共查询到20条相似文献,搜索用时 0 毫秒
1.
The initial event in the neuronal differentiation of PC12 cells is the binding of the neurotrophin nerve growth factor (NGF) to the Trk receptor. This interaction stimulates the intrinsic tyrosine kinase activity of TRk, initiating a signalling cascade involving the phosphorylation of intracellular proteins on tyrosine, serine, and threonine residues. These signals are then in turn propagated to other messengers, ultimately leading to differentiation, neurotrophin-dependent survival and the loss of proliferative capacity. To transmit NGF signals, NGF-activated Trk rapidly associated with the cytoplasmic proteins, SHC, PI-3 kinase, and PLC-γ1. These proteins are involved in stimulating the formation of various second messenger molecules and activating the Ras signal transduction pathway. Studies with Trk mutants indicate that the acivation of the Ras pathway is necessary for complete differentiation of PC12-derived cells and for the maintenance of the differentiated phenotype. Trk also induces the tyrosine phosphorylation of SNT, a specific target of neurotrophic factor activity in neuronal cells. This review will discuss the potential roles of Trk and the proteins of the Trk signalling pathways in NGF function, and summarize our attempts to understand the mechanisms used by Trk to generate dthe many phenotypic responses of PC12 cells to NGF. 1994 John Wiley & Sons, Inc. 相似文献
2.
Expression of the neurotrophin receptors Trk A and Trk B in adult human astrocytoma and glioblastoma 总被引:4,自引:0,他引:4
Wadhwa S Nag TC Jindal A Kushwaha R Mahapatra AK Sarkar C 《Journal of biosciences》2003,28(2):181-188
Neurotrophins and their receptors of the Trk family play a critical role in proliferation, differentiation and survival of
the developing neurons. There are reports on their expression in neoplasms too, namely, the primitive neuroectodermal tumours
of childhood, and in adult astrocytic gliomas. The involvement of Trk receptors in tumour pathogenesis, if any, is not known.
With this end in view, the present study has examined 10 tumour biopsy samples (identified as astrocytoma, pilocytic astrocytoma
and glioblastoma) and peritumoral brain tissue of adult patients, for the presence of Trk A and Trk B receptors, by immunohistochemistry.
The nature of the tumour samples was also confirmed by their immunoreactivity (IR) to glial fibrillary acidic protein. In
the peritumoral brain tissue, only neurons showed IR for Trk A and Trk B. On the contrary, in the tumour sections, the IR
to both receptors was localized in the vast majority of glia and capillary endothelium. There was an obvious pattern of IR
in these gliomas: high levels of IR were present in the low-grade (type I and II) astrocytoma; whereas in the advanced malignant
forms (WHO grade IV giant cell glioblastoma and glio-blastoma multiforme) the IR was very weak. These findings suggest that
Trk A and Trk B are involved in tumour pathogenesis, especially in the early stage, and may respond to signals that elicit
glial proliferation, and thus contribute to progression towards malignancy. 相似文献
3.
