首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Harmonia axyridis Pallas (Coleoptera: Coccinellidae) is native to Asia, and was widely introduced as a biocontrol agent of aphids and coccids in Europe and North America. In Europe, H. axyridis is considered to be an invasive alien species because of its potential to disrupt native ladybird communities. Since 1999, the Belgian Ladybird Working Group mapped all Belgian Coccinellidae and recorded data on substratum plants and habitat. The first feral H. axyridis population in Belgium was recorded in 2001, but the expansion rate is decreasing because it now colonised the whole country. Recorded occupancy in Belgium showed an average rate of increase of 189% between 2002 and 2006. In Belgium, H. axyridis occurred in a wide range of habitats, including those of high conservation value. However, habitat and land cover analysis showed that H. axyridis is more frequently found in urbanised landscapes than in semi-natural landscapes. A niche overlap analysis based on plant use data showed that the potential to affect native species is higher for generalist, deciduous and coniferous tree ladybird species than for heathland and wetland specialist species. Phenology data showed that H. axyridis is able to reproduce later in the year than native species. Based on recorded distribution, ecology and phenology, we discuss the potential of H. axyridis to disrupt native ladybird assemblages in Belgium.  相似文献   

2.
Aim Invasive alien species (IAS) are recognized as major drivers of biodiversity loss, but few causal relationships between IAS and species declines have been documented. In this study, we compare the distribution (Belgium and Britain) and abundance (Belgium, Britain and Switzerland) of formerly common and widespread native ladybirds before and after the arrival of Harmonia axyridis, a globally rapidly expanding IAS. Location Europe Methods We used generalized linear mixed‐effects models (GLMMs) to assess the distribution trends of eight conspicuous and historically widespread and common species of ladybird within Belgium and Britain before and after the arrival of H. axyridis. The distribution data were collated largely through public participatory surveys but verified by a recognized expert. We also used GLMMs to model trends in the abundance of ladybirds using data collated through systematic surveys of deciduous trees in Belgium, Britain and Switzerland. Results Five (Belgium) and seven (Britain) of eight species studied show substantial declines attributable to the arrival of H. axyridis. Indeed, the two‐spot ladybird, Adalia bipunctata, declined by 30% (Belgium) and 44% (Britain) over 5 years after the arrival of H. axyridis. Trends in ladybird abundance revealed similar patterns of declines across three countries. Main conclusion Together, these analyses show H. axyridis to be displacing native ladybirds with high niche overlap, probably through predation and competition. This finding provides strong evidence of a causal link between the arrival of an IAS and decline in native biodiversity. Rapid biotic homogenization at the continental scale could impact on the resilience of ecosystems and severely diminish the services they deliver.  相似文献   

3.
The role of local habitat geometry (habitat area and isolation) in predicting species distribution has become an increasingly more important issue, because habitat loss and fragmentation cause species range contraction and extinction. However, it has also become clear that other factors, in particular regional factors (environmental stochasticity and regional population dynamics), should be taken into account when predicting colonisation and extinction. In a live trapping study of a mainland-island metapopulation of the root vole (Microtus oeconomus) we found extensive occupancy dynamics across 15 riparian islands, but yet an overall balance between colonisation and extinction over 4 years. The 54 live trapping surveys conducted over 13 seasons revealed imperfect detection and proxies of population density had to be included in robust design, multi-season occupancy models to achieve unbiased rate estimates. Island colonisation probability was parsimoniously predicted by the multi-annual density fluctuations of the regional mainland population and local island habitat quality, while extinction probability was predicted by island population density and the level of the recent flooding events (the latter being the main regionalized disturbance regime in the study system). Island size and isolation had no additional predictive power and thus such local geometric habitat characteristics may be overrated as predictors of vole habitat occupancy relative to measures of local habitat quality. Our results suggest also that dynamic features of the larger region and/or the metapopulation as a whole, owing to spatially correlated environmental stochasticity and/or biotic interactions, may rule the colonisation – extinction dynamics of boreal vole metapopulations. Due to high capacities for dispersal and habitat tracking voles originating from large source populations can rapidly colonise remote and small high quality habitat patches and re-establish populations that have gone extinct due to demographic (small population size) and environmental stochasticity (e.g. extreme climate events).  相似文献   

