首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our previous studies have shown that acidic glycosphingolipid, ganglioside GM1 (GM1), is an endogenous regulator of high affinity nerve growth factor receptor, Trk, which is an essential factor for the normal development and differentiation of neuronal cells by forming a complex with Trk. GM1 is also known to be a major constituent of caveola or glycosphingolipid-enriched microdomain (GEM) of the plasma membrane. In order to study the effect of the glycosylation of Trk on the formation of GM1-Trk complex and subcellular distribution of this protein, we generated PC12 cells stably overexpressing Trk (PCtrk). Pretreatment of this stable clones with tunicamycin, a potent inhibitor of N-glycosylation, caused the appearance of unglycosylated Trk core protein. These unglycosylated Trk can hardly respond to its ligand, NGF. Sucrose density gradient analysis revealed that unglycosylated Trk core protein was recovered in high density fractions, whereas most of GM1 is present in low density fractions corresponding to caveola or GEM fractions. Moreover, these unglycosylated Trk proteins lose their ability to form a complex with GM1, although GM1 is present in the same high density fractions. These data strongly suggest that spatial segregation of GM1 from the Trk protein by the inhibition of the glycosylation of Trk might be an important molecular mechanism for the unresponsiveness to NGF. Moreover, the binding site of GM1 in the Trk protein might act as an important determinant for the normal trafficking of the Trk protein within the cells.  相似文献   

2.
Functional N-methyl-d-aspartate (NMDA) glutamate receptors are composed of heteromeric complexes of NR1, the obligatory subunit for channel activity, and NR2 or NR3 family members, which confer variability in the properties of the receptors. Recent studies have provided evidence for the existence of both binary (containing NR1 and either NR2A or NR2B) and ternary (containing NR1, NR2A, and NR2B) receptor complexes in the adult mammalian brain. However, the mechanisms regulating subunit assembly and receptor localization are not well understood. In the CNS, NMDA subunits are present both at intracellular sites and the post-synaptic membrane of neurons. Using biochemical protein fractionation and co-immunoprecipitation approaches we have found that in rat striatum binary NMDA receptors are widely distributed, and can be identified in the light membrane, synaptosomal membrane, and synaptic vesicle-enriched subcellular compartments. In contrast, ternary receptors are found exclusively in the synaptosomal membranes. When striatal proteins are chemically cross-linked prior to subcellular fractionation, ternary NMDA receptors can be precipitated from the light membrane and synaptic vesicle-enriched fractions where this type of receptor complex is not detectable under normal conditions. These findings suggest differential targeting of distinct types of NMDA receptor assemblies between intracellular and post-synaptic sites based on subunit composition. This targeting may underlie important differences in the regulation of the transport pathways involved in both normal as well as pathological receptor functions.  相似文献   

3.
Our previous studies have shown that acidic glycosphingolipid, ganglioside GM1 (GM1), is an endogenous regulator of high affinity nerve growth factor receptor, Trk, which is an essential factor for the normal development and differentiation of neuronal cells by forming a complex with Trk. GM1 is also known to be a major constituent of caveola or glycosphingolipid-enriched microdomain (GEM) of the plasma membrane. In order to study the effect of the glycosylation of Trk on the formation of GM1-Trk complex and subcellular distribution of this protein, we generated PC12 cells stably overexpressing Trk (PCtrk). Pretreatment of this stable clones with tunicamycin, a potent inhibitor of N-glycosylation, caused the appearance of unglycosylated Trk core protein. These unglycosylated Trk can hardly respond to its ligand, NGF. Sucrose density gradient analysis revealed that unglycosylated Trk core protein was recovered in high density fractions, whereas most of GM1 is present in low density fractions corresponding to caveola or GEM fractions. Moreover, these unglycosylated Trk proteins lose their ability to form a complex with GM1, although GM1 is present in the same high density fractions. These data strongly suggest that spatial segregation of GM1 from the Trk protein by the inhibition of the glycosylation of Trk might be an important molecular mechanism for the unresponsiveness to NGF. Moreover, the binding site of GM1 in the Trk protein might act as an important determinant for the normal trafficking of the Trk protein within the cells.  相似文献   

