首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I M Dmitrievski? 《Biofizika》1992,37(4):674-680
Determination of weak effects is proposed, their relationship with cosmophysical correlations is advanced. The experimental results are presented on the intensification coefficient of weak effects (10(4)) for polarized electromagnetic radiation. The magnetoresonance mechanism of weak effects is suggested. The experimental evidence in favor of this mechanism and its application to the problems of cosmophysical correlations are given.  相似文献   

2.
Stick insects (Carausius morosus) develop pseudotumors in aging adults. Pseudotumor formation starts at the M2 midgut region where an accumulation of stomatogastric nerve terminals is observed. Pseudotumors arise from dying columnar cells whose basal parts form an “amorphous substance” at the basement membrane whereas the apical parts, including the nucleus, are expelled into the gut lumen. The “amorphous substance” is ensheathed by hemocytes. These nodules, which do not melanize, characterize the phenotype of the pseudotumors. With age, cell death and pseudotumor infestation increases. It is shown that the maintenance of midgut tissue homoeostasis is disturbed and becomes more serious with growing pseudotumor incidence. The increased death rate of differentiated columnar cells is no longer compensated by the proliferation of regenerative cells, i.e., intestinal stem cells, in the midgut nidi. The appearance of “holes” in the intestinal wall is evidently a causative factor of premature death. Extirpation of the hypocerebral ganglion in young adults of the stick insect (before the onset of spontaneous pseudotumor formation) provokes the apoptosis of a large number of columnar cells within 24 h and the formation of pseudotumors that are histologically identical with spontaneous ones. We conclude that the stomatogastric nervous system plays a decisive role in the regulatory mechanism maintaining midgut tissue homeostasis. The possibility of experimentally manipulating the regulatory system provides a valuable tool for the exploration of extrinsic factors involved into the feedback circuitry of tissue homeostasis. The fact that comparable pseudotumors were observed in a number of orthopteromorphan species, where they could also be induced by the interruption of the stomatogastric nervous system, indicates that its role in tissue homoeostasis may be widespread in insects and possibly represent a general principle. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
A mechanism is proposed to explain how a mutation in a single molecule of mitochondrial DNA (mitDNA) can come to affect all the other mitDNA molecules of a yeast cell. It is suggested that an initial mutation may be “amplified” by a process which is, in fact, intended to ensure the identity of the cell's complement of mitDNA molecules. It is postulated that this process involves a small number of “reference” copies of mitDNA to which all other (“derived”) copies are compared and corrected once per cell cycle. Asymmetric gene conversion is proposed as the correction mechanism and the means of “amplifying” mutations. The model is shown to be compatible with current data on spontaneous and induced mitochondrial mutation in Saccharomyces cerevisiae.  相似文献   

4.
Adaptation of Spirogyra insignis (Chlorophyceae) to growth and survival in an extreme natural environment (sulphureous waters from La Hedionda Spa, S. Spain) was analysed by using an experimental model. Photosynthesis and growth of the alga were inhibited when it was cultured in La Hedionda Spa waters (LHW), but after further incubation for several weeks, the culture survived due to the growth of a variant that was resistant to LHW. A Luria-Delbruck fluctuation analysis was carried out to distinguish between resistant filaments arising from rare spontaneous mutations and resistant filaments arising from other mechanisms of adaptation. It was demonstrated that the resistant filaments arose randomly by rare spontaneous mutations before the addition of LHW (preselective mutations). The rate of spontaneous mutation from sensitivity to resistance was 2.7 x 10(-7) mutants per cell division. Since LHW(resistant) mutants have a diminished growth rate, they are maintained in nonsulphureous natural waters as the result of a balance between new resistants arising from spontaneous mutation and resistants eliminated by natural selection. Thus, recurrence of rare spontaneous preselective mutations ensures the survival of the alga in sulphureous waters.  相似文献   

5.
Interferon-like substance has been obtained in the media of mice 129/AoBoy peritoneal cell cultures after incubation at 26 degrees C. The substance showed characteristics that permitted it to be accepted as an interferon. Looking for the presence (in the media or in the sera) of infectious agents responsible for this event experiments were performed that excluded this possibility. Peritoneal cells cultures in media without calf sera (MEM, PBS) produced spontaneous interferon, too. In the same medium the peritoneal cells from various mouse strains differed in the capacity to spontaneous interferon formation. Finally it was found that the level of this interferon was raised with the age of mice.  相似文献   