4.
严飞  周在豹  王朔  曹玉成  李凯 《生态学报》2012,32(7):2230-2238
以北京大兴农区农林复合系统为对象,围绕灌木篱墙(沙棘绿篱和杨树萌条带)上和麦田中的主要捕食性天敌——异色瓢虫对栖息地的选择趋向及灌木篱墙对异色瓢虫种群分布的影响进行了研究。结果表明:(1)小麦生长前期(返青期至抽穗期或扬花期)灌木篱墙上异色瓢虫种群密度是麦田的3.25—9.57倍,是异色瓢虫由越冬地向麦田过渡前的主要栖息地,是农林复合系统中异色瓢虫种群建立的"种库";(2)异色瓢虫对栖息生境有较强的选择性,明显趋向于蚜虫密集分布的生境,小麦生长前期趋向于灌木篱墙,小麦生后期(扬花期或灌浆期至完熟期)趋向于麦田,整个小麦生长期内异色瓢虫种群在不同生境斑块间存在明显的移动现象;(3)麦收后,邻近麦田的杨树萌条带上异色瓢虫种群密度相比于完熟期增加了42%,为异色瓢虫提供了重要的庇护场所。  相似文献   

5.
The marine‐freshwater boundary is a major biodiversity gradient and few groups have colonised both systems successfully. Fishes have transitioned between habitats repeatedly, diversifying in rivers, lakes and oceans over evolutionary time. However, their history of habitat colonisation and diversification is unclear based on available fossil and phylogenetic data. We estimate ancestral habitats and diversification and transition rates using a large‐scale phylogeny of extant fish taxa and one containing a massive number of extinct species. Extant‐only phylogenetic analyses indicate freshwater ancestry, but inclusion of fossils reveal strong evidence of marine ancestry in lineages now restricted to freshwaters. Diversification and colonisation dynamics vary asymmetrically between habitats, as marine lineages colonise and flourish in rivers more frequently than the reverse. Our study highlights the importance of including fossils in comparative analyses, showing that freshwaters have played a role as refuges for ancient fish lineages, a signal erased by extinction in extant‐only phylogenies.  相似文献   

6.
Animal community dynamics in changing landscapes are primarily driven by changes in vegetation structure and ultimately by how species respond to these changes and at which spatial scale. We consider two major components of local community dynamics, species colonisation and extinction. We hypothesise that (1) the optimal spatial extent needed to accurately predict them will differ between these two processes; (2) it will also likely differ from species to species as a result of life history traits differences related to differences in habitat selection and (3) that a species' primary habitat will determine the spatial extent at which it perceives change in vegetation structure. We used data collected over 25 yr in a changing Mediterranean landscape to study bird species local colonisation and extinction patterns in two groups of species typical from two habitats: open farmland and woodland. Vegetation changes were measured at spatial extents ranging from 0.2 to 79 ha. Local species colonisation and extinction estimates were computed using a method accounting for heterogeneity in detection probability among species. We built linear models between local species colonisation/extinction estimates and vegetation changes and examined variations in model quality with respect to the spatial extent at which vegetation changes had been measured. Models for open habitat species showed that colonisation processes operated at the landscape scale (79 ha), while extinction was more tightly linked to local habitat requirements (0.2 ha). Models for woodland species presented a low and constant model quality whatever the spatial extent considered. Our results suggest that the dynamics of the woodland species considered responded to a combination of vegetation changes at several scales and, in particular, to changes in the vertical structure of the vegetation. We highlight the need to explicitly consider spatial extent in studies of habitat selection and of habitat and population dynamics to improve our understanding of the biological consequences of land use changes and guide more effective conservation efforts.  相似文献   

