首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A new highly catalytic and intensely sensitive amperometric sensor based on PtM (where M=Pd, Ir) bimetallic nanoparticles (NPs) for the rapid and accurate estimation of hydrogen peroxide (H(2)O(2)) by electrooxidation in physiological conditions is reported. PtPd and PtIr NPs-decorated multiwalled carbon nanotube nanocatalysts (PtM/MWCNTs) were prepared by a modified Watanabe method, and were characterized by XRD, TEM, ICP, and XAS. The sensors were constructed by immobilizing PtM/MWCNTs nanocatalysts in a Nafion film on a glassy carbon electrode. Both PtPd/MWCNTs and PtIr/MWCNTs assemblies catalyzed the electrochemical oxidation of H(2)O(2). Cyclic voltammetry characterization measurements revealed that both the PtM (M=Pd, Ir)/MWCNTs/GCE possessed similar electrochemical surface areas (~0.55 cm(2)), and electron transfer rate constants (~1.23 × 10(-3)cms(-1)); however, the PtPd sensor showed a better performance in H(2)O(2) sensing than did the PtIr counterpart. Explanations were sought from XAS measurements to explain the reasons for differences in sensor activity. When applied to the electrochemical detection of H(2)O(2), the PtPd/MWCNTs/GC electrode exhibited a low detection limit of 1.2 μM with a wide linear range of 2.5-125 μM (R(2)=0.9996). A low working potential (0V (SCE)), fast amperometric response (<5s), and high sensitivity (414.8 μA mM(-1)cm(-2)) were achieved at the PtPd/MWCNTs/GC electrode. In addition, the PtPd/MWCNTs nanocatalyst sensor electrode also exhibited excellent reproducibility and stability. Along with these attractive features, the sensor electrode also displayed very high specificity to H(2)O(2) with complete elimination of interference from UA, AA, AAP and glucose.  相似文献   

2.
A new electrochemical sensor for the determination of norepinephrine (NE), acetaminophen (AC) and tryptophan (Trp) is described. The sensor is based on carbon paste electrode (CPE) modified with 3,4-dihydroxybenzaldehyde-2,4-dinitrophenylhydrazone (DDP) and takes the advantages of carbon nanotubes (CNTs), which makes the modified electrode highly sensitive for the electrochemical detection of these compounds. Cyclic voltammetry (CV) at various scan rates was used to investigate the redox properties of the modified electrode. The apparent charge transfer rate constant, k(s), and transfer coefficient, α, for electron transfer between DDP and CNT paste electrode were calculated. The mediated oxidation of NE at the modified electrode was investigated by CV and the values of k, α and diffusion coefficient (D) were calculated. Under the optimum pH of 7.0, the oxidation of NE occurs at a potential about 215 mV less positive than that of the unmodified CPE. Differential pulse voltammetry (DPV) of NE at the modified electrode exhibited two linear dynamic ranges with a detection limit (3σ) of 77±2 nM. DPV was used for simultaneous determination of NE, AC and Trp at the modified electrode, and quantitation of NE in some real samples by the standard addition method.  相似文献   

3.
The electrochemical behavior of insulin at glassy carbon (GC) electrode modified with nickel oxide nanoparticles and guanine was investigated. Cyclic voltammetry technique has been used for electrodeposition of nickel oxide nanoparticles (NiOx) and immobilization of guanine on the surface GC electrode. In comparison to glassy carbon electrode modified with nickel oxide nanoparticles and bare GC electrode modified with adsorbed guanine, the guanine/nickel oxide nanoparticles/modified GC electrode exhibited excellent catalytic activity for the oxidation of insulin in physiological pH solutions at reduced overpotential. The modified electrode was applied for insulin detection using cyclic voltammetry or hydrodynamic amperometry techniques. It was found that the calibration curve was linear up to 4muM with a detection limit of 22pM and sensitivity of 100.9pA/pM under the optimized condition for hydrodynamic amperometry using a rotating disk modified electrode. In comparison to other electrochemical insulin sensors, this sensor shows many advantages such as simple preparation method without using any special electron transfer mediator or specific reagent, high sensitivity, excellent catalytic activity at physiological pH values, short response time, long-term stability and remarkable antifouling property toward insulin and its oxidation product. Additionally, it is promising for the monitoring of insulin in chromatographic effluents.  相似文献   

