首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning electron microscopy of leaf trichomes of the forty two native species of oaks in eastern North America indicates five patterns of variability: 1) Eight trichome types are evident among the species and each species possesses a definite complement of trichome types. Certain trichomes are restricted to particular subgenera and series. 2) An obvious seasonal loss of trichomes occurs during leaf maturation. This loss may be both quantitative in terms of trichome density and qualitative in terms of trichome type. 3) There is an obvious difference between the adaxial and abaxial surfaces. The adaxial side of most oak leaves is dark green, lustrous, and glabrous or glabrate. The abaxial surface either remains pubescent, becomes glabrate or glabrous, or maintains trichomes along the midrib or in the axils of major secondary veins. There are also initial quantitative and qualitative trichome differences between the two sides. 4) Geographical and ecological variations are due in part to non-genetic ecophenic modifications, ecotypic differentiation, and random genetic differences not necessarily correlated with environmental conditions. Trichome types are considered to be less affected by environment than is trichome density. 5) Hybridization and introgression within a subgenus leads to localized variability. Trichomes of hybrids are usually a combination of the parental types. These five patterns of variation are predictable and appear to be held within rather narrow limits. The complement of foliar trichomes, therefore, is a reliable character in the taxonomy of the oaks.  相似文献   

2.
Jasmonates, including jasmonic acid and its derivatives such as methyl jasmonate (MeJA), are plant growth substances that control various responses. Jasmonates regulate leaf trichome density in dicotyledonous plants, but their effects on the trichome density of monocotyledonous plants, such as those in the Poaceae, remain unclear. In the present study we examined the effects of exogenous MeJA on the trichome density of Rhodes grass, which has three kinds of trichomes: macrohairs, salt glands, and prickles. Exogenous MeJA significantly increased the densities of macrohairs and salt glands on the adaxial and abaxial leaf surfaces and those of prickles on the adaxial leaf surface. Because exogenous MeJA significantly reduced the leaf area, we calculated the number of trichomes per 1000 epidermal cells to eliminate the effects of reduced leaf area. Exogenous MeJA significantly increased the number of macrohairs per 1000 epidermal cells on both adaxial and abaxial leaf surfaces, but it significantly decreased the number of salt glands per 1000 epidermal cells on both surfaces. Exogenous MeJA had no significant effects on the number of prickles per 1000 epidermal cells on either of the leaf surfaces. These results indicate that exogenous MeJA alters the trichome density by affecting leaf area and trichome initiation, and the effects of exogenous MeJA on trichome initiation differ among the various trichome types.  相似文献   

3.
In 1991 a field experiment was established in subarctic heathland at Abisko (68°35'N, 18°82'E), northern Sweden, to investigate the effects of enhanced UV-B (280–315 nm) radiation, simulating 15% ozone depletion, on plants in their natural environment. Leaves of the four dominant dwarf shrubs, the deciduous Vaccinium myrtillus L. and V. uliginosum L. and the evergreen V. vitis-idaea L. and Empetrum hermaphroditum Hagerup were examined after 7 years of UV-B treatment. SEM and ESEM were used to visualize surface features and to determine trichome density. Multiphoton laser scanning microscopy showed that UV-B absorbing compounds were localized in the trichomes of all species. Trichomes varied in size, number and distribution between the species. Enhanced UV-B reduced adaxial trichome density significantly (by approximately 25%) in only one species, V. uliginosum . This effect could be of importance for the UV-B absorbing potential of the adaxial epidermis of V. uliginosum . Epicuticular wax structures were found only on the abaxial surface of V. uliginosum and were unaffected by enhanced UV-B. The cuticular surfaces of all other species were smooth and featureless. Leaf thickness, adaxial and abaxial cuticle thickness varied between the species although there was no apparent effect of enhanced UV-B. It is concluded that long-term enhancement of UV-B has an effect on adaxial trichome density in V. uliginosum , but that there is no general effect on leaf morphology of the other species.  相似文献   