7.
Negative interspecific mating interactions, known as reproductive interference, can hamper species coexistence in a local patch and promote niche partitioning or geographical segregation of closely related species. Conspecific sperm precedence (CSP), which occurs when females that have mated with both conspecific and heterospecific males preferentially use conspecific sperm for fertilization, might contribute to species coexistence by mitigating the costs of interspecific mating and hybridization. We discussed whether two species exhibiting CSP can coexist in a local environment in the presence of reproductive interference. First, using a behaviorally explicit mathematical model, we demonstrated that two species characterized by negative mating interactions are unlikely to coexist because the costs of reproductive interference, such as loss of mating opportunity with conspecific partners, are inevitably incurred when individuals of both species are present. Second, we experimentally examined differences in mating activity and preference in two Harmonia ladybird species known to exhibit CSP. These behavioral differences may lead to local extinction of H. yedoensis because of reproductive interference by H. axyridis. This prediction is consistent with field observations that H. axyridis uses various food sources and habitats whereas H. yedoensis is confined to a less preferred prey item and a pine tree habitat. Finally, by a comparative approach, we observed that niche partitioning or parapatric distribution, but not sympatric coexistence in the same habitat, is maintained between species with CSP belonging to a wide range of taxa, including vertebrates and invertebrates living in aquatic or terrestrial environments. Taken together, it is possible that reproductive interference may destabilize local coexistence even in closely related species that exhibit CSP.  相似文献   

8.
1. The distribution of species is affected by many factors operating at a variety of temporal and spatial scales in a heterogeneous landscape. In lakes, fish communities are dynamic, influenced by landscape‐level factors that control colonisation and extinction. 2. We used classification and regression tree (CART) analyses to quantify the importance of landscape‐level factors in determining the distribution of fish species in 168 arctic Alaskan lakes. Factors including lake size, depth, outflow gradient, distance to other lakes, lake order, altitude, river drainage and age of glacial surface were analysed. These factors could affect either access of fish to a lake (colonisation variables), or their survival in a lake that already had been colonised (extinction variables). 3. The presence of a species was predicted accurately in 78.4% ± 10.5% (mean ± SD) of cases, and absence in 75.0% ± 6.1% of cases. The relative importance of extinction versus colonisation variables varied with species. Extinction variables were most important for lake trout (Salvelinus namaycush) and slimy sculpin (Cottus cognatus), a mixture of extinction and colonisation variables was important for arctic char (Salvelinus alpinus), and colonisation variables were most important for arctic grayling (Thymallus arcticus) and round whitefish (Prosopium cylindraceum). 4. Ecological differences among species account for much of the difference in relative importance of colonisation versus extinction variables. In addition, stream piracy events have occurred over geologic time scales, which have resulted in lakes that are currently inaccessible but support relict fish populations. 5. Climate warming, currently occurring in the arctic, is likely to alter further the stream network, which could have dramatic effects on fish distributions by affecting access to isolated lakes or isolating lakes that are currently accessible.  相似文献   

9.
A fundamental goal of parasite evolutionary ecology is to elucidate patterns of host use and determine the underlying mechanisms of parasite colonisation. In order to distinguish the relative contributions of host encounter rates and host compatibility to infection outcomes, we compared host use in both field and experimental laboratory settings. Two years of bi-weekly snail sampling at a freshwater pond demonstrated fluctuating availability among three potential second intermediate snail host species and suggested that two trematode species (Echinostoma revolutum and Echinoparyphium sp.) did not colonise the three potential snail host species, Lymnaea elodes, Physa gyrina and Helisoma trivolvis, differentially. However, a series of experimental infections demonstrated that both parasites colonised H. trivolvis more so than the other two host species. Thus, more echinostome parasites utilised snail hosts that cannot serve as their first intermediate host. In experimental infections, host size and vagility were not strong determinants of infection. By utilising field and laboratory approaches, we were able to compare the strength of host compatibility under controlled conditions with patterns of infection in nature. Based on the results from these studies, it appears that host encounter is the primary mechanism dictating infection outcomes in the field.  相似文献   

10.
Harmonia axyridis (Coleoptera: Coccinellidae) has been introduced widely for biological control of agricultural pests. Harmonia axyridis has established in four continents outside of its native range in Asia and it is considered an invasive alien species (IAS). Despite a large body of work on invasion ecology, establishment mechanisms of IAS and their interactions with natural enemies remain open questions. Parasites, defined as multicellular organisms that do not directly kill the host, could potentially play an important role in regulating host populations. This study presents a review of the parasites of H. axyridis, discussing their distributions and effects on host populations across the host’s native and invasive range. These parasites are: Hesperomyces virescens Thaxt. fungi, Coccipolipus hippodamiae (McDaniel and Morrill) mites, and Parasitylenchus bifurcatus Poinar and Steenberg nematodes.  相似文献   