4.
制备了聚6-甲基香豆素修饰玻碳电极,研究了尿酸(UA)在该修饰电极上的电化学行为。实验结果表明:在pH=5.0的磷酸盐缓冲溶液中,扫描速率为50mV/s时,尿酸在修饰电极上于0.352V处产生一个灵敏的氧化峰,在0.278V处有一弱的还原峰。经线性扫描伏安法测定,氧化峰电流与尿酸浓度在2.5×10-6~1.0×10-5mol/L范围内表现出良好的线性关系,检出限为1.0×10-6mol/L。将修饰电极在常温下放置50d及将体系温度升高到75℃时,修饰电极对尿酸的响应电流大体不变,结果满意。  相似文献   

5.
An enzyme electrode was prepared with acid phosphatase (ACP) for development of a new electric power generation system using ascorbic acid 2-phosphate (AA2P) as a fuel. The properties of the electrode were investigated with respect to biocatalytic dephosphorylation of AA2P and electrochemical oxidation of resulting ascorbic acid (AA). The enzyme electrode was fabricated by immobilization of ACP through amide linkage onto a self-assembled monolayer of 3-mercaptopropionic acid on a gold electrode. AA2P was not oxidized on a bare gold electrode in the potential sweep range from -0.1 to +0.5 V vs. Ag/AgCl. However, the enzyme electrode gave an oxidation current in citric buffer solution of pH 5 containing 10 mM of AA2P. The oxidation current began to increase at +0.2V, and reached to 5.0 μA cm(-2) at +0.5 V. The potential +0.2 V corresponded to the onset of oxidation of ascorbic acid (AA). These results suggest that the oxidation current observed with the enzyme electrode is due to AA resulting from dephosphorylation of AA2P. The oxidation current increased with increasing concentration of AA2P and almost leveled off at around the concentration of 5mM. Thus the enzyme electrode brought about biocatalytic conversion of AA2P to AA, followed by electrochemical oxidation of the AA. The oxidation current is likely to be controlled by the biocatalytic reaction.  相似文献   

6.
A method is described for the construction of a highly sensitive amperometric sensor for the detection of tyrosine, employing a magnetic nanoparticles-zinc oxide/zinc hexacyanoferrate (Fe3O4NP-ZnO/ZnHCF) hybrid film electrodeposited on the surface of a Pt electrode as working electrode. The sensor is based on electrocatalytic mechanism initiated by electrochemical oxidation of the reduced form of the hybrid film at +0.2 V vs. Ag/AgCl followed by completion of chemical oxidation of tyrosine. The sensor showed optimum response within 2 s at pH 2. The working/linear range of the sensor was 0.02–2.76 mM with a detection limit of 4 μM. The sensor measured tyrosine level in serum, a potential biomarker of phenylketonuria. The working electrode lost only 5 % of its initial activity, when stored at 4 °C, after its regular use over a period of 100 days.  相似文献   

7.
Carbon fiber paper (CFP), a material frequently used as the diffusion layer in fuel cells, was found recently to exhibit a potential as an electrode for the development of sensitive, unmediated biosensors. After nitrogen plasma treatment, the CFP exhibited a quasi-reversible behavior to the redox couple (e.g., ferricyanide) with an electron transfer rate constant of 7.2 × 10(-3)cms(-1). This rate constant is approximately double that of a Pt-electrode and is much higher than that of many carbon-based electrodes. The unmediated CFP-based tyrosinase biosensor fabricated for this study exhibited an optimal working potential and operating pH value of -0.2V and 6.5, respectively. Compared to other unmediated tyrosinase biosensors, the CFP-based tyrosinase biosensor offers a high sensitivity for the monitoring of phenolic compounds (17.8, 7.1, 5.2 and 3.7 μA μM(-1)cm(-2) for catechol, phenol, bisphenol and 3-aminophenol, respectively). The lowest detection limit for catechol, phenol, bisphenol and 3-aminophenol was 2, 5, 5 and 12 nM, respectively. Furthermore, this biosensor exhibited a good repeatability, a fast response time (around 10s), and a wide linear dynamic range of detection for phenolic compounds.  相似文献   