6.
Recently, we showed that the cytotoxic and mutagenic response in human cells to the model SN2 alkylating agent methyl methanesulfonate (MMS) can be modulated by the mismatch repair (MMR) pathway. That is, human cancer cell lines defective in MMR are more resistant to the cytotoxic effects of MMS exposure and suffer more induced mutations at the HPRT locus than MMR-proficient cell lines. Since MMS produces little O6-methylguanine (O6-meG), the observed hypermutability and resistance to cytotoxicity in MMR-defective cells likely results from lesions other than O6-meG. MMS produces a high yield of N7-methylguanine (N7-meG) and N3-methyladenine (N3-meA), which can lead to the formation of promutagenic abasic sites, and these lesions may be responsible for the observed cytotoxic and/or mutagenic effects of MMS. To further investigate the mechanism of MMS mutagenesis, two MMR-defective human cancer cell lines were treated with MMS and the frequency and the types of mutations produced at the HPRT locus were determined. MMS treatment (1.5 mM) produced a 1.6- and a 2.2-fold increase in mutations above spontaneous levels in HCT116 and DLD-1 cell lines, respectively. An average 3.7-fold increase in transversion mutations was observed, which accounted for greater than one-third of all induced mutations in both cell lines. In contrast, an average 1.6-fold increase was seen among transition mutations (the class expected from O-alkylation products). Since transversion mutations are not produced by O6-meG, these findings suggest that abasic sites may be the lesion responsible for a large proportion of MMS mutagenicity in MMR-defective cells. Furthermore, these data suggest the MMS-induced damage, either abasic site-inducing base alterations (i.e., N7-meG and N3-meA) or the resulting abasic sites themselves, may be substrates for recognition and/or repair by MMR proteins.  相似文献   

7.
8.
There is a strong selective pressure favoring adaptive mutations which relieve proliferation-limiting adverse living conditions. Due to their importance for evolution and pathogenesis, we are interested in the mechanisms responsible for the formation of such adaptive, gain-of-fitness mutations in stationary-phase cells. During previous studies on the occurrence of spontaneous reversions of an auxotrophy-causing frameshift allele in the yeast Saccharomyces cerevisiae, we noticed that about 50% of the adaptive reversions depended on a functional non-homologous end joining (NHEJ) pathway of DNA double-strand break (DSB) repair. Here, we show that the occasional NHEJ component Pol4, which is the yeast ortholog of mammalian DNA polymerase lambda, is not required for adaptive mutagenesis. An artificially imposed excess of DSBs by gamma-irradiation resulted in a dramatic increase in the incidence of adaptive, cell cycle arrest-releasing frameshift reversions. By the use of DNA ligase IV-deficient strains we detected that the majority of the gamma-induced adaptive mutations were also dependent on a functional NHEJ pathway. This suggests that the same mutagenic NHEJ mechanism acts on spontaneously arising as well as on ionizing radiation-induced DSBs. Inaccuracy of the NHEJ repair pathway may extensively contribute to the incidence of frameshift mutations in resting (non-dividing) eukaryotic cells, and thus act as a driving force in tumor development.  相似文献   

9.
The data obtained indicate that spontaneous mutations in Saccharomyces cerevisiae are formed during DNA replication. With no DNA replication in the lag-period, in the stationary growth phase, spontaneous mutations are not formed in cell culture during the G1 phase of cell cycle. Experimental data show the absence of primary spontaneously occurring DNA lesion accumulation in the cell G1 phase. Spontaneous mutations of yeasts are formed in the S phase of cell cycle, apparently as DNA replication errors. It is established that the frequency of spontaneous reversions of the leu2 gene in Saccharomyces cerevisiae strain NA3-24 increases when the cells are cultivated on the culture medium with different concentrations of leucine.  相似文献   

10.
A mathematical model for the mechanism of periodic pattern formation in the process of somitogenesis is proposed. It is assumed that the metameric arrangement first appears before somite formation at the stage of transition of mesodermal cells into a polarized state. The model is based on the assumption that besides the mechanism of contact cell polarization there exists a mechanism of polarization suppression due to excretion of some chemical substance by polarized cells. Periodicity appears as a result of interaction of a kinematic wave of somitogenic cell determination with the cell cycles of mesodermal cells.  相似文献   

11.
Sphingolipids, lipids with a common sphingoid base (also termed long chain base) backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln) and toppler (to), with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydro)ceramide synthase 1 (CerS1), which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases.  相似文献   