4.
The micromorphology of foliar trichomes of Hypoestes aristata var. aristata was studied using stereo, light and scanning microscopy (SEM). This genus belongs to the advanced angiosperm family Acanthaceae, for which few micromorphological leaf studies exist. Results revealed both glandular and non-glandular trichomes, the latter being more abundant on leaf veins, particularly on the abaxial surface of very young leaves. With leaf maturity, the density of non-glandular trichomes decreased. Glandular trichomes were rare and of two types: long-stalked capitate and globose-like peltate trichomes. Capitate trichomes were observed only on the abaxial leaf surface, while peltate trichomes were distributed on both adaxial and abaxial leaf surfaces.  相似文献   

5.
Cotton leaves are more physiologically active than the bractand the capsule wall of the fruiting structures. To elucidatethe disparities in their physiological behaviour, epidermalcell density, stomatal index, stomatal size, trichome densityand type, and epicuticular wax ultrastructure of cotton leaf,bract and capsule wall were delineated using scanning electronmicroscopy (SEM). The epidermal cells of the outer periclinalwalls on both surfaces of the leaf and bract were raised andconvex. Conversely, the capsule wall epidermal cells were polygonalwith flat outer periclinal walls. The stomatal complex in theleaf and bract was paracytic, whereas in the capsule wall thestomatal complex was anomocytic. The adaxial and abaxial stomataof the leaf were coplanar to the epidermal surface, as opposedto the raised adaxial stomata on the bract. On the contrary,the stomata on the capsule wall surface appeared to be slightlysunken. Furthermore, the capsule wall stomata were larger thanthe stomata on either surface of both the leaf and the bract.The stomatal index was greater on the abaxial surfaces of theleaf and the bract (18.4 and 9.4, respectively) than their correspondingadaxial surfaces (14.4 and 4.7, respectively). Leaves had thehighest stomatal index followed by the bract and the capsulewall. The indumentum consisted of glandular and nonglandulartrichomes, the density of which was greater on the abaxial surfacesthan on the adaxial surfaces of the leaf and bract. The capsulewall indumentum lacked nonglandular trichomes. Epicuticularwax occurred in the form of striations. However, the striationpattern varied among the organs. This study clearly illustratesmorphological disparities in the epidermal features of leaf,bract and capsule wall, helping to explain their physiologicaldivergence. Copyright 2000 Annals of Botany Company Gossypium hirsutum, epicuticular wax, raised stomata, scanning electron microscopy, stomatal index, trichomes  相似文献   

6.
This study examines the response of tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), during the initial stages of attack, to variability in trichome density and composition on foliage of Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae). Solanum berthaultii bears two types of glandular trichome (type A and type B) that together reduced oviposition by the moth. Females were often completely deterred from ovipositing on foliage with >300 trichomes per cm2. In contrast, neonate establishment on S. berthaultii was generally positively related to trichome densities, indicating that trichomes may be a poor defense against P. operculella when the moth oviposits in soil and neonate larvae select the host plant. Solanum tarijense has only one type of glandular trichome (type A) and eglandular hairs. Most eggs were deposited on the adaxial leaf surfaces that had lower trichome densities. Although the density of type A trichomes was negatively related to oviposition, high densities of hairs on the abaxial and adaxial leaf surfaces appeared to stimulate oviposition, leading to stronger positive relations between hair densities and oviposition. Larvae generally established on the abaxial surface where hair densities were greatest. Relationships between the abaxial densities of leaf hairs and neonate establishment on S. tarijense were positive. The results indicate that the responses by P. operculella to the types and density of trichomes are complex. Whereas type A and type B trichomes may act synergistically to reduce oviposition by the moth, leaf hairs do not defend against oviposition and neither leaf hairs nor type A and B trichomes reduce neonate establishment by this herbivore species.  相似文献   

