首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To help or prevent certain health problems and adequately feed people, there is a need for added contributions from legumes. Legumes produce primary and secondary metabolites and other phytochemicals such as nutraceuticals, pharmaceuticals, pesticides, and industrial products. In addition, legumes such as hyacinth bean seed contain nearly 10% more fiber while winged bean contains three times more fiber than common bean. The potential breast cancer fighting chemical known as kievitone is found in hyacinth bean but not in common bean nor soybean. Both agmatine and isovitexin are potential combatants of microbial organisms in mammals including humans. Agmatine and isovitexin are not found in soybean nor common bean, however they exist in winged bean. Studies regarding value added traits such as the bio-functional and biologically active components of legumes have only recently begun because most specialty phytochemicals are extracted from other plant sources. Not only can bio-functional legumes provide healthy food constituents for use as nutraceuticals, pharmaceuticals, and pesticidals, but they can increase healthy food resources worldwide. Bio-functional legumes have been used in the past primarily for forage, pasture, minor food, green manuring, and erosion control. Current uses include these previously mentioned plus some fairly new ones such as hyacinth bean used as an ornamental and wildlife food. The future for these common bean relatives is for use in the health markets as new medicines or nutraceuticals and to provide farmers with additional crop production as phytopharmaceutical or nutraceutical crops.  相似文献   

3.
Broughton  W. J.  Hernández  G.  Blair  M.  Beebe  S.  Gepts  P.  Vanderleyden  J. 《Plant and Soil》2003,252(1):55-128
Globally, 800 million people are malnourished. Heavily subsidised farmers in rich countries produce sufficient surplus food to feed the hungry, but not at a price the poor can afford. Even donating the rich world's surplus to the poor would not solve the problem. Most poor people earn their living from agriculture, so a deluge of free food would destroy their livelihoods. Thus, the only answer to world hunger is to safeguard and improve the productivity of farmers in poor countries. Diets of subsistence level farmers in Africa and Latin America often contain sufficient carbohydrates (through cassava, corn/maize, rice, wheat, etc.), but are poor in proteins. Dietary proteins can take the form of scarce animal products (eggs, milk, meat, etc.), but are usually derived from legumes (plants of the bean and pea family). Legumes are vital in agriculture as they form associations with bacteria that `fix-nitrogen' from the air. Effectively this amounts to internal fertilisation and is the main reason that legumes are richer in proteins than all other plants. Thousands of legume species exist but more common beans (Phaseolus vulgaris L.) are eaten than any other. In some countries such as Mexico and Brazil, beans are the primary source of protein in human diets. As half the grain legumes consumed worldwide are common beans, they represent the species of choice for the study of grain legume nutrition. Unfortunately, the yields of common beans are low even by the standards of legumes, and the quality of their seed proteins is sub-optimal. Most probably this results from millennia of selection for stable rather than high yield, and as such, is a problem that can be redressed by modern genetic techniques. We have formed an international consortium called `Phaseomics' to establish the necessary framework of knowledge and materials that will result in disease-resistant, stress-tolerant, high-quality protein and high-yielding beans. Phaseomics will be instrumental in improving living conditions in deprived regions of Africa and the Americas. It will contribute to social equity and sustainable development and enhance inter- and intra-cultural understanding, knowledge and relationships. A major goal of Phaseomics is to generate new common bean varieties that are not only suitable for but also desired by the local farmer and consumer communities. Therefore, the socio-economic dimension of improved bean production and the analysis of factors influencing the acceptance of novel varieties will be an integral part of the proposed research (see Figure 1). Here, we give an overview of the economic and nutritional importance of common beans as a food crop. Priorities and targets of current breeding programmes are outlined, along with ongoing efforts in genomics. Recommendations for an international coordinated effort to join knowledge, facilities and expertise in a variety of scientific undertakings that will contribute to the overall goal of better beans are given. To be rapid and effective, plant breeding programmes (i.e., those that involve crossing two different `parents') rely heavily on molecular `markers'. These genetic landmarks are used to position  相似文献   

4.
5.
6.

Background

The prevalence of IgE mediated food allergies has increased over the last two decades. Food allergy has been reported to be fatal in highly sensitive individuals. Legumes are important food allergens but their prevalence may vary among different populations. The present study identifies sensitization to common legumes among Indian population, characterizes allergens of kidney bean and establishes its cross reactivity with other legumes.