4.
Trk receptors: mediators of neurotrophin action   总被引:46,自引:0,他引:46  
The four mammalian neurotrophins - NGF, BDNF, NT-3 and NT-4 - each bind and activate one or more of the Trk family of receptor tyrosine kinases. Through these receptors, neurotrophins activate many intracellular signaling pathways, including those controlled by Ras, the Cdc42/Rac/RhoG protein family, MAPK, PI3K and PLC-gamma, thereby affecting both development and function of the nervous system. During the past two years, several novel signaling pathways controlled by Trk receptors have been characterized, and it has become clear that membrane transport and sorting controls Trk-receptor-mediated signaling because key intermediates are localized to different membrane compartments. Three-dimensional structures of the Trk receptors, in one instance in association with a neurotrophin, have revealed the structural bases underlying specificity in neurotrophin signaling.  相似文献   

5.
Shi L  Yue J  You Y  Yin B  Gong Y  Xu C  Qiang B  Yuan J  Liu Y  Peng X 《Cellular signalling》2006,18(11):1995-2003
Tropomyosin-related kinase (Trk) family receptors are a group of high affinity receptors for neurotrophin growth factors, which have pivotal functions in many physiological processes of nervous system. Trk receptors can dimerize and autophosphorylate upon neurotrophin stimulation, then recruit multiple adaptor proteins to transduct signal. In this report, we identified Dok5, a member of Dok family, as a new substrate of TrkB/C receptors. In yeast two-hybrid assay, Dok5 can interact with intracellular domain of TrkB and TrkC receptor through its PTB domain, but not with that of TrkA receptor. The interaction was then confirmed by GST pull-down assay and Co-IP experiment. Dok5 co-localized with TrkB and TrkC in differentiated PC12 cells, providing another evidence for their interaction. By using mutational analysis, we characterized that Dok5 PTB domain bound to Trk receptor NPQY motif in a kinase-activity-dependent manner. Furthermore, competition experiment indicated that Dok5 competed with N-shc for binding to the receptors at the same site. Finally, we showed that Dok5 was involved in the activation of MAPK pathway induced by neurotrophin stimulation. Taken together, these results suggest that Dok5 acts as substrate of TrkB/C receptors and is involved in neurotrophin induced MAPK signal pathway activation.  相似文献   

6.
During embryonic development, expression of neurotrophin receptor tyrosine kinases (Trks) by sensory ganglia is continuously and dynamically regulated. Neurotrophin signaling promotes selective survival and axonal differentiation of sensory neurons. In embryonic day (E) 15 rat trigeminal ganglion (TG), NGF receptor TrkA is expressed by small diameter neurons, NT-3 receptor TrkC and BDNF receptor TrkB are expressed by large diameter neurons. Organotypic explant and dissociated cell cultures of the TG (and dorsal root ganglia) are commonly used to assay neurotrophin effects on developing sensory neurons. In this study, we compared Trk expression in E15 rat TG explant and dissociated cell cultures with or without neurotrophin treatment. Only a subset of TG cells express each of the three Trk receptors in wholemount explant cultures as in vivo conditions. In contrast, all TG neurons co-express all three Trk receptors upon dissociation, regardless of neurotrophin treatment. Neurons cultured in low concentrations of one neurotrophin first, and switched to higher concentrations of another after 1 day, survive and display morphological characteristics of neurons cultured in a mixture of both neurotrophins for 3 days. Our results indicate that wholemount explant cultures of sensory ganglia represent in vivo conditions in terms of Trk expression patterns; whereas dissociation dramatically alters Trk expression by primary sensory neurons.  相似文献   

7.
Accumulating evidence has indicated that neurotrophin receptor trafficking plays an important role in neurotrophin-mediated signaling in developing as well as mature neurons. However, little is known about the molecular mechanisms and the components of neurotrophin receptor vesicular transport. This article will describe how neurotrophin receptors, Trk and p75 neurotrophin receptor (p75NTR), are intimately involved in the axonal transport process. In particular, the molecules that may direct Trk receptor trafficking in the axon will be discussed. Finally, potential mechanisms by which receptor-containing vesicles link to molecular cytoskeletal motors will be presented.  相似文献   

8.
Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide that acts through G protein-coupled receptors, exerts neuroprotective effects upon many neuronal populations. However, the intracellular signaling mechanisms that account for PACAP's trophic effects are not well characterized. Here we have tested the possibility that PACAP uses neurotrophin signaling pathways. We have found that PACAP treatment resulted in an increase in TrkA tyrosine kinase activity in PC12 cells and TrkB activity in hippocampal neurons. The activation of TrkA receptors by PACAP required at least 1 h of treatment and did not involve binding to nerve growth factor. Moreover, PACAP induced an increase in activated Akt through a Trk-dependent mechanism that resulted in increased cell survival after trophic factor withdrawal. The increases in Trk and Akt were blocked by K252a, an inhibitor of Trk receptor activity. In addition, transactivation of TrkA receptors by PACAP could be inhibited with PP1, an inhibitor of Src family kinases or BAPTA/AM, (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester), an intracellular calcium chelator. Therefore, PACAP can exert trophic effects through a mechanism involving Trk receptors and utilization of tyrosine kinase signaling. This ability may explain several neuroprotective actions of PACAP upon neuronal populations after injury, nerve lesion, or neurotrophin deprivation.  相似文献   

