首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epidermis of the mudskipper Periophthalmus magnuspinnatus consisted of three layers: the outermost layer, middle layer and stratum germinativum. Extensive vascular capillary networks were present near the superficial layer of epidermis and outermost layer. The diffusion distance between the vascular capillaries and the surface of epidermis was c . 1.5 ± 0.9μm. The middle layer consisted of small or voluminous cells swollen by epidermal cells. Due to the swollen cells, the thickness of the epidermis increased and the epidermis appeared web-like. The swollen cells contained tonofilaments, lucent contents and desmosomes. Fine blood capillaries were also discernible in this layer. Well-developed lymphatic spaces containing lymphocytes existed in the stratum germinativum. Numerous blood capillaries were present under the basement membrane. The dermis consisted of a stratum laxum and stratum compactum, and there was a definite area with acid mucopolysaccharides and a small scale in the stratum laxum. The skin had an epidermal pigment cell, dendritic melanophores (-cytes) containing melanin granules within their cytoplasm, and two kinds of dermal pigment cells, melanophores and colourless pigments containing reflecting platelets.  相似文献   

2.
The epidermis of the torrent catfish, Liobagrus mediadiposalis, consists of three layers: the outermost layer, middle layer and stratum germinativum. The epidermis consists of two types of skin glands, small mucus cell and voluminous club cell. The unicellular mucus cell contains acid sulfomucins (some sialomucins) and the club cell, sometimes binucleate, is proteinaceous. Well-developed vascularization is one of the characteristics of epidermis of L. mediadiposalis. Well-developed lymphatic spaces contain lymphocytes in the epidermis. The dermis lacks scales and consists mostly of a thick, dense connective tissue; its superficial region just below the basal membrane is supplied with fine blood capillaries. These histological features of the skin in L. mediadiposalis are consistent with that required for cutaneous respiration.  相似文献   

3.
Epidermal structure of the amphibious mudskipper, Scartelaos gigas (Gobiidae), was investigated in relation to their terrestrial adaptation whereby a histological study on the epidermis of 15 regions including nine body regions, five fins and the sucking disc was carried out. The structure of the epidermis consists of three layers: an outermost layer with polygonal cells or rather flattened cells, small cells and mucous cells; a thick middle layer with voluminous cells swollen by epidermal cells; and the stratum germinativum. A dermal bulge was located at each apical area of the epidermis of almost all body regions, but was not existent in the operculum and the appendages, including none of the fins or the sucking disc. In the epidermis of the body regions, the dermal bulges had numerous dermal capillaries just beneath the stratum germinativum. By contrast, the appendages never had dermal capillaries due to the absence of the dermal bulge. Based on these results, the cutaneous air uptake in S. gigas would seem to be more effective in the upper body regions that are most often exposed to air than in the lower body regions, however, cutaneous air uptake is not likely to occur in the appendages.  相似文献   

4.
Summary The ventral epidermis of adult Necturus maculosus has been studied using electron and light microscopy. Many larval characteristics of amphibian epidermal structure are retained in adult Necturus. The epidermis is a stratified epithelium consisting of four cell layers and five cell types. Major differences compared with other adult amphibians are: (1) the absence of a well defined moulting cycle together with an apparently diminished synthetic and mitotic activity in the stratum germinativum; (2) an outermost cell layer (stratum mucosum) that is unkeratinized and appears to synthesize a mucous layer; and (3) numerous large club-shaped Leydig cells which span the epidermis between the cells of the stratum germinativum and stratum mucosum. The apical region of the stratum granulosum and stratum mucosum cells shows evidence of extensive synthesis. The stratum mucosum appears to be involved in the secretion of vesicular contents onto the outermost surface of the epithelium. The external surfaces of the stratum mucosum cells possess numerous microridges which are supported by an intricate network of cytofilaments in the apical region of these cells. The significance of these features is discussed in relation to the physiology and ecology of this species.  相似文献   

5.
To investigate the vascularization and structure of the skin and its relationship to cutaneous respiration in Pseudobagrus brevicorpus , a histological study by light microscopy was carried out on 15 regions of the skin, including eight body regions, six fins and the barbel. The skin consisted of the epidermis, dermis and subcutis in all regions, except for the barbel that had a relatively thin dermis and subcutis. The epidermis was composed of the outermost layer, the middle layer and the stratum germinativum. There were two kinds of gland cells: the unicellular mucus cells and large club cells. The middle layer had a small number of fine blood capillaries accompanied by dermal collagen in all regions; the mean number of blood capillaries ranged from 0.9 to 5.9. The mean diffusion distance between the capillary endothelial cells and the surface of the epidermis ranged from 50.6 to 126.8 μm. Based on these intra-epithelial blood capillaries, the relative surface area of the respiratory epithelium ranged from 0.1 to a maximum value of 1.2%. The dermis lacking scales had collagen bundles arranged parallel to each other, but vertical fiber bundles around the dorso-lateral regions were seen at intervals. Sensory organs such as taste buds, pit organs and lateral canals were found whereby the taste buds in particular were more abundant in the epidermis of the barbel. The vascularization of the skin may be closely related to an additional respiratory system used to deal with an extreme hypoxic condition during dry seasons.  相似文献   