Methodology

Patients (n = 355) with history of legume allergy were skin prick tested (SPT) with 10 legumes. Specific IgE (sIgE) and total IgE were estimated in sera by enzyme-linked immunosorbent assay. Characterization of kidney bean allergens and their cross reactivity was investigated by immunobiochemical methods. Identification of major allergens of kidney bean was carried out by mass spectrometry.

Principal Findings

Kidney bean exhibited sensitization in 78 (22.0%) patients followed by chickpea 65 (18.0%) and peanut 53 (15%). SPT positive patients depicted significantly elevated sIgE levels against different legumes (r = 0.85, p<0.0001). Sera from 30 kidney bean sensitive individuals exhibited basophil histamine release (16–54%) which significantly correlated with their SPT (r = 0.83, p<0.0001) and sIgE (r = 0.99, p<0.0001). Kidney bean showed eight major allergens of 58, 50, 45, 42, 40, 37, 34 and 18 kDa on immunoblot and required 67.3±2.51 ng of homologous protein for 50% IgE inhibition. Inhibition assays revealed extensive cross reactivity among kidney bean, peanut, black gram and pigeon pea. nLC-MS/MS analysis identified four allergens of kidney bean showing significant matches with known proteins namely lectin (phytohemagglutinin), phaseolin, alpha-amylase inhibitor precursor and group 3 late embryogenesis abundant protein.

Conclusion/Significance

Among legumes, kidney bean followed by chick pea and peanut are the major allergic triggers in asthma and rhinitis patients in India. Kidney bean showed eight major allergens and cross reacted with other legumes. A combination of SPT, sIgE and histamine release assay is helpful in allergy diagnosis.  相似文献   

7.
食用豆类种质资源粗蛋白及粗淀粉含量的评价   总被引:8,自引:0,他引:8  
对"十五"期间收集、整理并存入国家种质库的1696份食用豆类种质资源的主要品质性状进行了鉴定评价.结果表明,9种食用豆类种质资源的粗蛋白、粗淀粉平均含量分别为24.93%、45.11%,不同食用豆类种质资源中各品质性状变异程度不同,其中菜豆和鹰嘴豆的粗蛋白和豇豆的粗淀粉含量变异最大.不同来源的食用豆类种质资源品质性状比较结果表明,国内绿豆种质资源粗蛋白含量明显优于国外种质资源.通过鉴定筛选出一批品质性状优良的食用豆类种质,并对使用的评价标准进行了讨论.  相似文献   

8.
小豆远缘杂交研究进展   总被引:1,自引:0,他引:1  
小豆是豇豆属下重要的食用豆类之一。本文介绍了豇豆属下亚洲豇豆亚属的植物学分类情况,综述了小豆与其近缘种(包括栽培种、野生种)杂交的研究进展,为豇豆属特别是亚洲豇豆亚属丰富的遗传资源应用于小豆育种工作提供参考。  相似文献   

9.
Legume seeds are employed as a protein source for animal and human nutrition not only for their nutritional value (high in protein, lipids and dietary fibre), but also their adaptability to marginal soils and climates. Human consumption of legumes has been increased in recent years, being regarded as beneficial food ingredients. Legume seeds contain a great number of compounds which qualify as bioactive compounds with significant potentials benefits to human health. These compounds vary considerably in their biochemistry and they can be proteins, glycosides, tannins, saponins, alkaloids, etc. Hence, methods for their extraction, determination and quantification are specific of each compound. They do not appear equally distributed in all legumes, and their physiological effects are diverse. Some of these compounds are important in plant defence mechanisms against predators or environmental conditions. Others are reserve compounds, accumulated in seeds as energy stores in readiness for germination. Processing generally improves the nutrient profile of legume seed by increasing in vitro digestibility of proteins and carbohydrates and at the same time there are reductions in some antinutritional compounds. Most antinutritional factors are heat-labile, such as protease inhibitors and lectins, so thermal treatment would remove any potential negative effects from consumption. On the other hand tannins, saponins and phytic acid are heat stable but can be reduced by dehulling, soaking, germination and/or fermentation. New directions in bioactive compounds research in the last decade have led to major developments in our understanding of their role in nutrition. The scientific interest in these compounds is now also turning to studies of their possible useful and beneficial applications as gut, metabolic and hormonal regulators and as probiotic/prebiotic agents.  相似文献   