7.
LOURO, R. P., MIGUENS, F. C. & MACHADO, R. D., 1992. Structure and development of stellate trichomes in Andradea ftoribunda Fr. Allem. (Nyctaginaceae). Trichomes occur on both faces of young leaves. They are peltate-stellate on the abaxial face, and comprise a stalk and radiating cells with a rudimentary central apex. On the adaxial face the trichomes arc stellate with a large apex comprising one to three cells. In both cases the stalk is formed by three to six cells of which the most distal may contain a tannoid substance. In the adult leaf only the abaxial surface exhibits stellate trichomes, with two to three celled stalks. The central region of radial cells is depressed. On the adaxial side the hairs are shed during maturation of the leaf.  相似文献   

8.
J C Chien  I M Sussex 《Plant physiology》1996,111(4):1321-1328
In wild-type (WT) Columbia and Landsberg erecta ecotypes of Arabidopsis thaliana (L.) Heynh., trichomes are present on the adaxial surfaces of all rosette leaves but are absent from the abaxial surfaces of the first-formed leaves. We have determined that both long-day (LD) photoperiod and gibberellin (GA) stimulate trichome formation. WT plants grown in LD conditions produce the first abaxial trichome on earlier leaves than plants grown in short-day (SD) conditions. Photoperiod sensitivity of abaxial trichome formation on WT plants develops gradually over time, reaching the maximum sensitivity about 24 d after germination. Application of gibberellic acid to WT plants growing in SD conditions accelerates the onset of abaxial trichomes. Conversely, application of 20 to 80 mg L-1 paclobutrazol, a GA biosynthesis inhibitor, to wild-type plants suppresses trichome initiation on the abaxial epidermis. The GA-deficient mutants ga1-5 and ga4-1 and the GA-insensitive mutant gai-1 exhibit delayed onset of abaxial trichomes when grown in LD conditions. The null mutant ga1-3 produces completely glabrous leaves when grown in SD conditions. Application of gibberellic acid to glabrous ga1-3 plants consistently induces earlier formation of trichomes on the adaxial epidermis than on the abaxial epidermis, demonstrating a difference between the adaxial and abaxial surfaces in their response to GA with regard to trichome formation.  相似文献   

9.
Rice is believed to show photosynthetic symmetry between adaxial and abaxial leaf sides. To verify this, we re‐examined dorsoventral asymmetry in photosynthesis, chlorophyll fluorescence and anatomical traits in flag leaves of two Oryza sativa cultivars that differ in nitrogen (N) response and in leaf angle: ‘Akenohoshi’, a cultivar that can adapt to low‐N (LN), with low leaf angle (more erect leaves), and ‘Shirobeniya’, a cultivar that is unable to adapt to LN, with higher leaf angle. Plants were grown under standard‐N (SN) and LN conditions. LN leaves of both cultivars became more erect than SN, but LN Akenohoshi still had more erect ones than Shirobeniya. Contrary to results of previous studies, leaves of both cultivars showed an asymmetry in photosynthetic rate between adaxial and abaxial sides (higher on the adaxial side) under SN. SN leaves of both cultivars showed lower susceptibility to photoinhibition on the adaxial side than on the abaxial side. However, leaves of Akenohoshi showed less asymmetry in these traits under LN than under SN, whereas leaves of Shirobeniya had similar degrees of asymmetry in these traits under both SN and LN. Both cultivars also showed dorsoventral asymmetry in anatomical traits of mesophyll tissue regardless of N level, but the degree of asymmetry was lower in LN Akenohoshi. These data reveal that rice leaves exhibit dorsoventral asymmetry in photosynthetic and anatomical features, and that the degree of asymmetry varies with cultivar and N level. It is suggested that lower leaf angles (particularly in Akenohoshi) in the presence of LN represent a light acclimation to prevent photoinhibition.  相似文献   