6.
The skin of Bagarius bagarius (Ham.) is devoid of scales but is rough due to the presence of numerous pentagonal epidermal elevations, which are separated by deep furrows at regular intervals. These elevated pentagonal regions of the epidermis are covered by dead cornified cells in the form of caps. As the old cap goes off a new one is formed by the death of the underlying epidermal cells. The middle layer of the epidermis is mainly composed of well defined polygonal cells. Their cytoplasm is granular in nature and give reactions for protein bound sulphydryl groups. The stratum germinativum is composed of two types of basal cells, the columnar cells and the spherical cells. The flask shaped mucous glands are restricted to the epidermal furrows and secrete either neutral or acidic mucopolysaccharides. Certain large specialysed granular cells are found in the epidermis which are grouped around the taste buds. These specialysed cells may be the photocytes. Two layers of the dermis can be distinguished—the relatively thin stratum laxum and the thick stratum compactum. Dermal papillae mainly support the taste buds. The pigment cells are arranged in two layers in the dermis. The subcutis is composed of loose connective tissues, richly infiltrated with the fat cells, nerves and blood capillaries.  相似文献   

7.
Summary The present study concerns the functional organization of the skin ofTetraodon fluviatilis. The epidermis consists of five different types of cells — the flask-shaped mucous cells, the eosinophilic granular cells, the sacciform granulated cells, the vesicle containing granulated cells, and the polygonal cells. A thin noncellular layer, the cuticle found on the surface of the skin, is probably secreted from the polygonal cells in the outermost layer of the epidermis. A,well-defined lymphatic plexus exists between the cells of the basal layer.Numerous triradiate calcareous spines are embedded within elastic connective tissue pockets in the thick dermis. These pockets are filled with an amorphous, acellular, PAS positive material, and are richly supplied with fine blood capillaries. A histomorphologic basis for the erection of the spines and various structural modifications in the skin facilitating its enormous stretching under inflated conditions of the fish are discussed.Abbreviations Used BCA blood capillary - BM basement membrane - BC basal cell - BL basal layer - CFB collagen fiber bundle - CTB connective tissue band - DER dermis - EGC eosinophilic granular cell - EPD epidermis - FB fibroblasts - FC fat cell - L lymphocyte - LS lymphatic space - MC mucous cell - ML middle layer - MUS muscle - MYS myocommata - NV nerve - OL outermost layer - PCB black pigment cell - PCY yellow pigment cell - PEC polygonal epidermal cell - SCT subcutis - SGC sacciform granulated cell - SP spine - STC stratum compactum - STL stratum laxum - VGC vesicle containing granulated cell - VS vertical strand This investigation was supported by a research grant No. 38(131)/72-GAU-II from the Council of Scientific and Industrial Research and a financial assistance grant for teachers No. F. 6(4626) 72-(SF-1), from the University Grants Commission, Government of India, New Delhi.  相似文献   

8.
松江鲈鱼皮肤的显微和亚显微结构   总被引:2,自引:0,他引:2  
采用光学显微镜、扫描电镜和透射电镜,对松江鲈鱼(Trachidermus fasciatus)成体皮肤的显微和亚显微结构进行了观察。结果表明,松江鲈鱼体表不同部位皮肤的厚薄不一,但基本结构相似。皮肤由表皮和真皮层构成。松江鲈鱼的皮肤裸露无鳞,表皮层较薄,由约4~8层细胞构成,主要由复层上皮细胞和黏液细胞及基底细胞组成。表层细胞呈扁平、多边形,细胞之间主要靠桥粒紧密连接,连接处形成增厚的边缘嵴状突起。表皮细胞游离面向内凹陷,表面形成指纹状微嵴。黏液细胞呈圆形或卵圆形,散布在上皮细胞之间。黏液细胞内的黏原颗粒具有椭圆颗粒状、均匀致密的块状和疏松丝状3种不同形态。真皮通过基膜与表皮相连,由稀疏层和致密层构成。真皮结缔组织在腹部较厚而在其他部位较薄。表皮与真皮连接处有色素层,头部、背部、尾柄和体侧皮肤色素细胞分布多,色素层明显,而腹部和颏部皮肤缺少色素。松江鲈鱼黄河群体真皮层中有角质棘状突起,而滦河群体则无。头部、体侧和尾柄处皮肤上还分布有侧线孔和表面神经丘等感觉器官。  相似文献   