10.
Climate change and food security   总被引:5,自引:0,他引:5  
Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their vulnerability to climate change is not uniform. Improved systems of food production, food distribution and economic access may all contribute to food systems adapted to cope with climate change, but in adopting such changes it will be important to ensure that they contribute to sustainability. Agriculture is a major contributor of the greenhouse gases methane (CH4) and nitrous oxide (N2O), so that regionally derived policies promoting adapted food systems need to mitigate further climate change.  相似文献   

11.
Substances which agglutinate red blood cells are widely distributed in nature, particularly in the seeds of leguminous plants. Some of these have been isolated in a high state of purity and carefully studied with respect to their chemical and physical properties, immunological behavior, and toxicological effects on animals. Of these, the hemagglutinins of the castor bean, jack bean, soybean, and varieties of Phaseolus vulgaris have received the most attention. The possible nutritional significance of those hemagglutinins which are found in edible legumes is discussed. A mechanism is proposed to explain the nature of the interaction of hemagglutinins with red blood cells, and their possible function in the plant.  相似文献   

12.
BACKGROUND: The objective of this study was to dissect into quantitative trait loci (QTLs) the large morphological and physiological differences between cultivated azuki bean (Vigna angularis) and a wild relative and to infer the commonalities of the QTLs for domestication-related traits across the Asian Vigna and with other warm-season legumes. METHODS: Two linkage maps, for the BC(1)F(1) and F(2) populations, respectively, from the same cross between azuki bean and V. nepalensis were developed. Using these linkage maps QTLs for 33 domestication-related traits were analysed and mapped. The location of mapped QTLs was compared with locations of similar QTLs in other warm-season legumes. KEY RESULTS: QTLs were detected for seed-, pod-, stem- and leaf-related traits. Most traits were controlled by between two and nine QTLs but several traits, such as pod dehiscence, were controlled by single genes. QTLs for domestication-related traits were restricted to particular regions of the azuki bean genome, especially linkage groups 1, 2, 4, 7 and 9. Linkage groups 1 and 2 had QTLs for a suite of traits including pod size, germination, seed size and lower stem length. QTLs on linkage groups 7 and 9 were associated with upper stem length, maximum leaf size and pod and seed size. Pleiotropy or close linkage of genes for domestication-related traits is suggested in these regions. While some QTLs are common to azuki bean and other warm-season legumes, many are recorded for the first time in azuki bean. CONCLUSIONS: QTLs for a large number of domestication-related traits have been mapped for the first time in azuki bean. QTLs with unexpected effect and new QTLs for traits such as seed size have been found. The results provide a foundation that will be useful for improvement of azuki bean and related legumes.  相似文献   

13.
Animals have several strategies to contend with nutritionally poor diets, including compensatory consumption and enhanced food utilization efficiencies. Plants produce a diversity of defense compounds that affect the ability of herbivores to utilize these strategies in response to variation in food nutritional quality. Little is known, however, about effects of allelochemicals on herbivores utilizing integrated behavioral and morphological responses to reduced food quality. Our objectives were to (1) examine how variation in diet nutritional quality influences compensatory responses of a generalist insect herbivore, and (2) determine how plant defenses affect these processes. Gypsy moth (Lymantria dispar) larvae were administered one of nine combinations of diet having low, moderate, or high nutritional quality and 0, 2, or 4 % purified aspen (Populus tremuloides) salicinoids. We quantified larval growth, consumption, frass production, and biomass allocation to midgut tissue over a 4-day bioassay. In the absence of salicinoids, larvae compensated for reduced nutritional quality and maintained similar growth across all diets through increased consumption, altered midgut biomass allocation, and improved processing efficiencies. Dietary salicinoids reduced larval consumption, midgut biomass allocation, digestive efficiencies, and growth at all nutritional levels, but the effect size was more pronounced when larvae were fed nutritionally suboptimal diets. Our findings demonstrate that integrated behavioral and morphological compensatory responses to reduced food quality are affected by plant defenses, ultimately limiting compensatory responses and reducing larval performance.  相似文献   