12.
In a search for cell mutants that show an increase or a decrease in the frequency of baseline sister-chromatid exchanges (SCEs) or spontaneous chromosomal aberrations (CAs), large numbers of mutagen-sensitive clones previously isolated from mouse lymphoma L5178Y cells were analyzed. In addition to two SCE mutants (ES 4 and AC 12) previously reported, three other mutants were identified as an SCE mutant. An ethyl methanesulfonate-sensitive mutant ES 2 and an alkylating agent-sensitive mutant MS 1 exhibited, respectively, 1.4-fold and 1.8-fold higher baseline SCE frequencies than did the parental L5178Y. In contrast, M10, which is sensitive to X-ray and 4-nitroquinoline 1-oxide, showed a reduced frequency of baseline SCEs (0.65-fold). These 5 mutants including ES 4 and AC 12 had 3--9-fold increases in spontaneous CA frequencies. Measurement of baseline SCE formation in inter-mutant hybrids revealed that M10 mutation is dominant, MS 1 and ES 4 mutations are semidominant, and ES 2 and AC 12 mutations are recessive. Because SCE frequencies in hybrids formed between pairs of 4 mutants (ES 2, MS 1, ES 4 and AC 12) were significantly lower than those in the tetraploid mutant cells, these 4 mutants probably belong to different complementation groups. Since M10 behaved dominantly with respect to SCE phenotype, it was not possible to determine by complementation test whether it belongs to a different group from the other mutants. However, the finding that M10 is complemented by other mutants for EMS sensitivity indicates that the M10 mutation is different from the other mutations. From these results, it is concluded that at least 4 different genes participate in the formation of high levels of baseline SCEs. The defects in ES 2, MS 1, ES 4, and AC 12 produce common lesions responsible for the formation of both SCEs and CAs. In contrast, the defect in M10 is associated with a high increase in spontaneous CA frequency, but conversely associated with a decrease in baseline SCE frequency. This suggests that M10 is defective in the process involved in the formation of baseline SCEs.  相似文献   

13.
Significant portion (up to 20%) of dominant mutations (rifd mutations) was observed among spontaneous mutations of rifampicin resistance picked up in cells of haploid Escherichia coli strain. These mutations are similar to rifd mutations obtained earlier when selecting them in rif-s/rif-s merodiploids. On the basis of analysis of nucleotide substitutions taking place in formation of spontaneous and induced mutations, it is established that rifd mutations are caused by single nucleotide substitution. The majority of rifd mutations are localized in a small region of the central part of RNA polymerase beta-subunit gene covering less than 200 base pairs. A rifd mutant has been described which occurred as a result of micro-deletion in one of the "hot" spots of the central region of beta-subunit gene.  相似文献   

14.
Summary Altered sequences were determined of 52 independent spontaneous mutations occuring in a cDNA of the human hypoxanthine phosphoribosyltransferase (hprt) gene, which was integrated into chromosomal DNA of the mouse cell as a part of the retroviral shuttle vector. Spontaneous mutations comprised a variety of events: base substitutions, frameshifts, deletions, duplications, and complex mutational events, and were distributed randomly over the coding region of the gene. Frameshifts were the most frequent mutational event (38%), and base substitutions were the next most frequent (25%), followed by deletions (19%). Frameshift and deletion mutations commonly occurred preferentially at sites flanked by short direct repeats. Short inverted repeats were frequently found to be associated with duplication and complex mutational events. Analysis of the sequence alterations in the mutant genes suggests that misalignment mutagenesis represents an important molecular mechanism for the generation of spontaneous mutations in eukaryotic cells.  相似文献   

15.
The importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. The inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them from mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify a level of spontaneous genetic instability inherited in a number of cell generations on the epigenetic mechanism.  相似文献   

16.
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary flavorings that exhibit antimutagenic activity against mutagen-induced and spontaneous mutations in bacteria. Although these compounds were antimutagenic against chromosomal mutations in mammalian cells, they have not been studied for antimutagenesis against spontaneous gene mutations in mammalian cells. Thus, we initiated studies with VAN and CIN in human mismatch repair-deficient (hMLH1(-)) HCT116 colon cancer cells, which exhibit high spontaneous mutation rates (mutations/cell/generation) at the HPRT locus, permitting analysis of antimutagenic effects of agents against spontaneous mutation. Long-term (1-3 weeks) treatment of HCT116 cells with VAN at minimally toxic concentrations (0.5-2.5mM) reduced the spontaneous HPRT mutant fraction (MF, mutants/10(6) survivors) in a concentration-related manner by 19-73%. A similar treatment with CIN at 2.5-7.5microM yielded a 13-56% reduction of the spontaneous MF. Short-term (4-h) treatments also reduced the spontaneous MF by 64% (VAN) and 31% (CIN). To investigate the mechanisms of antimutagenesis, we evaluated the ability of VAN and CIN to induce DNA damage (comet assay) and to alter global gene expression (Affymetrix GeneChip) after 4-h treatments. Both VAN and CIN induced DNA damage in both mismatch repair-proficient (HCT116+chr3) and deficient (HCT116) cells at concentrations that were antimutagenic in HCT116 cells. There were 64 genes whose expression was changed similarly by both VAN and CIN; these included genes related to DNA damage, stress responses, oxidative damage, apoptosis, and cell growth. RT-PCR results paralleled the Affymetrix results for four selected genes (HMOX1, DDIT4, GCLM, and CLK4). Our results show for the first time that VAN and CIN are antimutagenic against spontaneous mutations in mammalian (human) cells. These and other data lead us to propose that VAN and CIN may induce DNA damage that elicits recombinational DNA repair, which reduces spontaneous mutations.  相似文献   