Abstract: Dopamine receptor binding proteins were sol-ubilized with the detergent 3–(3–cholamidopropyl) dimethylammonio - 2 - hydroxy - 1– propanesulfonate (CHAPSO) from bovine and rat striatal membranes. The binding of the dopamine antagonist [3H]spiroperidol ([3H]Spi) to the solubilized dopamine receptors was determined by the polyethyleneglycol method. The CHAPSO-solubilized dopamine receptor binding proteins remain in the supernatant fraction following centrifuga-tion at 100,000 ×g for 2 h. The CHAPSO-solubilized dopamine receptor proteins, as well as the prelabeled [3H]Spi-receptor protein complex, bind specifically to wheat germ agglutinin (WGA)-agarose columns, which is consistent with an identification as glycoproteins. HPLC analysis of the CHAPSO-solubilized, prelabeled [3H]Spi-receptor protein complex (CHAPSO preparation) reveals association with a high molecular weight form, indicating the formation of aggregates and/or micelles. Treatment of the WGA-agarose-bound [3H]Spi-receptor protein complex with digitonin (CHAPSO-digitonin preparation) results in dissociation of the high molecular weight form into lower molecular weight forms. The HPLC profile of the prelabeled [3H]Spi-receptor complex in the CHAPSO-digitonin preparation reveals two radioactive peaks. The major peak had a retention time of 16 min, corresponding to an apparent MW of 175,000, whereas the minor peak had a retention time of 21 min, corresponding to an apparent MW of 49,000. The CHAPSO-solubilized dopamine receptor binding proteins are sensitive to modulation by GTP, indicating that the association with the GTP binding component is preserved in the “soluble” state. The potencies of dopamine antagonists and agonists for inhibiting the binding of [3H]Spi to CHAPSO-solubilized dopamine receptor proteins are similar to those for membrane-bound proteins. Chronic treatment with haloperidol increases the Bmax, and does not change the KD for [3H]Spi in the CHAPSO-solubilized and in the membrane-bound preparations. Thus, the CHAPSO-solubilized dopamine receptor proteins retain the binding characteristics of the supersensitive membrane-bound dopamine receptors. 相似文献
4.
Kule CE Karoor V Day JN Thomas WG Baker KM Dinh D Acker KA Booz GW 《Regulatory peptides》2004,120(1-3):141-148
β-Arrestins play a role in AT1 endocytosis by binding the cytoplasmic, C-terminus region T332–S338, the major site of angiotensin II (Ang II)-induced phosphorylation. However, the processes responsible for recruiting β-arrestin to the activated receptor are poorly defined. In this study, we used CHO-K1 and HEK 293 cells expressing wild-type or mutant AT1 to investigate two possibilities: activated AT1 induces global relocation of β-arrestins to the plasma membrane or the phosphorylated C-terminus acts as bait to attract β-arrestins. Results obtained using high osmolarity and dominant-negative β-arrestin confirmed that internalization of AT1 in both CHO-K1 and HEK 293 cells is predominately via clathrin-mediated endocytosis involving β-arrestin, and substitution of T332, S335, T336 and S338 with alanine to preclude phosphorylation markedly attenuated AT1 internalization. Confocal microscopy revealed that wild-type AT1 induced a time-dependent translocation of GFP-tagged β-arrestins 1 and 2 to the cell surface. In contrast, the TSTS/A mutant did not traffic β-arrestin 1 at all, and only trafficked β-arrestin 2 weakly. Results of rescue-type experiments were consistent with the idea that both β-arrestins are able to interact with the non-phosphorylated receptor, albeit with much lower affinity and β-arrestin 1 less so than β-arrestin 2. In conclusion, this study shows that the high affinity binding of β-arrestins to the phosphorylated C-terminus is the predominant mechanism of agonist-induced β-arrestin recruitment to the cell surface and AT1 receptor. 相似文献
5.
Synaptic vesicles are released from membranes during incubation at 37°C in the presence of ATP (adenosine triphosphate). The donor membranes are a rapidly sedimenting fraction derived from the neuroendocrine cell line PC12 (pheochromocytoma 12). These starting membranes contain the synaptic vesicle proteins, synaptophysin and SV2, and the endosomal markers transferrin receptor and cation-independent MPR (mannose 6-phosphate receptor). Incubating the membranes in vitro increased the amount of organelles that migrate as synaptic vesicles in velocity sedimentation gradients. The synaptic vesicle fractions that contain both synaptophysin and SV2 do not contain endosomal markers. A synaptic vesicle increase in vitro is time-, cytosol-, ATP- and temperature-dependent and is inhibited by NEM (N-ethylmaleimide), BFA (brefeldin A) and aluminum fluoride, but not GTPS (guanosine-5-O-C3-thiotriphosphate). The production of synaptic vesicles under these conditions is unlike the de novo generation of vesicles from endosomes (1). Incubation in vitro under the conditions described here may allow the final stages of synaptic vesicle formation, uncoating or undocking, to occur but not the initiation of formation de novo. 相似文献
6.