9.
In addition to its role as a neurotransmitter, dopamine can stimulate neurite outgrowth and morphological effects upon primary neurons. To investigate the signal transduction mechanisms used by dopamine in developing striatal neurons, we focused upon the effects of activating the dopamine D1 receptor. Using the D1 receptor agonist SKF38393, we found that Trk neurotrophin receptors were activated in embryonic day 18 striatal neurons. K-252a, a Trk tyrosine kinase inhibitor, and a dopamine D1 receptor antagonist could block the effects of SKF38393. The increase in TrkB phosphorylation was not the result of increased neurotrophin production. Induction of TrkB activity by SKF38393 was accompanied by the phosphorylation of several Trk signaling proteins, including phospholipase Cgamma, Akt, and MAPK. Biotinylation experiments followed by immunostaining by phospho-TrkB-specific antibodies indicated that the mechanism involved increased TrkB surface expression by dopamine D1 receptor activation. This increase in cell surface TrkB expression was dependent upon an increase in intracellular Ca(2+). These results indicate that stimulation of dopamine D1 receptors can be coupled to the neurotrophin receptor signaling to mediate the effects of dopamine upon striatal neurons.  相似文献   

10.
11.
Molecular interactions between neurotrophin receptors   总被引:6,自引:0,他引:6  
Neurotrophins signal via a dual-receptor system comprising receptor tyrosine kinases, the Trks, and a tumor necrosis factor (TNF) receptor like molecule, p75. Interest in these receptors was spurred on by the finding that they are employed by their neurotrophin ligands to activate opposing cellular mechanisms. Signalling via Trk receptors promotes the survival of embryonic neurons, whereas activation of p75 can trigger apoptosis. However, this antagonistic view is an oversimplification. It is more accurate to refer to this system as a signalling network in which ligands, receptors and their intracellular target proteins are linked by balanced biochemical interactions. This article reviews recent advances in our understanding of these molecular mechanisms which critically determine many cell-type-specific responses to neurotrophins. Emphasis is given to the formation of receptor complexes, the generation of receptor diversity by alternative splicing and the influence exerted by the local membrane environment on neurotrophin signalling.  相似文献   

12.
SH2-B and APS are multimeric adapters that augment TrkA signaling   总被引:3,自引:0,他引:3       下载免费PDF全文
Neurotrophins influence growth and survival of sympathetic and sensory neurons through activation of their receptors, Trk receptor tyrosine kinases. Previously, we identified Src homology 2-B (SH2-B) and APS, which are structurally similar adapter proteins, as substrates of Trk kinases. In the present study, we demonstrate that both SH2-B and APS exist in cells as homopentamers and/or heteropentamers, independent of Trk receptor activation. Structure-function analyses revealed that the SH2-B multimerization domain resides within its amino terminus, which is necessary for SH2-B-mediated nerve growth factor (NGF) signaling. Overexpression of SH2-B enhances both the magnitude and duration of TrkA autophosphorylation following exposure of PC12 cells to NGF, and this effect requires the amino-terminal multimerization motif. Moreover, the amino terminus of SH2-B is necessary for TrkA/SH2-B-mediated morphological differentiation of PC12 cells. Together, these results indicate that the multimeric adapters SH2-B and APS influence neurotrophin signaling through direct modulation of Trk receptor autophosphorylation.  相似文献   

13.
The neuronal monocarboxylate transporter, MCT2, is not only an energy substrate carrier but it is also purported to be a binding partner for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit. To unravel a putative role of MCT2 in the regulation of GluR2 subcellular distribution, Neuro2A cells and primary cultures of mouse cortical neurons were co-transfected with plasmids containing sequences to express the fluorescent proteins mStrawberry (mStb)-fused MCT2 and Venus-fused GluR2. Subsequently, their subcellular distribution was visualized by fluorescence microscopy. GluR2 was led to form perinuclear and dendritic clusters together with MCT2 when co-transfected in Neuro2A cells or in neurons, following the original distribution of MCT2. MCT2 co-transfection had no effect on the intracellular distribution of several other post-synaptic proteins, although it partially affected the intracellular distribution of GluR1 similarly to GluR2. Both cell surface and total protein expression levels of GluR2 were significantly reduced by co-expression with MCT2. Finally, partial perinuclear and dendritic co-localization between MCT2 and Rab8, a member of the small GTPase family involved in membrane trafficking of AMPA receptors, was also observed in co-transfected neurons. These results suggest that MCT2 could influence AMPA receptor trafficking within neurons by modulating GluR2 sorting between different subcellular compartments.  相似文献   

