首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray photoelectron spectroscopy (XPS) on microbial cell surfaces requires freeze-drying of cells, and as a result, the cell surface appendages flatten out on the cell surface and form a collapsed fibrillar mass. At present, it is unclear how the density, length and composition of these fibrils influence the elemental surface composition as probed by XPS. The sampling depth of XPS can be varied by changing the electron take-off angle. In this article, we made a depth profiling of the collapsed fibrillar mass of Streptococcus salivarius HB and fibril-deficient mutants by angle-dependent XPS. Methylamine tungstate negative staining and ruthenium red staining followed by sectioning revealed distinct classes of fibrils with various lengths on each of the strains. Interpretation of the angle dependence of the oxygen/carbon (O/C) and phosphorus/carbon (P/C) surface concentration ratios of these strains was difficult. However, the angle dependence of the nitrogen/carbon (N/C) surface concentration ratio could be fully interpreted: N/C did not vary with sampling depth on a bald strain, S. salivarius HBC12 and on S. salivarius HB7, a strain with a dense array of fibrils of uniform length. N/C decreased with sampling depth in case of a sparsely fibrillated strain, S. salivarius HBV51 and eventually reached the value observed for the bald strain, HBC12. A high N/C at small sampling depth was observed for S. salivarius HB with protruding, protein rich fibrils. We conclude that elemental depth profiling of microbial cell surfaces by XPS can be interpreted to coincide with structural and biochemical information on the cell surface as obtained by electron microscopy and can therefore be considered as a useful technique to study structural features of cell surfaces in combination with electron microscopy.  相似文献   

2.
To characterize the functional cell surface, the zeta potentials and elemental surface composition of Streptococcus salivarius HB and a range of mutants with known molecular surface structures were determined. Zeta potentials of fully hydrated cells were measured as a function of pH in dilute potassium phosphate solutions, yielding isoelectric points of the strains. Elemental composition (O, C, N, and P) of the outer 2 to 5 nm of the freeze-dried cell surfaces were measured by X-ray photoelectron spectroscopy. An increasing loss of proteinaceous fibrillar surface antigens of the mutants was found to be accompanied by a progressive decrease in the N/C ratio from 0.104 in the parent strain HB to 0.053 in mutant HBC12. Simultaneously, the value of the isoelectric point shifted from 3.0 to 1.3. In a previous study (A.H. Weerkamp, H.C. van der Mei, and J. W. Slot, Infect. Immun. 55:438-455, 1987) on the cell surfaces of the same strains, it was shown that removal of fibrils led to increased exposure of (lipo)teichoic acid at the surface, which explains the low isoelectric point caused by the low pKa of the phosphate groups.  相似文献   

3.
In this paper, direct measurement by atomic force microscopy (AFM) of the cell surface softness of a fibrillated oral streptococcal strain Streptococcus salivarius HB and of a nonfibrillated strain S. salivarius HBC12 is presented, and the data interpretation is validated by comparison with results from independent techniques. Upon approach of the fibrillated strain in water, the AFM tip experienced a long-range repulsion force, starting at approximately 100 nm, attributed to the compression of the soft layer of fibrils present at the cell surface. In 0.1 M KCl, repulsion was only experienced when the tip was closer than approximately 10 nm, reflecting a stiffer cell surface due to collapse of the fibrillar mass. Force-distance curves indicated that the nonfibrillated strain, probed both in water and in 0.1 M KCl, was much stiffer than the fibrillated strain in water, and a repulsion force was experienced by the tip at close approach only (20 nm in water and 10 nm in 0.1 M KCl). Differences in cell surface softness were further supported by differences in cell surface morphology, the fibrillated strain imaged in water being the only specimen that showed characteristic topographical features attributable to fibrils. These results are in excellent agreement with previous indirect measurements of cell surface softness by dynamic light scattering and particulate microelectrophoresis and demonstrate the potential of AFM to directly probe the softness of microbial cell surfaces.  相似文献   