7.
This report describes the cloning and characterization of a plant cDNA coding for a protein which shows high amino acid sequence similarity with prohibitin, whose gene is associated with antiproliferative activity in mammalian cells. Arabidopsis thaliana and Nicotiana tabacum prohibitin complete cDNAs were isolated, and the expression pattern of prohibitin was examined using polyclonal antibodies raised against the Arabidopsis recombinant prohibitin expressed in Escherichia coli. A single immunoreactive protein was detected in various plant species and in all Arabidopsis organs examined. Subcellular fractionation using tobacco leaves revealed prohibitin in a mitochondrial-enriched fraction. Phylogenetic conservation of prohibitin's amino acid sequence and subcellular localization suggests a similar function in plants, yeast and mammals. 相似文献
8.
In continuing studies on smooth microsomal and synaptic membranes from rat forebrain, we compared the binding properties of opiate receptors in these two discrete subcellular populations. Receptors in both preparations were saturable and stereospecific. Scatchard and Hill plots of [3H]naloxone binding to microsomes and synaptic membranes were similar to plots for crude membranes. Both synaptic membranes and smooth microsomes contained similar enrichments of low- and high-affinity [3H]naloxone binding sites. No change in the affinity of the receptors was observed. When [3H]D-ala2-D-leu5-enkephalin was used as ligand, microsomes possessed 60% fewer high-affinity sites than did synaptic membranes, and a large number of low-affinity sites. In competition binding experiments microsomal opiate receptors lacked the sensitivity to (guanyl-5'-yl)imidodiphosphate [Gpp(NH)p] shown by synaptic and crude membrane preparations. In this respect microsomal opiate receptors resembled membranes that were experimentally guanosine triphosphate (GTP)-uncoupled with N-ethylmaleimide (NEM). Agonist binding to microsomal and synaptic membrane opiate receptors was decreased by 100 mM NaCl. Like NEM-treated crude membranes, microsomal receptors were capable of differentiating agonist and antagonists in the presence of 100 mM NaCl. MnCl2 (50-100 microM) reversed the effects of 100 mM NaCl and 50 microM GTP on binding of the mu-specific agonist [3H]dihydromorphine in both membrane populations. Since microsomal receptors are unable to distinguish agonists from antagonists in the presence of Gpp(NH)p, they are a convenient source of guanine nucleotide-uncoupled opiate receptors. 相似文献
9.
Differential Requirements of Sodium for Coupling of Cannabinoid Receptors to Adenylyl Cyclase in Rat Brain Membranes 总被引:1,自引:0,他引:1
Abstract: Sodium is generally required for optimal inhibition of adenylyl cyclase by Gl/o-coupled receptors. Canna-binoids bind to specific receptors that act like other members of the Gl/o-coupled receptor superfamily to inhibit adenylyl cyclase. However, assay of cannabinoid inhibition of adenylyl cyclase in rat cerebellar membranes revealed that concentrations of NaCI ranging from 0 to 150 mM had no effect on agonist inhibition. This lack of effect of sodium was not unique to cannabinoid receptors, because the same results were observed using baclofen as an agonist for GABAB receptors in cerebellar membranes. The lack of sodium dependence was region-specific, because assay of cannabinoid and opioid inhibition of adenylyl cyclase in striatum revealed an expected sodium dependence, with 50 mM NaCI providing maximal inhibition levels by both sets of agonists. This difference in sodium requirements between these two regions was maintained at the G protein level, because agonist-stimulated low Km GTPase activity was maximal at 50 mM NaCI in striatal membranes, but was maximal in the absence of NaCI in cerebellar membranes. Assay of [3H]WIN 55212–2 binding in cerebellar membranes revealed that the binding of this labeled agonist was sensitive to sodium and guanine nucleotides like other Gl/o-coupled receptors, because both NaCI and the nonhydrolyzable GTP analogue Gpp(NH)p significantly inhibited binding. These results suggest that differences in receptor-G protein coupling exist for cannabinoid receptors between these two brain regions. 相似文献
10.