17.
Some chronic mechanical irritations induce cancers, and it is speculated that mutations are induced by increased rate of cell proliferation caused by the irritation. In this study, it was investigated using chronic mechanical irritation to urothelium caused by urolithiasis, whether mutations are really induced by such cell proliferation or not. Male rats transgenic for lacI (Big Blue(R) rats), in which lacI mutations accumulated in tissue can be measured, were fed 3% uracil, a component of RNA, to induce urolithiasis associated with papillomatosis, and eventually with bladder cancers. The frequency of independent mutations in the bladders of the treated rats showed 3-5 fold increases at weeks 10, 20, and 51 (P=0.01 at week 51) while the frequency was not elevated at week 2. The mutation frequencies in the control bladders ranged from 3 to 9x10(-6). In both groups, G to A transitions at CpG sites, indicative of spontaneous mutations, constituted the most prevalent mutations. Mechanical irritation caused by uracil was shown to induce a 3-5 fold increase of mutations, possibly through an elevation of spontaneous mutations by vigorous cell proliferation.  相似文献   

18.
The tumour suppressor gene p53 is recognised as a central regulator of the cell cycle and apoptosis. Post-natally, p53 mutations are associated with many cancers and mice lacking p53 are prone to spontaneous tumour formation. The present study examines skeletal muscle formation in post-natal mice lacking p53 using two different models of skeletal muscle regeneration. The level of endogenous myogenic cell proliferation in mature skeletal muscle was examined and the time course of muscle regeneration after whole muscle transplantation or crush injury were compared in p53 (-/-) and control C57Bl/6J adult mice, using desmin and proliferating cell nuclear antigen (PCNA) immunohistochemistry and histological analysis. The pattern of inflammation, myoblast proliferation and myotube formation in regenerating p53 (-/-) skeletal muscles appears normal and similar to those in control C57Bl/6J muscle. These data indicate that p53 is not required for the regulation of myoblast proliferation, differentiation and myotube formation in vivo during myogenesis of adult skeletal muscle.  相似文献   

19.
Nickel(II) is a human carcinogen causing respiratory cancers. The purpose of this study was to determine whether Ni(II) may induce microsatellite mutations in human cells. We transfected the three human lung tumor cell lines A427, HCC15 and NCI-H2009 with a mammalian expression vector containing a (CA)(13) repeat in the coding sequences of the reporter hygromycin gene (hyg). A total of 33 clones carrying the integrated vector derived from the three cell lines was investigated for spontaneous and Ni(II)-induced hygromycin-resistant (hyg(r)) reversion mutants. Significantly higher frequencies of hyg(r) reversion mutations were observed in Ni(II)-treated cells (NCI-H2009 and HCC-15) than control cells. In the majority of the colonies hyg(r) phenotype was due to mutations within the integrated (CA) repeat sequence. The type of mutations consisted of both contraction and expansion of the (CA) repeat unit. The finding that Ni(II) promotes microsatellite mutations raises the possibility that genetic instability may be a mechanism involved in nickel carcinogenesis.  相似文献   

20.
The spontaneous chromosome mutation rate was studied in cultured aneuploid Chinese hamster cells (clone 237(1)) using the method of slowing down the rate of cell division in a limiting medium containing 0.1% of serum. It was shown that during one cell generation (which lasted 14 days in limiting medium) the accumulation of chromosome aberrations with time took place. The data obtained are in keeping with the assumption of a linear dependence of this accumulation on time. The spontaneous chromosome rearrangement rate was 1.2 X 10(-2) mutations per cell per 24 hours. Proceeding from this value the spontaneous chromosome aberration rate in cells with a normal duration of the cell cycle was 0.6 X 10(-2) per cell per generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号