4.
The subcellular distribution of the cell wall-associated protein antigens of Streptococcus salivarius HB, which are involved in specific adhesive properties of the cells, was studied. Mutants which had lost the adhesive properties and lacked the antigens at the cell surface were compared with the parent strain. Immunoelectron microscopy of cryosections of cells labeled with affinity-purified, specific antisera and colloidal gold-protein A complexes was used to locate the antigens. Antigen C (AgC), a glycoprotein involved in attachment to host surfaces, was mainly located in the fibrillar layer outside the cell wall. A smaller amount of label was also found throughout the cytoplasmic area in the form of small clusters of gold particles, which suggests a macromolecular association. Mutant HB-7, which lacks the wall-associated AgC, accumulated AgC reactivity intracellularly. Intracellular AgC was often found associated with isolated areas of increased electron density, but sometimes seemed to fill the entire interior of the cell. Antigen B (AgB), a protein responsible for interbacterial coaggregation, was also located in the fibrillar layer, although its distribution differed from that of the wall-associated AgC since AgB was found predominantly in the peripheral areas. A very small amount of label was also found in the cytoplasmic area as discrete gold particles. Mutant HB-V5, which lacks wall-associated AgB, was not labeled in the fibrillar coat, but showed the same weak intracellular label as the parent strain. Immunolabeling with serum against AgD, another wall-associated protein but of unknown function, demonstrated its presence in the fibrillar layer of strain HB. Negatively stained preparations of whole cells of wild-type S. salivarius and mutants that had lost wall-associated AgB or AgC revealed that two classes of short fibrils are carried on the cell surface at the same time. AgB and AgC are probably located on separate classes of short, protease-sensitive fibrils 91 and 72 nm in length, respectively. A third class of only very sparsely distributed short fibrils (63 nm) was observed on mutant HB-V51, which lacks both wall-associated AgB and AgC antigens. The identity of these fibrils and whether they are present on the wild type are not clear. The function of long, protease-resistant fibrils of 178 nm, which are also present on the wild-type strain, remains unknown.  相似文献   

5.
Physico-chemical surface characteristics and adhesive properties of a series of mutants of Streptococcus salivarius HB with defined cell surface structures were determined. Zeta potentials showed no relation either with the presence or absence of specific antigens on the bacterial cell surface, or with the adhesive properties of the cells. Hydrophobicity was assessed by surface free energy determination from measured contact angles, by adsorption to hexadecane and by hydrophobic interaction chromatography. Generally, the progressive removal of fibril subclasses from the cell surface resulted in a reduced hydrophobicity. However, specific fibrillar subclasses appeared to contribute to surface hydrophobicity to widely different extents. Bacterial adhesion to polymethylmethacrylate increased with increasing hydrophobicity of the mutants. However, adhesion to a more complex biological substratum, such as saliva-coated hydroxyapatite, correlated only partly with hydrophobicity. The organism, deprived of most of its fibrillar surface structures, clearly showed the least adhesion to hydrophobic ligands, to both polymethylmethacrylate and saliva-coated hydroxyapatite, and had a significantly higher surface free energy than the other mutants and the parent strain.  相似文献   

6.
Abstract Streptococcus salivarius HB (Lancefield group K) was grown in continuous culture on a chemically defined medium under glucose limitation. The structure and composition of the cell surface was investigated using negative-stain electron microscopy of whole cells and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and rocket immunoelectrophoresis (RIEP) of mutanolysin-solubilized cell-wall fractions. Under most steady-state growth conditions the density of the fibrillar fringe varied from cell to cell, whereas most stationary-phase batch-grown cells exhibited a uniformly dense fibrillar fringe. Varying the generation time at pH 7 over the range from 44 to 560 min profoundly affected both the density of the fibrillar layer and the distribution of specific protein antigens. At intermediate growth rates the fibrillar adhesins AgB and AgC were optimally expressed. At high growth rates the cells were virtually bald and the adhesins were absent from the cell walls. AgD and an unidentified cell wall-associated protein, however, were expressed at all growth rates tested. Slowly growing cells apparently lacked protease-resistant long fibrils but possessed the proteinaceous adhesins.  相似文献   