10.
Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae   总被引:1,自引:0,他引:1  
The distinctive foliar trichome of Bromeliaceae has promoted the evolution of an epiphytic habit in certain taxa by allowing the shoot to assume a significant role in the uptake of water and mineral nutrients. Despite the profound ecophysiological and taxonomic importance of this epidermal structure, the functions of nonabsorbent trichomes in remaining Bromeliaceae are not fully understood. The hypothesis that light reflection from these trichome layers provides photoprotection was not supported by spectroradiometry and fluorimetry in the present study; the mean reflectance of visible light from trichome layers did not exceed 6.4% on the adaxial surfaces of species representing a range of ecophysiological types nor was significant photoprotection provided by their presence. Several reports suggesting water repellency in some terrestrial Bromeliaceae were investigated. Scanning electron microscopy (SEM) and a new technique-fluorographic dimensional imaging (FDI)-were used to assess the interaction between aqueous droplets and the leaf surfaces of 86 species from 25 genera. In the majority of cases a dense layer of overlapping, stellate or peltate trichomes held water off the leaf epidermis proper. In the case of hydrophobic tank-forming tillandsioideae, a powdery epicuticular wax layer provided water repellency. The irregular architecture of these indumenta resulted in relatively little contact with water droplets. Most mesic terrestrial Pitcairnioideae examined either possessed glabrous leaf blades or hydrophobic layers of confluent trichomes on the abaxial surface. Thus, the present study indicates that an important ancestral function of the foliar trichome in Bromeliaceae was water repellency. The ecophysiological consequences of hydrophobia are discussed.  相似文献   

11.
西安市常见绿化植物叶片润湿性能及其影响因素   总被引:2,自引:0,他引:2  
利用接触角测定仪测定了西安市21种常见绿化植物叶片表面的接触角,探讨了叶片表面特性如蜡质、绒毛、气孔对接触角的影响。结果表明,植物叶片正背面、物种间的接触角差异均显著,叶片正面和背面接触角大小在40°~140°。接触角大小与变异系数呈负相关,可能由于接触角小的润湿叶片在不同的生境和位置下,受到环境条件的影响较大而出现大的变异;接触角较大的非润湿性叶片,环境物质持留时间较短,对叶片形态和组成影响较小,因而出现小的变异。植物叶片表面的接触角随蜡质含量的升高而增大。表皮蜡质去除后大部分叶片接触角明显降低,尤其是疏水性较强的银杏(Ginkgo biloba)、月季(Ro-sa chinensis)和紫叶小檗(Berberis thunbergii)。女贞(Ligustrum lucidum)正背面、加杨(Popu-lus canadensis)背面等亲水型的叶片蜡质去除后接触角反而增大。叶片绒毛的多少及其形态、分布方式对接触角具有重要的影响,不同的作用方式表现出润湿和不润湿的特征,人为将其去除可以增加叶片的润湿性。背面气孔密度与气孔长度、保卫细胞长度呈负相关;接触角则与气孔密度呈负相关,与气孔长度呈正相关。  相似文献   

12.
Ziziphora L. is represented by 5 species and 2 subspecies in the flora of Turkey: Z. clinopodioides, Z. capitata, Z. persica, Z. tenuior, Z. taurica subsp. taurica, Z. taurica subsp. cleonioides. It is difficult to distinguish between some Ziziphora taxa because of their morphological similarities. In this study, the leaf and calyx trichomes of Ziziphora taxa in Turkey were studied in order to assess anatomical variations that may serve as distinguishing characters. Their micromorphological features were surveyed by scanning electron microscopy (SEM) and light microscopy (LM). Trichomes on leaves and calyx can be divided into two general types: non‐glandular trichomes and glandular (secretory) trichomes. The non‐ glandular trichomes are simple, acicular or curved with cuticular micropapillae. They usually consist of one or more additional cells. The glandular trichomes are divided into two types: peltate and capitate and Ziziphora taxa can easily be distinguished by presence/absence, density and types of glandular trichomes on leaves and calyx. The peltate trichomes consist of 12 or 18 secretory head cells in a single disc; four or six central cells surrounded by eight or twelve peripheral ones. Peltate trichomes are absent on the adaxial leaf surface of Z. capitata and Z. persica. Two types of capitate trichomes are present in Ziziphora. The capitate trichomes are only absent on the calyx surface of Z. persica. In addition, the trichome micromorphology provides some support for separating the two subspecies of Z. taurica. In conclusion, Ziziphora taxa can easily be distinguished by cell number, cell shape presence/absence and density of the glandular trichomes on leaves and calyx.  相似文献   

