metabolize xylose. L. lactis 210, a dairy starter culture strain, has neither xylose isomerase nor xylulokinase activity and is Xyl(-). Xylose isomerase and xylulokinase activities are induced by xylose and repressed by glucose in the two Xyl(+) strains. Sequence comparisons revealed a number of point mutations in the xylA, xylB, and xylR genes in L. lactis 210, IO-1, and B-4449. None of these mutations, with the exception of a premature stop codon in xylB, are obviously lethal, since they lie outside of regions recognized as critical for activity. Nevertheless, either cumulatively or because of indirect affects on the structures of catalytic sites, these mutations render some strains of L. lactis unable to metabolize xylose.  相似文献   

18.
The putative xyn11A structural gene (BH0899) encoding a family-11 xylanase from alkaliphilic Bacillus halodurans strain C-125 was heterologously expressed in the yeast Kluyveromyces lactis CBS 1065 and secreted to a level of 156 microg/ml under selective culture conditions in shake flasks. The Xyn11A production level in shake flask cultures of K. lactis CBS 1065 was higher than that reported for other xylanase genes placed under the control of the regulated LAC4 promoter on a plasmid containing an entire sequence of pKD1 from Kluyveromyces drosophilarium. Recombinant Xyn11A was highly active over pH range from 3 to 10, with maximal activity around pH 7. The enzyme showed a specific activity of 628 U/mg-protein on birchwood xylan as substrate, but no cellulase or beta-xylosidase activity.  相似文献   

19.
The effect of plasmid introduction into Lactococcus lactis subsp. lactis IL2661 on the growth of this strain and on plasmid stability was studied in pure batch cultures. The plasmids used (coding for erythromycin or chloramphenicol resistance) were the following: pIL205 (42 kb), pIL252 (4.6 kb, 6-9 copies), pIL253 (4.8 kb, 45-85 copies) and pE194 (inserted in the chromosome). Growth and acidification of L. lactis subsp. lactis IL2661 were similar to those of the derived recombinant lactococci. The maximal population at the end of the fermentation (9 h) was about 1.1 +/- 0.3 x 10(10) cfu/ml, and maximal growth rate 0.92 +/- 0.07 h-1. Growth yield and lactic acid concentrations were 3.9 +/- 0.8 x 10(11) cfu/g lactose consumed and 25.6 +/- 2.3 g/l, respectively. Different levels of plasmid stability were detected. Plasmid pE194, and plasmids pIL252 and pIL253 in the absence of pIL205, were stable after 10 h of culture. A slight loss (1-2%) of pIL205 was observed in all strains. In the presence of pIL205, plasmids pIL252 and pIL253 were maintained in only 56-95% of the cells. This result suggested an incompatibility between pIL205 and pIL252 or pIL253.  相似文献   

20.
Plasmid-specified traits like lactose metabolism and bacteriocin production could be eliminated from Lactococcus lactis subsp. lactis 484 culture during production and regeneration of protoplasts with lysozyme at the concentration of 300 μg/ml after 3 h treatment. Plasmid-free strains and cured derivatives harbouring only a single plasmid (2 MDa) were also obtained. Loss of high molecular weight (65 MDa) low copy number Lac plasmid occurred more frequently compared with low molecular weight (2 MDa) high copy number plasmid. Treatment of L. lactis subsp. lactis 484 cells with lysozyme at concentrations of 1000 μg/ml could produce a large number of Lac Bac variants at a very high frequency (94%). The curing data confirmed the linkage of Lac and Bac phenotypes to 65 and 2 MDa plasmids, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号