Pierre J.-J. Vaysse R. Suzanne Zukin Kay L. Fields John A. Kessler 《Journal of neurochemistry》1990,55(2):624-631
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors. 相似文献
11.
Nancy R. Zahniser M. Beth Goens Patrick J. Hanaway John V. Vinych 《Journal of neurochemistry》1984,42(5):1354-1362
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner. 相似文献
12.
Abstract: To investigate the subcellular compartments that are involved in the endocytosis and intracellular trafficking of GABAA /benzodiazepine receptors, we have studied the distribution and properties of clonazepam-displaceable binding of [3 H]flunitrazepam to membrane fractions from rat brain. The microsomal fraction was subjected to density centrifugation and gel filtration to isolate clathrin-coated vesicles. Homogeneity of the coated-vesicle fraction was demonstrated by using electron microscopy and by analysis of clathrin subunits and clathrin light-chain kinase. Vesicles exhibiting specific binding of [3 H]flunitrazepam eluted from the sieving gel as a separate peak, which was coincident with that for coated vesicles. Scatchard analysis of equilibrium binding of [3 H]flunitrazepam to coated vesicles yielded a KD value of 21 ± 4.7 nM and a Bmax value of 184 ± 28 fmol/mg. The KD value for coated vesicles was 12-19-fold that found with microsomal or crude synaptic membranes. This low-affinity benzodiazepine receptor was not identified on any other subcellular fraction and thus appears to be a novel characteristic of coated vesicles. The Bmax value for coated vesicles, expressed per milligram of protein, corresponded to 16 and 115% of that found for crude synaptic and microsomal membrane fractions, respectively. Because the trafficking of neurotransmitter receptors via clathrin-coated vesicles is most likely to occur through endocytosis, the data suggest that an endocytotic pathway may be involved in the removal of GABAA /benzodiazepine receptors from the neuronal surfaces of the rat brain. This mechanism could play a role in receptor sequestration and down-regulation that is produced by exposure to GABA and benzodiazepine agonists. 相似文献
13.
The hippocampal formation has been extensively research in terms of its putative neurotransmitters, anatomical connections, and behavioral relevance. An aspect of importance is the assessment of apparent neurotransmitter receptors by using receptor binding assays. In the present study, such assays were done in vitro to investigate alpha 1-adrenergic, alpha 2-adrenergic, beta-adrenergic, muscarinic cholinergic, benzodiazepine, and opiate receptors in the rat hippocampal formation. The corresponding radioligands for these receptors were [3H]prazosin, [3H]p-aminoclonidine, [3H]dihydroalprenolol, [3H]quinuclidinyl benzilate, [3H]flunitrazepam, and [3H]naloxone. An analysis of the binding parameters for the ligands indicated saturable binding of a high affinity and the following rank order of maximal binding capacities: [3H]flunitrazepam greater than [3H]quinuclidinyl benzilate greater than [3H]naloxone greater than [3H]p-aminoclonidine greater than [3H]prazosin greater than [3H]dihydroalprenolol. Competition experiments with pharmacologic agonists and antagonists confirmed the specificity of each ligand. The results are integrated with information on other types of receptors and with neurotransmitter concentrations, and discussed in terms of hippocampal function. 相似文献
14.