13.
地黄叶和茎的解剖学及组织化学研究   总被引:1,自引:0,他引:1  
采用解剖学和组织化学方法对地黄叶和茎的显微结构以及梓醇、多糖的分布进行观察研究,以明确梓醇和多糖在地黄叶和茎中的分布特征。结果显示:(1)地黄叶的上、下表皮均分布有腺毛和非腺毛,腺毛都属于头状腺毛,包括长柄和短柄的头状腺毛,两类腺毛的分泌物化学成分主要是黄酮和多糖;叶的上、下表皮上都分布有无规则型气孔,下表皮的气孔密度比上表皮的大,但气孔指数相差不大;栅栏组织由2~3层薄壁细胞构成,排列紧密,海绵组织薄壁细胞形状无规则,细胞间隙大。(2)组织化学研究表明,海绵组织中黄斑样的薄壁细胞是梓醇和多糖的贮存场所,这类薄壁细胞在叶片边缘的齿末端处最为集中,茎的皮层、韧皮部和木质部的薄壁细胞也都是梓醇和多糖的贮存场所。  相似文献   

14.
The effects of water stress on leaf surface morphology (stomatal density, size, and trichome density of both adaxial and abaxial surfaces) and leaf ultrastructure (chloroplasts, mitochondria, and cell nuclei) of eggplant (Solanum melongena L.) were investigated in this study. Higher stomata and trichome densities were observed on abaxial surface compared with the adaxial surface. Compared with well watered (WW) plants, the stomata and trichome density of the abaxial surface increased by 20.39% and 26.23% under water-stress condition, respectively. The number of chloroplasts per cell profile was lesser, the chloroplasts became round in a shape with more damaged structure of membranes, the number of osmiophilic granules increased, and the number of starch grains decreased. The cristae in mitochondria were disintegrated. The cell nuclei were smaller and the agglomerated nucleoli were bigger than those of WW plants. Our results indicated that the morphological and anatomical responses enhanced the capability of plants to survive and grow during stress periods.  相似文献   

15.
冬凌草腺毛的形态学及组织化学研究   总被引:1,自引:0,他引:1  
利用光学显微镜对药用植物冬凌草地上部分腺毛的形态、分布和组织化学进行了研究。结果表明:(1)冬凌草的叶表皮有3种形态显著不同的毛,即非腺毛、盾状腺毛和头状腺毛;盾状腺毛和头状腺毛均具1个基细胞、1个柄细胞和头部;成熟的盾状腺毛的头部一般由4个分泌细胞组成,而头状腺毛头部由2个分泌细胞组成。(2)组织化学鉴定结果显示:2种腺毛中均含有黄酮类成分,盾状腺毛中还含有单萜、倍半萜等萜类成分;冬凌草甲素可能只存在于盾状腺毛中,但需要更直接的证据证明。研究认为,高密度的盾状腺毛可以作为筛选冬凌草高甲素含量品种的一项重要依据。  相似文献   