14.
Increase in food production viz-a-viz quality of food is important to feed the growing human population to attain food as well as nutritional security. The availability of diverse germplasm of any crop is an important genetic resource to mine the genes that may assist in attaining food as well as nutritional security. Here we used 15 RAPD and 23 SSR markers to elucidate diversity among 51 common bean genotypes mostly landraces collected from the Himalayan region of Jammu and Kashmir, India. We observed that both the markers are highly polymorphic. The discriminatory power of these markers was determined using various parameters like; percent polymorphism, PIC, resolving power and marker index. 15 RAPDs produced 171 polymorphic bands, while 23 SSRs produced 268 polymorphic bands. SSRs showed a higher PIC value (0.300) compared to RAPDs (0.243). Further the resolving power of SSRs was 5.241 compared to 3.86 for RAPDs. However, RAPDs showed a higher marker index (2.69) compared to SSRs (1.279) that may be attributed to their higher multiplex ratio. The dendrograms generated with hierarchical UPGMA cluster analysis grouped genotypes into two main clusters with various degrees of sub clustering within the cluster. Here we observed that both the marker systems showed comparable accuracy in grouping genotypes of common bean according to their area of cultivation. The model based STRUCTURE analysis using 15 RAPD and 23 SSR markers identified a population with 3 sub-populations which corresponds to distance based groupings. High level of genetic diversity was observed within the population. These findings have further implications in common bean breeding as well as conservation programs.  相似文献   

15.
The common bean (Phaseolus vulgaris) and lima bean (P. lunatus) are among the most important legumes in terms of direct human consumption. The present work establishes a comparative cytogenetic map of P. lunatus, using previously mapped markers from P. vulgaris, in association with analyses of heterochromatin distribution using the fluorochromes chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI) and localization of the 5S and 45S ribosomal DNA (rDNA) probes. Seven BACs selected from different common bean chromosomes demonstrated a repetitive pericentromeric pattern corresponding to the heterochromatic regions revealed by CMA/DAPI and could not be mapped. The subtelomeric repetitive pattern observed for BAC 63H6 in most of the chromosome ends of common bean was not detected in lima bean, indicating lack of conservation of this subtelomeric repeat. All chromosomes could be identified and 16 single-copy clones were mapped. These results showed a significant conservation of synteny between species, although change in centromere position suggested the occurrence of pericentric inversions on chromosomes 2, 9 and 10. The low number of structural rearrangements reflects the karyotypic stability of the genus.  相似文献   

16.
The superior agronomic and human nutritional properties of grain legumes (pulses) make them an ideal foundation for future sustainable agriculture. Legume‐based farming is particularly important in Africa, where small‐scale agricultural systems dominate the food production landscape. Legumes provide an inexpensive source of protein and nutrients to African households as well as natural fertilization for the soil. Although the consumption of traditionally grown legumes has started to decline, the production of soybeans (Glycine max Merr.) is spreading fast, especially across southern Africa. Predictions of future land‐use allocation and production show that the soybean is poised to dominate future production across Africa. Land use models project an expansion of harvest area, whereas crop models project possible yield increases. Moreover, a seed change in farming strategy is underway. This is being driven largely by the combined cash crop value of products such as oils and the high nutritional benefits of soybean as an animal feed. Intensification of soybean production has the potential to reduce the dependence of Africa on soybean imports. However, a successful “soybean bonanza” across Africa necessitates an intensive research, development, extension, and policy agenda to ensure that soybean genetic improvements and production technology meet future demands for sustainable production.  相似文献   

17.
The date palm Phoenix dactylifera has played an important role in the day-to-day life of the people for the last 7000 years. Today worldwide production, utilization and industrialization of dates are continuously increasing since date fruits have earned great importance in human nutrition owing to their rich content of essential nutrients. Tons of date palm fruit wastes are discarded daily by the date processing industries leading to environmental problems. Wastes such as date pits represent an average of 10% of the date fruits. Thus, there is an urgent need to find suitable applications for this waste. In spite of several studies on date palm cultivation, their utilization and scope for utilizing date fruit in therapeutic applications, very few reviews are available and they are limited to the chemistry and pharmacology of the date fruits and phytochemical composition, nutritional significance and potential health benefits of date fruit consumption. In this context, in the present review the prospects of valorization of these date fruit processing by-products and wastes’ employing fermentation and enzyme processing technologies towards total utilization of this valuable commodity for the production of biofuels, biopolymers, biosurfactants, organic acids, antibiotics, industrial enzymes and other possible industrial chemicals are discussed.  相似文献   