14.
Activation of the neurotrophin Trk receptors is a key process in the survival and development of the nervous system. The signaling adapters ShcB and ShcC, but not ShcA, are thought to be the primary Shc adaptor proteins in neurons as both are highly expressed in both the developing and adult nervous system. Although a previous study suggested that ShcB and ShcC do not strongly interact with the Trk receptors (1), we find that ShcB and ShcC bind the Trk receptors in a phosphotyrosine-dependent manner via their N-terminal phosphotyrosine binding domain at Tyr(499) (TrkA) and Tyr(515) (TrkB), they are tyrosine-phosphorylated in response to neurotrophin stimulation, and they enhance the activation of mitogen-activated protein kinase in Trk-expressing cells. Moreover, neurotrophin treatment of primary cortical neurons stimulates ShcB/ShcC-Trk interaction and the tyrosine phosphorylation of ShcB/ShcC, indicating that they are bona fide targets of the Trk receptors in vivo. Interestingly, two proteins (pp60 and pp75) co-immunoprecipitate with ShcB and ShcC in response to neurotrophin stimulation in primary cortical neurons, suggesting a potential role of these unknown targets in neurotrophin signaling. Collectively, these results demonstrate that ShcB and ShcC, and their co-immunoprecipitating proteins, are activated by the Trk receptors in primary neurons.  相似文献   

15.
A-kinase Anchoring Proteins (AKAPs) define an expanding group of scaffold proteins that display a signature binding site for the RI/RII subunit of protein kinase A. AKAP5 and AKAP12 are multivalent (with respect to protein kinases and phosphatases) and display the ability to associate with the prototypic member of G protein-coupled receptors, the beta(2)-adrenergic receptor. We probed the relative abundance, subcellular distribution and localization of AKAP5 and AKAP12 in human embryonic kidney HEK293 and epidermoid carcinoma A431 cells. HEK293 cells are relatively rich in AKAP5 (found mostly in association with the cell membrane); whereas A431 cells are rich in AKAP12 (found distributed both in the cytoplasm and in association with the cell membrane). In biochemical analysis of subcellular fractions and in whole-cell imaging, the membrane localization of AKAP5 was decreased in response to treating cells with the beta-adrenergic agonist isoproterenol, whereas membrane association of AKAP12 was increased initially in response to agonist treatment. These data demonstrate quantitatively a clearly different pattern of AKAP-receptor association for AKAP5 versus AKAP12. AKAP5 remains associated with its G-protein-coupled receptor, at the cell membrane, docked with the receptor during agonist-induced internalization and later receptor recycling after agonist wash-out. AKAP12-receptor docking, in contrast, is dynamic, driven by agonist stimulation (accounting for movement of AKAP12 from the cytoplasm to the cell membrane). AKAP12 then is internalized with the beta(2)-adrenergic receptor, but segregates away from the G-protein-coupled receptor upon recycling of the internalized receptor to the cell membrane. Thus these homologous, AKAPs that dock G-protein-coupled receptors have markedly different patterns of trafficking, docking, and re-distribution.  相似文献   

16.
The localization of the sodium-dependent alanine uptake activity in rat liver cells was studied. Fractions representative of the canalicular, the contiguous (lateral) and the blood-sinusoidal surface of the hepatocyte were isolated by means of centrifugal fractionation and density gradient centrifugation. The distribution of various marker-enzyme activities in conjunction with the occurrence of alanine transport activity was studied both in fractions obtained after zonal density gradient centrifugation, and in the subcellular fractions mentioned above.It is concluded that the sodium-dependent alanine transport activity is primarily located in the blood-sinusoidal plasma membrane of the hepatocyte.  相似文献   