11.
Major impacts of biological invasions are widely recognized and underscore the need to understand the relation between life-history traits of invasive species and the invasion process. Growth of juveniles and adult survival of invasive species are key factors in invasion process. Life-history traits that increase juvenile fitness including increased rates of development and behavioral characteristics that facilitate competitive success such as increased predator efficiency and foraging ability may explain invasiveness of a species. Invasion of Harmonia axyridis Pallas (Coleoptera: Coccinellidae) in North America provides an opportunity to investigate life-history traits of juveniles of an invasive species. Here, we evaluate both developmental and behavioral traits that may explain the success of H. axyridis by comparing it to an ecologically similar indigenous species Coleomegilla maculata lengi Timberlake (Coleoptera: Coccinellidae). Three points may contribute to the invasiveness of H. axyridis. First, development of H. axyridis was faster during the 2nd larval instar than C. maculata, a characteristic that may reduce vulnerability at young instars. Second, H. axyridis reached the 4th instar more rapidly than C. maculata. The 4th instar of H. axyridis was also characterized by higher predation efficiency with increased voracity, lethal contact and search efficiency of pea aphids Acyrthosiphon pisum. Finally, surprisingly, a 5th larval instar occured in 33% of the individuals of H. axyridis and was characterized by the same developmental time, but with increased voracity and weight gain compared to 4th larval instars, suggesting an increased fitness of these individuals. These developmental characteristics coupled with increased predation efficiency and behavioral characteristics enhanced the juvenile growth and predatory abilities of this species and may contribute to the invasive ability of H. axyridis.  相似文献   

12.
1. Global warming and biological invasions are important threats to biodiversity. Nonetheless, there is little information on how these factors influence performance or life‐history traits of invasive and native species. 2. The effects of temperature on physiological and fitness traits of two invasive alien species (Harmonia axyridis and Hippodamia variegata) and one native species (Eriopis chilensis) of coccinellid were evaluated, testing a model of eurythermality. Eggs of all species were exposed to four temperature treatments (20, 24, 30 and 33 °C). In adult F2 we measured fecundity, locomotor performance, development time (total and per life stage), survival, and preferred body temperature in a thermal gradient. 3. It was found that H. axyridis had comparatively better performance at low temperatures (i.e. 20 °C), while the performance of H. variegata and E. chilensis did not change with temperature or was better at higher temperatures (30 °C). The standardised Levins index showed that all species are eurythermic. E. chilensis had a high niche overlap with the invasive alien ladybird species, rejecting the hypothesis of greater eurythermality of invasive species than native species. 4. Although there were differences in the temperature preferences and in the response of some physiological and life‐history traits of ladybirds to temperature, both the native and invasive alien species are eurythermic, contrary to the prediction. The better performance of H. axyridis at lower temperatures may result in displacement of its current distribution, and thus not all invasive species will respond favourably to global warming.  相似文献   

13.
1. Harmonia axyridis (Coleoptera: Coccinellidae) is an invasive non‐native ladybird in Europe, where it was introduced as a biological control agent of aphids and coccids. 2. This study assesses changes to ladybird species assemblages, in arboreal habitats, over a 3‐year period encompassing the invasion phase of H. axyridis in eastern England. The effects of H. axyridis and other factors (weather and prey availability) on native ladybirds are assessed. 3. Harmonia axyridis increased from 0.1% to 40% of total ladybirds sampled, whilst native aphidophagous species declined from 84% to 41% of total ladybirds. The actual number of native aphidophagous ladybirds per survey decreased from a mean of 19.7 in year 1, to 10.2 in year 3. 4. Three ladybird species in particular experienced declines: Adalia bipunctata, Coccinella septempunctata, and Propylea quattuordecimpunctata. Harmonia axyridis was the most abundant species by the end of the study. 5. The decline in native aphidophagous ladybirds could be attributed to competition for prey and intraguild predation of eggs, larvae, and pupae by H. axyridis. Physiological and behavioural traits of H. axyridis are likely to confer an advantage over native ladybird species.  相似文献   

14.

Introduction

Esca disease has become a major threat for viticulture. Phaeoacremonium aleophilum is considered a pioneer of the esca complex pathosystem, but its colonisation behaviour inside plants remains poorly investigated.

Material and Methods

In this study, P. aleophilum::gfp7 colonisation was assessed six and twelve weeks post-inoculation in two different types of tissues: in the node and the internode of one year-old rooted cuttings of Cabernet Sauvignon. These processes of colonisation were compared with the colonisation by the wild-type strain using a non-specific lectin probe Alexa Fluor 488-WGA.