Denis Reynaud Abdallah Gharib Michel Lagarde Nicole Sarda 《Journal of neurochemistry》1990,55(4):1316-1321
We have examined the binding of the adenosine agonist radioligands [3N]N6-cyclohexyladenosine ([3H]CHA) and [3H]5'-N-ethylcarboxamidoadenosine ([3H]NECA) to membranes prepared from postmortem human pineal glands. The results showed that the A-1-specific ligand CHA did not bind to membranes. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 68% specific binding of the total binding. This specific binding was nearly insensitive to the N-ethyl-maleimide pretreatment method. To characterize this binding, we used cyclopentyladenosine (50 nM). Under those conditions [3H]NECA binding at 30 degrees C was rapid and reversible; the KD determined from the kinetic studies was 141 nM. In postmortem human pineal gland, the rank order of potency of adenosine analogues and drugs competing with [3H]NECA showed the specificity for an A-2 receptor: NECA greater than 2-chloroadenosine greater than L-N6(2-phenylisopropyl)adenosine greater than 8-phenyltheophylline greater than 3-isobutyl-1-methylxanthine greater than caffeine. Guanylylimidodiphosphate (100 microM) induced a decrease in the affinity of [3H]NECA, a result suggesting the involvement of a G protein mechanism in the coupling of the adenosine receptor to other components of the receptor complex. Scatchard analysis revealed one class of binding sites for [3H]NECA with KD and Bmax ranging from 175 to 268 nM and 11.0 to 14.1 pmol/mg protein, respectively. The binding of [3H]NECA was not affected by age, sex, or postmortem delay. [3H]NECA should be a useful tool to assess brain A-2 receptor density in a variety of neuropsychiatric disorders. 相似文献
15.
Abstract: An analytical procedure for the subcellular fractionation of rat brain cortex is presented; it consists of a two-step procedure involving a differential centrifuga-tion using the five-fraction scheme and an isopycnic cen-trifugation in continuous sucrose gradients. All fractions obtained were analyzed for their content of various constituents, such as receptor binding, uptake, and several marker enzymes. Special attention was paid to the subcellular distribution of the serotonin S2 receptors; they were mainly recovered in the microsomal P fraction, but a significant amount was also associated with the mito-chondrial (M and L) fractions. After equilibration in density gradients, serotonin S2 receptors revealed two peaks, which were similarly affected after treatment with ami-triptyline and/or yohimbine. There is no evidence to suggest that serotonin S2 receptors are associated with nerve endings containing the neurotransmitter serotonin. Although three main profiles, a microsomal, a mitochondrial, and a mixed one, clearly appear from the differential centrifugation, subgroups of these main profiles were also found. For instance, the microsomal distribution patterns of serotonin S2 receptors and 5′-nucleoti-dase are very similar, but differ from that of UDP-galactosyltransferase. Similarly, the mitochondrial profiles of cytochrome oxidase and 5-HT (serotonin) uptake are different. An analytical approach for brain fractionation, when performed with appropriate measurements (cytochrome oxidase, amine uptake, 5′-nucleotidase, and receptor binding), is rapid and clearly differentiates pre-and postsynaptic constituents. 相似文献
16.
Glutamate neurotransmission plays a crucial role in a variety of functions in the central nervous system, including learning and memory. However, little is known about the mechanisms underlying this process in mammals because of the scarceness of experimental models that permit correlation of behavioral and biochemical changes occurring during the different stages of learning and the retrieval of the acquired information. One model that has been useful to study these mechanisms is conditioned taste aversion (CTA), a paradigm in which animals learn to avoid new tastes when they are associated with gastrointestinal malaise. Glutamate receptors of the N-methyl-D-aspartate (NMDA) type appear to be necessary in this process, because blockade of this receptor prevents CTA. Phosphorylation of the main subunits of the NMDA receptor is a well-established biochemical mechanism for the modulation of the receptor response. Such modulation seems to be involved in CTA, because inhibitors of protein kinase C (PKC) block CTA acquisition and because the exposure to an unfamiliar taste results in an increased phosphorylation of tyrosine and serine residues of the NR2B subunit of the receptor in the insular cortex, the cerebral region where gustatory and visceral information converge. In this work we review these mechanisms of NMDA receptor modulation in CTA. 相似文献
17.