8.
THE BIOLOGICAL OXIDATION OF SPENT GAS LIQUOR   总被引:4,自引:4,他引:0  
SUMMARY: Mixed cultures of bacteria grown in spent gas liquor readily oxidized phenol, o -, m - and p -cresol, catechol, 3-methyl catechol, 4-methyl catechol, resorcinol, 2-methyl resorcinol, and 4-methyl resorcinol. Quinol, pyrogallol and phloroglucinol were more resistant. The optimum temperature was 30° and the best pH range 6·5–7·8. Yeast extract and sterile sewage sludge both increased the rate of growth of organisms in liquor when the inoculum was small. Five phenol oxidizing organisms were isolated in pure culture. Copper in concentrations greater than 1 p/m inhibited both growth and phenol oxidation by one of these.
Mixed cultures grown in an ammonium thiocyanate medium originally inoculated with Thiobacillus thiocyanoxidans oxidized potassium thiocyanate and sodium thiosulphate. Chloride inhibited thiocyanate oxidation in concentrations above 5,000 p/m, although adaptation to 15,000 p/m was possible. Phenol inhibited thiocyanate oxidation in concentrations of 300 p/m or more. Mixed cultures grown on sodium thiosulphate oxidized sodium trithionate and tetrathionate, potassium pentathionate and hexa-thionate, and potassium and ammonium thiocyanate
Manometric determinations of the 5 day biological oxygen demand of effluents after treatment showed good agreement with the values obtained by the conventional method, the manometric values being usually somewhat higher.  相似文献   

9.
An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCl). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 microA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degrees C.  相似文献   

10.
Biodegradation of resorcinol and catechol was studied in upflow anaerobic fixed film-fixed bed (FFFB) reactors of uniform dimensions in mono and multisubstrate matrices. Cross feeding studies have revealed that phenol was poorly degraded in resorcinol acclimated reactor whereas it was readily degraded in catechol acclimated reactor. Addition of resorcinol along with phenol in a COD ratio 1:3 in resorcinol reactor increased phenol removal efficiency to 95% indicating that resorcinol induces phenol degradation. When both resorcinol and catechol were fed to the resorcinol acclimated reactor, it was observed that resorcinol degradation was inhibited by catechol. Catechol acclimated reactor could degrade phenol readily when added as mono substrate indicating that it may be an intermediate in catechol degradation. In binary mixture studies also catechol reactor could degrade phenol, resorcinol and hydroquinone to 90%. Catechol acclimated reactor exhibits relaxed substrate specificity whereas resorcinol acclimated reactor exhibits rigid substrate specificity for phenol as well as other isomers.  相似文献   

11.
The adsorption processes and electrochemical behavior of 4-nitroaniline (4-NA) and 2-nitroaniline (2-NA) adsorbed onto glassy carbon electrodes (GCE) have been investigated in aqueous 0.1M nitric acid (HNO(3)) electrolyte solutions using cyclic voltammetry (CV). Nitroaniline adsorbs onto GCE surfaces and upon potential cycling past -0.55 V is transformed into the arylhydroxylamine (ArHA), which exhibits a well-behaved pH dependent redox couple centered at 0.32 V (pH 1.5). This modified electrode can be readily used as an immobilization matrix to entrap proteins and enzymes. In our studies, myoglobin (Mb) was chosen as a model protein for investigation. A pair of well-defined reversible redox peaks for Mb(Fe(III)-Fe(II)) was obtained at the Mb/arylhydroxylamine modified glassy carbon electrode (Mb/HAGCE) by direct electron transfer between the protein and the GCE. The formal potential (E(0')), the surface coverage (Gamma) and the electron transfer rate constant (k(s)) were calculated as -0.317 V, 4.15+/-0.5 x 10(-11)mol/cm(2) and 51+/-5s(-1), respectively. Dramatically enhanced biocatalytic activity was exemplified at the Mb/HAGCE for the reduction of hydrogen peroxide (H(2)O(2)), trichloroacetic acid (TCA) and oxygen (O(2)). The Mb/ArHA film was also characterized by UV-vis spectra, scanning electron microscope (SEM) indicating excellent stability and good biocompatibility for protein in the film. The applicability of the method to the determination of H(2)O(2) ( approximately 3%) in a commercial antiseptic solution and soft-contact lenses cleaning solutions were demonstrated. This new Mb/HAGCE exhibited rapid electrochemical response (with in 2s) with good stability in physiological condition.  相似文献   