17.
The human nerve growth factor receptor (TrkA) contains four potential N-glycosylation sites that are highly conserved within the Trk family of neurotrophin receptors, and nine additional sites that are less well conserved. Using a microscale deglycosylation assay, we show here that both conserved and variable N-glycosylation sites are used during maturation of TrkA. Glycosylation at these sites serves two distinct functions. First, glycosylation is necessary to prevent ligand-independent activation of TrkA. Unglycosylated TrkA core protein is phosphorylated even in the absence of ligand stimulation and displays constitutive kinase activity as well as constitutive interaction with the signaling molecules Shc and PLC-gamma. Second, glycosylation is required to localize TrkA to the cell surface, where it can trigger the Ras/Raf/MAP kinase cascade. Using confocal microscopy, we show that unglycosylated active Trk receptors are trapped intracellularly. Furthermore, the unglycosylated active TrkA receptors are unable to activate kinases in the Ras-MAP kinase pathway, MEK and Erk. Consistent with these biochemical observations, unglycosylated TrkA core protein does not promote neuronal differentiation in Trk PC12 cells even at high levels of constitutive catalytic activity.  相似文献   

18.
In order to study proteins of the melanosome, we developed a panel of antisera against various protein fractions of melanosomes from B16 melanoma cells. An antiserum raised against a Triton X-100 insoluble fraction of melanosomes recognized a 65-kDa protein in melanocytes from mice homozygous for the buff mutation, but not in their wild type counterparts. Further studies were conducted using a specific, second generation antiserum raised against the purified protein. The protein was also detected in melanocytes cultured from albino mice, but absent in cultured mouse cell lines not of melanocyte origin. Density gradient centrifugation of subcellular organelles and indirect immunofluorescent cell staining, indicated that the protein was associated with melanosomes and vesicles. The protein on intact organelles could be made soluble using sodium carbonate, and digested with proteases in the absence of detergent suggesting that it was a peripheral membrane protein localized on the cytosolic face of organelle membranes. Metabolic labelling of cells and N-glycosidase F digestion of cell extracts indicated that the protein was not N-glycosylated. Based on its intracellular localization and biochemical defects in the buff mouse, a potential role has been suggested for the 65-kDa protein in intracellular membrane trafficking.  相似文献   

19.
Insulin recruits GLUT4 from an intracellular location to the plasma membrane in rat adipocytes. The process involves multiple intracellular compartments and multiple protein functions, details of which are largely unknown partly due to our inability to separate individual GLUT4 compartments. Here, by hypotonic lysis, differential centrifugation, and glycerol density gradient sedimentation, we separated intracellular GLUT4 compartments in rat adipocytes into three fractions: plasma membrane-containing fraction T and plasma membrane-free fractions H and L. The GLUT4 contents in fractions T, H, and L were approximately 25, 56, and 18% of total GLUT4, respectively, in basal adipocytes and 55, 42, and 3-4% in insulin-stimulated adipocytes. The plasma membrane GLUT4 contents estimated separately further revealed that intracellular GLUT4 in fraction T amounts to approximately 20% in both basal and insulin-stimulated adipocytes. Organelle-specific marker and membrane traffic-related protein distribution data suggested that intracellular GLUT4 in fraction T represents sorting endosomes, whereas GLUT4 in fractions H and L represents storage endosomes and exocytic vesicles, respectively. The subcellular fractionation without homogenization described here should be useful in identifying the role of the individual GLUT4 compartments and the associated proteins in insulin-induced GLUT4 recruitment in rat adipocytes.  相似文献   

20.
Endocytosis of Trk (tropomyosin-related kinase) receptors is critical for neurotrophin signal transduction and biological functions. However, the mechanism governing endocytosis of TrkB (tropomyosin-related kinase B) and the specific contributions of TrkB endocytosis to downstream signaling are unknown. In this study, we report that blocking clathrin, dynamin, or AP2 in cultured neurons of the central nervous system inhibited brain-derived neurotrophic factor (BDNF)-induced activation of Akt but not ERK. Treating neurons with the clathrin inhibitor monodansylcadaverine or a peptide that blocks dynamin function specifically abrogated Akt pathway activation in response to BDNF but did not affect the response of other downstream effectors or the up-regulation of immediate early genes neuropeptide Y and activity-regulated cytoskeleton-associated protein. Similar effects were found in neurons expressing small interfering RNA to silence AP2 or a dominant negative form of dynamin that inhibits clathrin-mediated endocytosis. In PC12 cells, ERK but not Akt activation required TrkA endocytosis following stimulation with nerve growth factor, whereas the opposite was true when TrkA-expressing neurons were stimulated with nerve growth factor in the central nervous system. Thus, the specific effects of internalized Trk receptors probably depend on the presence of cell type-specific modulators of neurotrophin signaling and not on differences inherent to Trk receptors themselves. Endocytosis-dependent activation of Akt in neurons was found to be critical for BDNF-supported survival and dendrite outgrowth. Together, these results demonstrate the functional requirement of clathrin- and dynamin-dependent endocytosis in generating the full intracellular response of neurons to BDNF in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号