Giovanni Fontana Roberto De Bernardi Federico Ferro Anita Gemignani Maurizio Raiteri 《Journal of neurochemistry》1996,66(1):161-168
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+ -containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved. 相似文献
18.
Chaotropic Ions Affect the Conformation of Quisqualate Receptors in Rat Cortical Membranes 总被引:8,自引:7,他引:8
Binding of [3H](R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) to quisqualate receptors in the presence of SCN- ions produced curvilinear Scatchard plots. Kinetic investigations of [3H]AMPA binding showed that the curvilinearity cannot be explained by assuming binding to two separate binding sites or by considering it due to cooperative interaction. A more likely explanation is that the quisqualate receptors exist in two states, one with high and one with low affinity for [3H]AMPA. Chaotropic ions change the relaxation constant between the two states. 相似文献
19.
The mechanisms of carbachol-induced muscarinic acetylcholine receptor (mAChR) down-regulation, and recovery following carbachol withdrawal, were studied in the neuroblastoma x glioma hybrid NG108-15 cell line by specific ligand binding assays. N-[3H]Methylscopolamine ([3H]NMS) and [3H]quinuclidinyl benzilate ([3H]QNB) were used as the ligands for the cell surface and total cellular mAChRs, respectively. Exposure of cells to 1 mM carbachol for 16 h decreased the specific binding of [3H]NMS and [3H]QNB by approximately 80%. Bacitracin (1-4 mg/ml) and methylamine (1-15 mM), inhibitors of transglutaminase and of endocytosis, prevented agonist-induced loss of surface mAChRs. Pretreatment of cells with the antimicrotubular agents nocodazole (0.1-10 microM) and colchicine (1-10 microM) prevented carbachol-induced loss of [3H]QNB binding, but not that of [3H]NMS binding. These results indicate that agonist-induced mAChR down-regulation occurs by endocytosis, followed by microtubular transport of receptors to their intracellular degradation sites. When carbachol was withdrawn from the culture medium following treatment of cells for 16 h, receptors recovered and were incorporated to the surface membrane. This recovery process was antagonized by monovalent ionophores monensin (0.1 microM) and nigericin (40 nM), which interfere with Golgi complex function. Receptor recovery was also prevented by the antimicrotubular agent nocodazole. Thus, recovery of receptors appears to be mediated via Golgi complex and microtubular transport to the surface membrane. 相似文献
20.
Interference of S-Nitrosoglutathione with the Binding of Ligands to Ionotropic Glutamate Receptors in Pig Cerebral Cortical Synaptic Membranes 总被引:2,自引:0,他引:2
Hermann A Varga V Janáky R Dohovics R Saransaari P Oja SS 《Neurochemical research》2000,25(8):1119-1124
The interactions of S-nitrosoglutathione (GSNO) with the ionotropic glutamate receptors were studied on synaptic membranes isolated from the pig cerebral cortex. GSNO displaced the binding of [3H]glutamate, 3-[(R)-2-carboxypiperazin-4-yl][3H]propyl-1-phosphonate ([3H]CPP), a competitive N-methyl-D-aspartate (NMDA) antagonist, and [3H]kainate, with IC50 values in the low micromolar range. It failed to displace (S)-5-fluoro-[3H]willardiine, a selective agonist of 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Reduced and oxidized glutathione were almost as effective as GSNO in glutamate and CPP binding. Of the three, GSNO was the most potent in kainate binding. They all stimulated [3H]dizocilpine binding in a concentration-dependent manner. This effect was additive to that of glycine and not mimicked by NO donors such as S-nitroso-N-acetylpenicillamine, 5-amino-3-morpholinyl-1,2,3-oxadiazolium chloride (SIN-1) and nitroglycerin. We assume that GSNO may act as an endogenous ligand at the NMDA and non-NMDA classes of glutamate receptors. In this manner it may facilitate NO transfer and target its delivery to specific sites in these receptors. 相似文献