7.
In order to characterize the molecular composition of oral streptococci, infrared transmission spectroscopy on freeze-dried cells dissolved in KBr was used. All infrared spectra show similar absorption bands for the strains studied with the most important absorption bands located at 2930 cm-1 (CH), 1653 cm-1 (AmI), 1541 cm-1 (AmII) and two bands at 1236 cm-1 and 1082 cm-1, which were assigned to phosphate and sugar groups. However, calculation of absorption band ratios normalized with respect to the integrated intensity of the CH stretching region around 2930 cm-1, show significant differences between the strains. Both Streptococcus mitis strains possess high AmI/CH and AmII/CH absorption band ratios compared to the other strains. Streptococcus salivarius HBC12, a mutant strain devoid of all proteinaceous surface appendages, shows significantly lower AmI/CH and AmII/CH band ratios with respect to its parent strain S. salivarius HB. Two positive relationships could be established both between the AmII/CH absorption band ratio and the N/C elemental surface concentration ratio of the strains previously, determined from X-ray photoelectron spectroscopy (XPS) and also between AmI/CH and the fraction of carbon atoms at the surface involved in amide bonds, determined by XPS as well. From this comparison, it is concluded that transmission infrared spectroscopy can be employed as a technique to study the molecular surface composition of freeze-dried microorganisms.  相似文献   

8.
Strains of Streptococcus salivarius were screened by negative staining for the presence of surface structures. Two structural subgroups were found, carrying either fibrils or fimbriae, projecting from the cell surface. Eight strains carried a very dense peritrichous array of fibrils of two distinct lengths. Long fibrils had an average length of 175 nm, and short fibrils had an average length of 95 nm. Two strains carried only long fibrils, one strain carried only short fibrils, and another strain carried a lateral tuft of very prominent fibrils of two lengths, with a fibrillar fuzz covering the remainder of the cell surface. In all the strains in which they were present, the long fibrils were unaffected by protease or trypsin treatment. In contrast, the short fibrils were completely digested by protease and partially removed by trypsin. Neither long nor short fibrils were affected structurally by mild pepsin digestion or by lipase. The Lancefield extraction procedure removed both long and short fibrils. These twelve fibrillar strains were therefore divisible into four structural subgroups. Extracts of all the fibrillar strains reacted with group K antiserum. The second main structural subgroup consisted of nine strains of S. salivarius, all of which carried morphologically identical, flexible fimbriae arranged peritrichously over the cell surface. The fimbriae were structurally distinct from fibrils and measured 0.5 to 1.0 micron long and 3 to 4 nm wide, with an irregular outline and no obvious substructure. There was no obvious reduction in the number of fimbriae after protease or trypsin treatment. Extracts of the fimbriated strains did not react with the group K antiserum. The two serological and structural subgroups could also be distinguished by colony morphology.  相似文献   

9.
The fibrillar strain Streptococcus salivarius HB and a non-fibrillar mutant, strain HB-B, were grown in a defined medium under glucose limitation in a chemostat. Fermentation balances were produced for both strains in batch culture and at growth rates between 0.1/h and 1.1/h. In batch culture both strains fermented glucose to lactate, but in continuous culture glucose was fermented to formate, acetate and ethanol with increasing amounts of lactate as the growth rate was increased. Lactate never became the major fermentation product even at the highest growth rate. Amino acid analysis showed that only lysine was more than 50% utilized, while proline and tyrosine showed net production. The non-fibrillar strain HB-B showed, in general, a reduced utilization of amino acids compared with the fibrillar strain HB. Calculated growth yields and maintenance energies for the two strains showed that there was a reduction in the true growth yield and the maintenance energy coefficient of the non-fibrillar strain HB-B when compared with the fibrillar strain HB. The increase in the maintenance energy of the fibrillar strain HB (1.382 mmol/g/h) when compared with the non-fibrillar strain HB-B (0.546 mmol/g/h) of 153% is proposed to be the energy required for the maintenance of the fibrillar surface of the cell.  相似文献   