Results

Data showed that six weeks post-inoculation of the internode, the fungus had colonised the inoculation point, the bark and xylem fibres. Bark, pith and xylem fibres were strongly colonised by the fungus twelve weeks post-inoculation and it can progress up to 8 mm from the point of inoculation using pith, bark and fibres. P. aleophilum was additionally detected in the lumen of xylem vessels in which tyloses blocked its progression. Different plant responses in specific tissues were additionally visualised. Inoculation of nodes led to restricted colonisation of P. aleophilum and this colonisation was associated with a plant response six weeks post-inoculation. The fungus was however detected in xylem vessels, bark and inside the pith twelve weeks post-inoculation.

Conclusions

These results demonstrate that P. aleophilum colonisation can vary according to the type of tissues and the type of spread using pith, bark and fibres. Woody tissues can respond to the injury and to the presence of this fungus, and xylem fibres play a key role in the early colonisation of the internode by P. aleophilum before the fungus can colonise xylem vessels.  相似文献   

15.
Natural enemies can be attracted to companion plants that can provide them with suitable habitat including food and shelter. This study was conducted to determine if the multicolored Asian lady beetle, Harmonia axyridis Pallas (Coleoptera: Coccinellidae), could be attracted to olfactory and visual cues of various companion plant species. Ten potential plants that can attract and provide H. axyridis with alternate food sources (i.e. nectar and pollen) were selected for olfactory preference tests. These plants included dill (Anethum graveolens), yarrow (Achillea spp.), butterfly weed (Asclepias tuberosa), dandelion (Taraxacum officinale), bugleweed (Ajuga reptans), marigold (Tagetes tenuifolia), tansy (Tanacetum vulgare), goldenrod (Solidago spp.), morning glory (Ipomoea spp.), and sunflower (Helianthus annuus). Visual preference tests were conducted with six different colors: white, yellow, blue, red, green, and orange. The result of the olfactory preference test showed that H. axyridis adults significantly preferred sunflower and dill among the ten potential companion plants tested in this study. In a visual preference test, H. axyridis significantly preferred yellow to any other colors. The result of this study suggested that odor and color of some companion plants (olfactory and visual cues) could assist in the use of biological control by attracting H. axyridis adults to the cropping area.  相似文献   

16.
In central Japan, Harmonia yedoensis is a specialist ladybird that is confined to pine tree habitats, whereas its sibling species Harmonia axyridis is a generalist that feeds on a wide range of aphid species in nature. Interestingly, H. axyridis is not distributed in the Ryukyu Archipelago, southern Japan. We hypothesized that the ecological niche of H. yedoensis should be wider in the Ryukyu Archipelago, where its competitor species in central Japan, H. axyridis, is absent. We undertook fieldwork and a survey of published works to examine habitat utilization by H. yedoensis in the Ryukyu Archipelago. We found that H. yedoensis adults in the Ryukyu Archipelago visited several kinds of deciduous trees, including wild tamarind, Chinese hibiscus, Taiwan cherry and Malayan banyan, as well as pine trees. These observations suggest that habitat generalization has occurred in H. yedoensis in the Ryukyu Archipelago, where it does not compete with H. axyridis.  相似文献   

17.
The coccinellid Harmonia axyridis (Pallas) has been used for augmentative and classical biological control in many environments. More recently it has invaded large parts of Europe and negative effects for native populations of aphidophagous coccinellids are beginning to emerge. Here we investigate intraguild predation (IGP) between H. axyridis and eleven native non-target European coccinellids, including less common species which have not been studied so far within this context of non-target effects. When first-instars of H. axyridis were paired with the native species, only Anatis ocellata (Linnaeus) and Calvia quatuordecimguttata (L.) were significantly superior to the former whereas H. axyridis was superior in three cases, i.e. against Aphidecta obliterata (L.), Coccinella septempunctata L. and Hippodamia variegata (Goeze). Non-significant results were obtained for all other pairings. Similar tests with the fourth larval instar revealed stronger IGP rates and H. axyridis was found to be superior in the interactions with Adalia bipunctata (L.), Adalia decempunctata (L.), A. obliterata, Calvia decemguttata (L.), C. quatuordecimguttata, C. septempunctata, H. variegata, Oenopia conglobata (L.) and Propylea quatuordecimpunctata (L.) whereas non-significant results were obtained for interactions with two other native species. Another experiment revealed that H. axyridis was able to prey more successfully upon egg of most native coccinellid species than vice versa. However, C. quatuordecimguttata eggs seem to be more protected against predation than those of the other species. Survival of first-instar H. axyridis was higher on conspecific eggs compared to eggs of any other species tested. Our results suggest that H. axyridis may become a threat to a wide range of native aphidophagous coccinellids sharing similar ecological niches except species showing high potential for chemical or physical protection.  相似文献   