12.
Some aspects of the induction of enzymes participating in the metabolism of phenol and resorcinol in Trichosporon cutaneum were studied using intact cells and cell-free preparations.Activities of phenol hydroxylase (1.14.13.7), catechol 1,2-oxygenase (1.13.11.1), cis,cis-muconate cyclase (5.5.1.-), delactonizing enzyme(s) and maleolylacetate reductase were 50–400 times higher in fully induced cells than in noninduced cells.In addition to phenol and resorcinol, also catechol, cresols and fluorophenols could induce phenol hydroxylase.The induction was severely inhibited by phenol concentrations higher than 1 mM. Using optimum inducer concentrations (0.01–0.10 mM), it took more than 8 h to obtain full induction, whether in proliferating or in nonproliferating cells.Phenol hydroxylase, catechol 1,2-oxygenase and cis,cis-muconate cyclase were induced simultaneously. The synthesis of the de-lactonizing activity was delayed in relation to these three preceeding enzymes of the pathway.High glucose concentration (over 15 mM) inhibited completely the induction of phenol oxidation by nonproliferating cells. It also inhibited phenol oxidation by pre-induced cells.Among the NADPH-generating enzymes, the activity of iso-citrate dehydrogenase was elevated in cells grown on phenol and resorcinol instead of glucose.  相似文献   

13.
We constructed a highly responsive ascorbic acid (AA) sensor utilizing over-oxidized polypyrrole (OPPy) and Palladium nanoparticles (PdNPs) composites (OPPy-PdNPs). In the presence of PdNPs, polypyrrole (PPy) was coated on a gold (Au) electrode through cyclic voltammetry (CV) and over-oxidized at a fixed potential in NaOH solution. The PdNPs were characterized using ultraviolet-visible (UV-vis) spectrum and transmission electron microscopy (TEM). The surface of OPPy-PdNPs on the Au electrode was investigated using field-emission scanning electron microscopy (FE-SEM). Results revealed that the OPPy-PdNPs-modified Au electrode (OPPy-PdNPs/Au) has the capacity to catalyze the oxidation of AA by lowering its oxidation potential to 0 V. The OPPy-PdNPs/Au electrode exhibited 2 different linear concentration ranges. In the low concentration range (1-520 μM), OPPy-PdNPs/Au exhibited a direct linear relation with current responses and had high sensitivity (570 μA mM(-1)cm(-2)) and a high correlation coefficient (0.995). In contrast, in the higher concentration range (120-1600 μM), the relationship between current responses and concentration of AA can be represented by a two-parameter sigmoidal equation. In addition, the sensor exhibited a short response time (less than 2s) and a very low limit of detection of 1 μM. The electrochemical AA sensor constructed in this study was simple, inexpensive, reproducible, sensitive, and resistant to interference. Thus, the proposed sensor has great potential for detecting AA in complex biosystems and can be applied in various fields, particularly neuroscience.  相似文献   