10.
The fibrillar strain Streptococcus salivarius HB and a non-fibrillar mutant, strain HB-B, were grown in a defined medium under glucose limitation in a chemostat. Fermentation balances were produced for both strains in batch culture and at growth rates between 0.1/h and 1.1/h. In batch culture both strains fermented glucose to lactate, but in continuous culture glucose was fermented to formate, acetate and ethanol with increasing amounts of lactate as the growth rate was increased. Lactate never became the major fermentation product even at the highest growth rate. Amino acid analysis showed that only lysine was more than 50% utilized, while proline and tyrosine showed net production. The non-fibrillar strain HB-B showed, in general, a reduced utilization of amino acids compared with the fibrillar strain HB. Calculated growth yields and maintenance energies for the two strains showed that there was a reduction in the true growth yield and the maintenance energy coefficient of the non-fibrillar strain HB-B when compared with the fibrillar strain HB. The increase in the maintenance energy of the fibrillar strain HB (1.382 mmol/g/h) when compared with the non-fibrillar strain HB-B (0.546 mmol/g/h) of 153% is proposed to be the energy required for the maintenance of the fibrillar surface of the cell.  相似文献   

11.
Adherence of yeasts to other microorganisms and epithelial cell surfaces is important in their colonization. Comparative studies based on the coaggregation of Candida dubliniensis versus Candida albicans with Fusobacterium nucleatum and other oral bacteria suggested differences in the surfaces of these yeasts. Transmission electron microscopy was used to test the hypothesis that there are morphologic variations in the cell surface of these two species. C. dubliniensis type strain CD36 and C. albicans ATCC 18804 were grown on Sabouraud's dextrose agar at various growth temperatures. In some experiments suspensions of yeast cells were treated with dithiothreitol. Fixation for transmission electron microscopy was accomplished using dimethylsulfoxide and alcian blue added to 3% paraformaldehyde and 1% glutaraldahyde in cacodylate buffer. The cell wall of both species was predominantly electron lucent and was visibly differentiated into several layers. A thin electron dense outer layer was seen with clearly visible fibrillar structures, closely associated to the cytoplasmic membrane. The length of the fibrils of the C. albicans cells grown at 37 degrees C was approximately two times greater than those of the cells grown at 25 degrees C. The fibrils of the 37 degrees C-grown cells were thin, distinct and tightly packed whereas those of the 25 degrees C-grown cells appeared blunt, loosely spaced and aggregated. C. dubliniensis demonstrated short, blunt fibrils appearing similar to those of the 25 degrees C-grown C. albicans cells. C. dubliniensis showed no difference in the density, length and arrangement of fibrils between the 25 degrees C and 37 degrees C growth temperatures. The shortest and most aggregated fibrils seen were of the 45 degrees C-grown C. albicans cells. Dithiothreitoltreated 37 degrees C-grown C. albicans cells revealed a distorted and partially destroyed fibrillar layer. In this investigation C. dubliniensis, unlike C. albicans, displayed an outer fibrillar layer that did not vary with variations in growth temperature. In addition, the fibrils on the C. dubliniensis cells were similar to those of the 25 degrees C-grown C. albicans in that they were considerably shorter and less dense than those of the 37 degrees C-grown C. albicans cells. It can be postulated, that C. dubliniensis exhibits constant cell surface characteristics consistent with hydrophobicity and that this property may give this species an ecological advantage. Therefore, C. dubliniensis may compete well in oral environments via enhanced attachment to oral microbes and other surfaces, perhaps even more efficiently than C. albicans.  相似文献   

12.
Fifteen strains of Streptococcus sanguis biotype I and eight strains of Streptococcus sanguis biotype II with peritrichous fibrils, tufts of fibrils or a mixture of fibrils and fimbriae on the cell surface, were tested for their ability to adhere to saliva coated spheroidal hydroxyapatite (S-SHA) in a radiolabelled assay. S. sanguis I strains adhered better than S. sanguis II strains and peritrichously fibrillar strains generally adhered better than tufted strains. There was no correlation between the density of fibrillation and adhesion. The only highly adherent strain of S. sanguis II carried fimbriae in addition to fibrils. No correlation was observed between cell surface hydrophobicity as measured by phase partitioning with hexadecane and adhesion to S-SHA.  相似文献   