18.
Plant extracts represent a great source of molecules, with insecticidal activity, which are used for pest control in several crop production systems. This work aimed to evaluate the toxicity of an aqueous extract of leaves of castor bean against larvae of Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae) in search for different classes of molecules with insecticidal activities by using in vitro assays. The effects of the castor bean leaf extract on the food utilization, development, and survival of S. frugiperda larvae was evaluated by feeding the larvae an artificial diet supplemented with different concentrations of the extract (0%, 1%, 2.5%, 5%, and 10% w/v). The effects observed were dose-dependent, and the highest concentration evaluated (10% w/v) was the one the most affected food utilization by altering the nutritional indices, as well as larval weight gain, development time, and survivorship. In vitro assays to detect saponins, lectins, and trypsin inhibitors in the castor bean leaf extract were performed, but only trypsin inhibitors were detected. No preference for the diet source was detected in S. frugiperda by feeding the larvae in choice experiments with diets containing different concentrations of the castor bean extract tested. The data obtained indicate the existence of a potential molecule in the tested extract of castor bean to be used as an alternative insecticide to be integrated in the management of S. frugiperda.  相似文献   

19.
Cowpea (Vigna unguiculata [L.] Walp.) is a major crop for worldwide food and nutritional security, especially in sub‐Saharan Africa, that is resilient to hot and drought‐prone environments. An assembly of the single‐haplotype inbred genome of cowpea IT97K‐499‐35 was developed by exploiting the synergies between single‐molecule real‐time sequencing, optical and genetic mapping, and an assembly reconciliation algorithm. A total of 519 Mb is included in the assembled sequences. Nearly half of the assembled sequence is composed of repetitive elements, which are enriched within recombination‐poor pericentromeric regions. A comparative analysis of these elements suggests that genome size differences between Vigna species are mainly attributable to changes in the amount of Gypsy retrotransposons. Conversely, genes are more abundant in more distal, high‐recombination regions of the chromosomes; there appears to be more duplication of genes within the NBS‐LRR and the SAUR‐like auxin superfamilies compared with other warm‐season legumes that have been sequenced. A surprising outcome is the identification of an inversion of 4.2 Mb among landraces and cultivars, which includes a gene that has been associated in other plants with interactions with the parasitic weed Striga gesnerioides. The genome sequence facilitated the identification of a putative syntelog for multiple organ gigantism in legumes. A revised numbering system has been adopted for cowpea chromosomes based on synteny with common bean (Phaseolus vulgaris). An estimate of nuclear genome size of 640.6 Mbp based on cytometry is presented.  相似文献   

20.
Most predators and parasitoids feed on plant-provided food (nectar, pollen) or engage in herbivory during at least part of their life stages. Plant feeding by these insects plays an important role in driving predator-herbivore dynamics. Thus, understanding the effects of plant feeding on omnivores could be an important element in improving biological control strategies. The mirid Macrolophus pygmaeus is an omnivorous heteropteran predator of whitefly and other pests. Unlike other predators that need to seek out accessible nectar to meet their carbohydrate requirements, mirid bugs can access the plant's carbohydrate resources by feeding directly on plant tissues. Leaf and stem feeding could be seen as a nutritional surrogate that allows mirids to become independent of nectar availability. However, to date feeding experiments have not yet considered nectar feeding by these mirid predators. In this study we demonstrate that M. pygmaeus survival is prolonged on broad bean plants featuring extrafloral nectar as compared to broad bean with extrafloral nectaries removed, irrespective of the presence of cattail pollen. Survival on extrafloral nectar was comparable to the survival by individuals kept on broad bean provided with eggs of Ephestia kuehniella as prey. Also, a greater proportion of mirid females laid eggs when extrafloral nectar was available as compared to those confined on nectariless plants without supplemental food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号