16.
Bowling AJ  Maxwell HB  Vaughn KC 《Protoplasma》2008,233(3-4):223-230
Catchweed bedstraw is famous for its ability to adhere to other objects due to the presence of numerous trichomes surrounding the stem and mericarps and on the surfaces of the leaves. These trichomes serve as an efficient vector for the movement of the propagules via animals. In this study, we examined the structure and composition of the mericarp trichomes by microscopic and immunocytochemical techniques to determine the distribution of polysaccharides. Trichomes present around the mericarps are distinguished by a pronounced hooked tip, resembling in many ways those on Velcro. In semi-thin sections, the hooked area of the trichome contains little or no lumen but rather appears to be solidly composed of cell wall material. This solid hook appears to be divided into a plug-like zone of material and a highly thickened primary wall. These trichomes are also compositionally unique. They contain very little xyloglucan, even though other tissues in the plant reacted strongly with antibodies that recognize these polysaccharides. The distribution of pectin epitopes on these hooked trichomes was extremely distinctive, with each of the antibodies recognizing domains along the surface of the primary wall and/or in the plug area. Despite the heavily thickened nature of the walls of these trichomes, xylans were not present. Thus, the unique plugged, thickened, and hooked tip of these trichomes appears to be the result of a specific combination and distribution of various pectic polysaccharide molecules. This unusual wall composition may facilitate the formation of highly curved structures that might be difficult to form with the more rigid xyloglucans and xylans.  相似文献   

17.
The morphology and distribution of leaf trichomes of Tetradenia riparia were studied using light and scanning microscopy. Three morphologically distinct types of trichomes were observed on T. riparia leaf surfaces: glandular capitate (short and long stalked), peltate and non-glandular. The glandular and non-glandular trichomes were present in abundance on both the adaxial and abaxial surfaces. Young leaves were densely covered with trichomes; however, the density of trichomes decreases progressively with leaf maturity. This suggests that the trichomes are established early in leaf differentiation and their density decreases with leaf development and age.  相似文献   

18.
The epidermis of wheat (Triticum aestivum L.) leaves contains trichomes that contribute to resistance to insect pests and drought tolerance. In the present study, we examined the effects of 6-benzylaminopurine (BA) and methyl jasmonate (MeJA) treatment on trichome development on the leaves of wheat cv. Norin 61 seedlings. Without phytohormone treatment, trichomes on the adaxial leaf surface were short (90 μm) and their density was low (3.6 trichomes/mm2). Both BA and MeJA treatments significantly increased the density of trichomes, and there were no significant differences between the phytohormone treatments. BA treatment increased trichome length to five times as long as that in the control, whereas MeJA treatment did not significantly affect trichome length. Since BA treatment concurrently increased the DNA content of the nuclei in trichome cells, endoreduplication of the nuclei is probably involved in trichome enlargement. These results indicate that even wheat cultivars with short trichomes retain the mechanisms for trichome enlargement and stimuli such as BA application can induce increased pubescence on wheat leaves.  相似文献   

19.
Leaf epidermal morphology of the eight species of Jatropha found in West Africa has been studied by both light and scanning electron microscopy. The cells of adaxial and abaxial epidermises are usually polygonal with either straight or curved anticlinal wallS. Wax occurs in some species in the form of either flakes, particles or plugs, while in others prominent cuticular striations are found which may be parallel or random. Paracytic and brachyparacytic stomata which may be superficial, or sunken with either narrow or wide cuticular rim occur on both surfaces of the abaxial surface only. Stomatal size varies both within and between taxa. Pubescent and glabrous species occur within the genus. Trichomes are either unicellular or uniseriate. The presence of stalked glands on leaf margins is unique to J.gossypiifolia. Evidence is presented to show the close relationship between J.neriifolia and J. Atacorenis. Other variable micromorphological characters of the epidermis include cell size, periclinal walls, distribution and density of trichomes. The taxonomic significance of these features in identification and elucidation of species affinity is discussed.  相似文献   

20.
植物表皮毛研究进展   总被引:1,自引:0,他引:1  
表皮毛是大多数植物地上部分表皮组织所延伸出来的一种特化的毛状结构附属物。表皮毛在植物表皮层和环境间构筑了一道天然的物理屏障, 不但对植物的生长发育具有重要意义, 而且还具有非常高的应用价值和经济价值。近几年, 研究者从不同植物中不断克隆出新的表皮毛发育相关基因, 在揭示植物调控表皮毛生长发育的分子机制方面取得很大进展。该文综述了植物表皮毛的最新研究进展, 并展望了植物表皮毛的研究方向及应用开发价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号