14.
Direct electrochemical and electrocatalytic behaviors of hemoglobin (Hb) immobilized on carbon paste electrode (CPE) by a silica sol-gel film derived from tetraethylorthosilicate (TEOS) were investigated for the first time. Hb/sol-gel film modified electrodes showed a pair of well-defined and nearly reversible cyclic voltammetric peaks for Hb Fe(III)/Fe(II) redox couple at about -0.312 V (versus Ag/AgCl) in a pH 7.0 phosphate buffer. The formal potential of Hb heme Fe(III)/Fe(II) couple varied linearly with the increase of pH in the range of 5.0-10.0 with a slope of 49.44 mV pH(-1), which suggests that a proton transfer is accompanied with each electron transfer (ET) in the electrochemical reaction. The immobilized Hb displayed the features of peroxidase and gave excellent electrocatalytic performance to the reduction of O2, NO2(-) and H2O2. The calculated apparent Michaelis-Menten constant was 8.98 x 10(-4)M, which indicated that there was a large catalytic activity of Hb immobilized on CPE by sol-gel film toward H2O2. In comparison with other electrodes, the chemically modified electrodes, used in this direct electrochemical study of Hb, are easy to be fabricated and rather inexpensive. Consequently, the Hb/sol-gel film modified electrode provides a convenient approach to perform electrochemical research on this kind of proteins. It also has potential use in the fabrication of the third generation biosensors and bioreactors.  相似文献   

15.
The direct electrochemistry of lactate dehydrogenase (LDH) immobilized in silica sol-gel film on gold electrode was investigated, and an obvious cathodic peak at about -200 mV (versus SCE) was found for the first time. The LDH-modified electrode showed a surface controlled irreversible electrode process involving a one electron transfer reaction with the charge-transfer coefficient (alpha) of 0.79 and the apparent heterogeneous electron transfer rate constant (K(s)) of 3.2 s(-1). The activated voltammetric response and decreased charge-transfer resistance of Ru(NH(3))(6)(2+/3+) on the LDH-modified electrode provided further evidence. The surface morphologies of silica sol-gel and the LDH embedded in silica sol-gel film were characterized by SEM. A potential application of the LDH-modified electrode as a biosensor for determination of lactic acid was also investigated. The calibration range of lactic acid was from 2.0 x 10(-6) to 3.0 x 10(-5) mol L(-1) and the detection limit was 8.0 x 10(-7) mol L(-1) at a signal-to-noise ratio of 3. Finally, the effect of environmental pollutant resorcinol on the direct electrochemical behavior of LDH was studied. The experimental results of voltammetry indicated that the conformation of LDH molecule was altered by the interaction between LDH and resorcinol. The modified electrode can be applied as a biomarker to study the pollution effect in the environment.  相似文献   

16.
Direct electron transfer of glucose oxidase promoted by carbon nanotubes   总被引:11,自引:0,他引:11  
A stable suspension of carbon nanotubes (CNT) was obtained by dispersing the CNT in a solution of surfactant, such as cetyltrimethylammonium bromide (CTAB, a cationic surfactant). CNT (dispersed in the solution of 0.1% CTAB) has promotion effects on the direct electron transfer of glucose oxidase (GOx), which was immobilized onto the surface of CNT. The direct electron transfer rate of GOx was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of GOx, with a midpoint potential of about -0.466 V (vs SCE (saturated calomel electrode)) in the phosphate buffer solution (PBS, pH 6.9). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of midpoint potential (E1/2) were estimated. The dependence of E1/2 on solution pH indicated that the direct electron transfer reaction of GOx is a two-electron-transfer coupled with a two-proton-transfer reaction process. The experimental results also demonstrated that the immobilized GOx retained its bioelectrocatalytic activity for the oxidation of glucose, suggesting that the electrode may find use in biosensors (for example, it may be used as a bioanode in biofuel cells). The method presented here can be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