13.
Fibrillar and fimbriate strains of Streptococcus salivarius were compared for their ability to adhere to buccal epithelial cells and saliva-coated hydroxyapatite beads, and for their ability to coaggregate with Veillonella strains. The fibrillar Lancefield group K strains adhered statistically significantly better to both buccal epithelial cells and saliva-coated hydroxyapatite beads than the fimbriate strains, which lacked the Lancefield group K antigen. After 1 h the fibrillar strains coaggregated statistically significantly better than the fimbriate strains with V. parvula strain V1, but after 24 h, coaggregation both of fibrillar and of fimbriate strains reached approximately 90%. Freshly isolated Veillonella strains all coaggregated with the S. salivarius strains, but the percentage coaggregation varied considerably after 1 h depending on the Veillonella strain. Coaggregation was independent of the presence of Ca2+. S. salivarius strain HB-V5, a mutant of strain HB that had lost the Veillonella-binding protein, coaggregated weakly with V. parvula strain V1, but coaggregated very well with other wild-type veillonellae, suggesting the presence of an alternative mechanism for Veillonella-binding for strain HB. Fibrillar strains were, therefore, more adhesive to oral surfaces and coaggregated with veillonellae after 1 h better than the fimbriate S. salivarius strains. Both fibrillar and fimbriate strains were highly hydrophobic in the hexadecane-buffer partition assay.  相似文献   

14.
The surface properties of nine Streptococcus mitis and four Peptostreptococcus micros strains from the oral cavity were examined and compared with a large group of oral streptococci. Zeta potential and contact angle measurements were employed to determine physico-chemical cell surface properties. In addition, elemental surface concentration ratios were obtained via X-ray photoelectron spectroscopy, and surface structures were examined with transmission electron microscopy. The S. mitis and P. micros strains were found to have higher isoelectric points, higher hydrophobicities and higher N/C surface concentration ratios than some other oral streptococci. The combined data suggest that both species possess large amounts of surface protein. All the S. mitis strains displayed abundant surface fibrils in negative staining, but the P. micros strains were devoid of surface appendages indicating that surface protein is present in different forms in the two species. The surfaces of S. mitis and P. micros type strains differed significantly from the other strains examined.  相似文献   

15.
The rigid core of intracellular tau filaments from Alzheimer''s disease (AD), Pick''s disease (PiD), and Corticobasal disease (CBD) brains has been shown to differ in their cryo-EM atomic structure. Despite providing critical information on the intimate arrangement of a fraction of htau molecule within the fibrillar scaffold, the cryo-EM studies neither yield a complete picture of tau fibrillar assemblies structure nor contribute insights into the surfaces that define their interactions with numerous cellular components. Here, using proteomic approaches such as proteolysis and molecular covalent painting, we mapped the exposed amino acid stretches at the surface and those constituting the fibrillar core of in vitro-assembled fibrils of human htau containing one N-terminal domain and three (1N3R) or four (1N4R) C-terminal microtubule-binding repeat domains as a result of alternative splicing. Using limited proteolysis, we identified the proteolytic fragments composing the molecular “bar-code” for each type of fibril. Our results are in agreement with structural data reported for filamentous tau from AD, PiD, and CBD cases predigested with the protease pronase. Finally, we report two amino acid stretches, exposed to the solvent in 1N4R not in 1N3R htau, which distinguish the surfaces of these two kinds of fibrils. Our findings open new perspectives for the design of highly specific ligands with diagnostic and therapeutic potential.  相似文献   

16.
M D Willcox  D B Drucker 《Microbios》1989,59(238):19-29
Seven strains of Streptococcus oralis were found to possess surface structures. Four strains possessed long fimbriae which ranged in length from 266-366 nm, while the remaining three strains possessed shorter peritrichously distributed fibrils which ranged in length from 80-197 nm. The fibrillar strains were morphologically similar to strains of Streptococcus sanguis I and II and Streptococcus mitis. No strain of S. oralis produced tufts of fibrils like certain strains of S. sanguis I. Strains of Streptococcus milleri produced peritrichously distributed fimbriae which were morphologically dissimilar to the fimbriae produced by S. oralis strains. S. oralis strains were moderately to highly hydrophobic, but hydrophobicity could not be related to adhesion parameters or type or length or density of surface structures. Furthermore, there appeared to be no correlation between type of surface structures and adhesion parameters. Two of the three fibrillar strains of S. oralis and the peritrichously fibrillar strains of S. sanguis, together with one strain of S. milleri, were able to co-aggregate with actinomycetes.  相似文献   