18.
1. A critical need in conservation biology is to determine which species are most vulnerable to extinction. Freshwater mussels (Bivalvia: Unionacea) are one of the most imperilled faunal groups globally. Freshwater mussel larvae are ectoparasites on fish and depend on the movement of their hosts to maintain connectivity among local populations in a metapopulation. 2. I calculated local colonisation and extinction rates for 16 mussel species from 14 local populations in the Red River drainage of Oklahoma and Texas, U.S. I used general linear models and AIC comparisons to determine which mussel life history traits best predicted local colonisation and extinction rates. 3. Traits related to larval dispersal ability (host infection mode, whether a mussel species was a host generalist or specialist) were the best predictors of local colonisation. 4. Traits related to local population size (regional abundance, time spent brooding) were the best predictors of local extinction. The group of fish species used as hosts by mussels also predicted local extinction and was probably related to habitat fragmentation and host dispersal abilities. 5. Overall, local extinction rates exceeded local colonisation rates, indicating that local populations are becoming increasingly isolated and suffering an ‘extinction debt’. This study demonstrates that analysis of species traits can be used to predict local colonisation and extinction patterns and provide insight into the long‐term persistence of populations.  相似文献   

19.
Climate change is affecting species distribution, composition of biological communities, and species traits. Despite the growing body of knowledge on the reaction of species to climate change, the potentially delayed response of species is still severely understudied. In this paper we modelled the time needed by ground‐living invertebrates to effectively react to habitat modification induced by climate change in relation to dispersal abilities. We analyzed the occurrence pattern of alpine ground beetles (carabids) along areas recently freed by retreating glaciers in the central‐eastern Italian Alps, to test how the synergic effects of time since deglaciation and environmental factors may affect the colonisation process. Different times of response to climate change in ground beetles were found. Sites already hosting the land cover type suitable for our study taxon, but ice‐free for less than 100 yr, are mainly colonised by winged carabid beetles (which have high dispersal abilities and are mostly habitat generalists). No, or very few, wingless species (slow colonizers and ecologically specialized) occur within those sites. The overall pattern suggests that within a site, suitable land cover is established prior to colonization, due to a strong joint effect of time since deglaciation and land cover type. Long‐lasting habitat development at the fine scale is likely to result in a lack of specific resources (e.g. food items, or microhabitat), which is likely to contribute to delayed colonisation, which potentially could be tied also to dispersal abilities. Whatever the reason, the existence of a time‐lag often equal to or greater than 100 yr in species colonisation implies caution in predicting species’ occurrence shifts following climate change.  相似文献   

20.
Invasive species are characterized by the rapid growth and spread of their populations after establishing a foothold in new habitats, and there are now many examples of such species negatively affecting biodiversity and the economy. It is unclear why some species can become successful invaders, whereas most (even if closely related) remain noninvasive. We previously proposed a hypothesis that parasites associated with invading species can promote their invasive success if they are harmless toward the invaders but harmful to their competitors and/or predators in the newly colonized habitat. Here we discuss whether microsporidia that have recently been discovered in the invasive ladybird Harmonia axyridis contribute to its invasive success. We show that all H. axyridis beetles sourced from diverse collection sites all over the world carry abundant microsporidia. This suggests that both native and invasive H. axyridis populations are associated with these tolerated parasites, which were likely to have existed in native populations before expansion rather than being acquired in newly colonized areas. We describe the pathogenesis of the microsporidia during different developmental stages of H. axyridis and we address the possibility that the predation of its infected eggs and larvae by competing native ladybird species may lead to their infection and ultimately to their decline. Finally, we discuss our initial hypothesis: microsporidia that are tolerated by an invasive vector insect can be active against susceptible native competitors and/or predator species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号