17.
Di J  Bi S  Zhang M 《Biosensors & bioelectronics》2004,19(11):1479-1486
A third-generation biosensor for superoxide anion (O(2)*-) was developed based on superoxide dismutase (SOD) immobilized by thin silica-PVA sol-gel film on gold electrode surface. A rapid and direct electron transfer of SOD in the thin sol-gel film at the gold electrode was realized without any mediators or promoters. The characterization of the SOD electrodes showed a quasi-reversible electrochemical redox behavior with a formal potential of 80 + 5 mV (versus SCE) in 50 mmol l(-1) phosphate buffer solution (PBS), pH 7.0. The heterogeneous electron transfer rate constant was evaluated to be about 2.1s(-1). The anodic and cathodic transfer coefficients are 0.6 and 0.4, respectively. Based on biomolecular recognition for specific reactivity of SOD toward O(2)*- the SOD electrode was applied to a sensitive and selective measurement of O(2)*- with the low operation potential (-0.15 V versus SCE) in phosphate buffer solution, pH 7.0. The amperometric response was proportional to O(2)*- concentration in the range of 0.2-1.6 micromol l(-1) and the detection limit was 0.1 micromol l(-1) at a signal-to-noise ration of 3. The preparation of SOD electrode is easy and simple. The uniform porous structure of the silica-PVA sol-gel matrix results in a fast response rate of immobilized SOD and is very efficient for stabilizing the enzyme activity.  相似文献   

18.
A novel polyaniline-ionic liquid-carbon nanofiber (PANI-IL-CNF) composite was greenly prepared by in situ one-step electropolymerization of aniline in the presence of IL and CNF for fabrication of amperometric biosensors. The scanning electron micrographs confirmed that the PANI uniformly grew along with the structure of CNF and the PANI-IL-CNF composite film showed a fibrillar morphology with the diameter of around 95 nm. A phenol biosensor was constructed by immobilizing tyrosinase on the surface of the composite modified glassy carbon electrode via the cross-linking step with glutaraldehyde. The biosensor exhibited a wide linear response to catechol ranging from 4.0 x 10(-10) to 2.1 x 10(-6)M with a high sensitivity of 296+/-4 AM(-1)cm(-2), a limit of detection down to 0.1 nM at the signal to noise ratio of 3 and applied potential of -0.05 V. According to the Arrhenius equation, the activation energy for enzymatic reaction was calculated to be 38.8 kJmol(-1) using catechol as the substrate. The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 1.44, 1.33, 1.16, 0.65 microM for catechol, p-cresol, phenol, m-cresol, respectively. The functionalization of CNF with PANI in IL provided good biocompatible platform for biosensing and biocatalysis.  相似文献   

19.
A novel strategy to fabricate an amperometric biosensor for phenol determination based on chitosan/laponite nanocomposite matrix was described. The composite film was used to immobilize PPO on the surface of a glassy carbon electrode. Chitosan was utilized to improve the analytical performance of the pure clay-modified bioelectrode. The biosensor exhibited a series of properties: good affinity to its substrate (the apparent Michaelis-Menten constant for the sensor was found to be 0.16 mM), high sensitivity (674 mA M(-1)cm(-2) for catechol) and remarkable long-term stability in storage (it retains 88% of the original activity after 60 days). In addition, optimization of the biosensor construction as well as effects of experimental variables such as pH, operating potential and temperature on the amperometric response of the sensor were discussed.  相似文献   

20.
Cross-linked enzyme crystals (CLECs) are a versatile form of biocatalyst that can also be used for biosensor application. Laccase from Trametes versicolor (E.C.1.10.3.2) was crystallized, cross-linked and lyophilized with beta-cyclodextrin. The CLEC laccase was found to be highly active towards phenols like 2-amino phenol, guaiacol, catechol, pyrogallol, catechin and ABTS (non-phenolic). The CLEC laccase was embedded in 30% polyvinylpropylidone (PVP) gel and mounted into an electrode to make the sensor. The biosensor was used to detect the phenols in 50-1000 micromol concentration level. Phenols with lower molecular weight such as 2-amino phenol, catechol and pyrogallol gave a short response time where as the higher molecular weight substrates like catechin and ABTS had comparatively a long response time. The optimum pH of the analyte was 5.5-6.0 when catechol was used as substrate. The CLEC laccase retained good activity for over 3 months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号