17.
The spatial arrangement of two strains of oral bacteria adhering on glass was studied in order to investigate cooperative effects in their adhesion mechanisms. Streptococcus salivarius HB was a strain which possessed several classes of fibrillar surface appendages, whereas on the cell surface of S. mutants NS no surface appendages could be identified. The bacteria were deposited from a flowing suspension with various buffer concentrations on the bottom glass plate of a parallel plate flow cell and were observed directly with a video camera mounted on a phase contrast microscope. The positions of all adhering bacteria were determined by means of automated real time image analysis and subsequently employed for calculating radial and angular pair distribution functions. Pair distribution functions indicate the average relative number density of bacteria around one deposited bacterium as a function of the radial distance or the angular orientation relative to the flow direction. From the calculated pair distribution functions of both bacterial strains it was concluded that cooperative effects contributed to the adhesion of S. salivarius HB, but not to adhesion of S. mutants NS. It was suggested that these cooperative effects originate from the surface appendages of S. salivarius HB.  相似文献   

18.
The cell walls of a number of filamentous, gliding cyanobacteria of the genus Oscillatoria were examined by transmission electron microscopy of ultrathin sections, of freeze-etched replicas, and of whole cells crushed between glass slides and negatively stained. All three techniques revealed the presence of a highly ordered array of parallel fibrils, seen in transverse sections to be situated between the peptidoglycan and the outer membrane. Approximately 200 individual fibrils, each 25 to 30 nm in width, form a parallel, helical array that completely surrounds each cyanobacterial filament, running at an angle of 25 to 30° to its long axis. This highly regular arrangement of the fibrillar layer may imply some underlying symmetry responsible for its organization. A possible source of such symmetry would be the peptidoglycan, and some form of interaction between this layer and the fibrils might provide the necessary scaffolding for the fibrillar array. In crushed, negatively stained samples of fresh cells, individual fibrils were seen outside the filament, released from the cell wall. These released fibrils were of the same width as those observed in situ but were in short lengths, mostly of 100 to 200 nm, and were invariably bent, sometimes even into U shapes, implying great flexibility. Negative staining of released fibrils showed no evidence that they were hollow tubes but did give some indication of a substructure, implying that they were composed of many subunits. The function of this fibrillar array is unknown, although its position in the cell wall, as well as the correspondence between the angle of the fibrils with respect to the long axis of the filament and the rotation of the filament during gliding, may imply an involvement in gliding motility.  相似文献   

19.
Streptococcus salivarius is one of the first colonizers of the human oral cavity and gut after birth and therefore may contribute to the establishment of immune homeostasis and regulation of host inflammatory responses. The anti-inflammatory potential of S. salivarius was first evaluated in vitro on human intestinal epithelial cells and human peripheral blood mononuclear cells. We show that live S. salivarius strains inhibited in vitro the activation of the NF-κB pathway on intestinal epithelial cells. We also demonstrate that the live S. salivarius JIM8772 strain significantly inhibited inflammation in severe and moderate colitis mouse models. These in vitro and in vivo anti-inflammatory properties were not found with heat-killed S. salivarius, suggesting a protective response exclusively with metabolically active bacteria.  相似文献   

20.
Previous studies of the bacteriocin-producing Streptococcus salivarius K12 monitored a variety of intrinsic strain characteristics of potential relevance to its application as an oral probiotic in humans. These included the content of antibiotic resistance and virulence determinants, the production of deleterious metabolic by-products and its genetic stability. In the present study, we examined additional safety factors including the responses of rats to either short- or long-term oral dosing with strain K12 preparations. In addition, the potential genotoxicity of strain K12 was tested using a bacterial reverse mutation assay. To determine the occurrence and concentrations in human saliva of S. salivarius having the same bacteriocin phenotype as strain K12, saliva samples from 780 children were evaluated. The level of dosing with strain K12 required to achieve oral cavity colonization levels similar to those occurring naturally for this type of bacteriocin-producing S. salivarius was established using 100 human subjects. Following the oral instillation of lyophilized S. salivarius K12 cells in these subjects, its persistence was not at levels higher than those found naturally for this type of bacterium. The various sets of data obtained in this study showed no evidence of genotoxicity and no acute or subacute toxicity effects associated with strain K12. Based on the previously published data, the long history of use by humans and the information presented here, it is concluded that S. salivarius K12 is safe for human consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号