9.
采用石蜡切片与苏木精-伊红染色及扫描电镜,对雄性峨眉髭蟾Leptobrachium boringii的角质刺及其周边皮肤进行了显微结构和亚显微结构的观察。显微结构观察发现,峨眉髭蟾的角质刺属于皮肤衍生物,突起呈倒"V"形。角质刺由表皮和真皮构成,表皮为复层扁平上皮,可分成4层;最外层细胞角质化,细胞轮廓不清,被染成深红色。真皮由疏松结缔组织构成,分辨不出致密层与疏松层,其内未见皮肤腺,但有少量色素细胞与毛细血管分布。表皮嵴伸入到真皮层,在以往的无尾两栖类研究中未见报道。角质刺基部可见皮肤褶翻起将其包裹在内,皮肤褶向上延伸形成角质刺。扫描电镜观察表明,角质刺顶端呈锥形的"小山丘"状,表面可分辨出表皮细胞轮廓,细胞为呈覆瓦状排列的角质化细胞。角质刺与皮肤交界处为多边形的角质化细胞。角质化上皮细胞的上表面与下表面均具有凹凸不平的花纹结构,细胞之间以镶嵌的方式连接。  相似文献   

10.
E Fuchs  H Green 《Cell》1980,19(4):1033-1042
Cells of the inner layers of the epidermis contain small keratins (46-58K), whereas the cells of the outer layers contain large keratins (63-67K) in addition to small ones. The changes in keratin composition that take place within each cell during the course of its terminal differentiation result largely from changes in synthesis. Cultured epidermal cells resemble cells of the inner layers of the epidermis in synthesizing only small keratins. The cultured cells possess translatable mRNA only for small keratins, whereas mRNA extracted from whole epidermis can be translated into both large and small keratins. As no synthesis takes place in the outermost layer of the epidermis (stratum corneum), the keratins of this layer must be synthesized earlier, but in some cases they then become smaller: this presumably occurs by post-translational processing of the molecules during the final stages of differentiation. Stratified squamous epithelia of internal organs do not form a typical stratum corneum and do not make the large keratins characteristic of epidermis. Their keratins are also different from those of cultured keratinocytes, implying that they have embarked on an alternate route of terminal keratin synthesis.  相似文献   

11.
Morphology and ultrastructure of the skin of Lissotriton italicus (previously named Triturus italicus) have been described in different phases of its biological cycle: larval stage, metamorphic stage and adult stage with emphasis on modifications occurring between aquatic and terrestrial adults. In the present study, light microscopy and both scanning and transmission electron microscopy were employed to analyze the histological and cytological remodelling that occurs in the skin of L. italicus during metamorphosis. The ultrastructure of the larval epidermis is arranged into three principal layers comprising an external layer of pavement cells, a basal layer and 1-3 intermediate layers consisting of Leydig cells along with accessory cells and mitochondria-rich cells. By the onset of metamorphosis, morphological changes of the skin include stratification and flattening of epidermal layers and disappearance of typical larval cells. In both aquatic and terrestrial adult phases the thin, cornified epidermis shows the same general arrangement as found in other vertebrates with an external stratum corneum and a variable number of intermediate cell layers. During the terrestrial adult phase, the skin is characterized by the presence of numerous tubercles; moreover, the lower epithelium is thicker than in the aquatic phase. Ultrastructural analysis revealed no substantial differences in the cellular composition of the skin between aquatic and terrestrial phases.  相似文献   

12.
The ultrastructure of the epidermis of the lizard ( Lacerta vivipara ) one day after sloughing is described. The non-keratinized layers of the epidermis are essentially similar in structure to those of amphibians and mammals. The cells of the basal layer are not however separated from each other by the large spaces described in the amphibian (Farquhar & Palade, 1965). The middle layers of the epidermis at this stage of the sloughing cycle produce neither the characteristic mucous granules found in amphibians nor the keratohyalin granules of mammals. A small number of granules corresponding in size and location to the "Odland bodies" of both mammalian and amphibian epidermis are, however, present. The intermediate layer cells also contain a number of bodies similar in appearance to those described by Farquhar & Palade as lysosomes in amphibian skin. These structures are both osmium iodide and acid phosphatase positive. Unlike the condition in amphibians and mammals, the cytoplasm of cells in the layer immediately beneath the keratinized strata is honeycombed with small vesicles, and contains large irregular vacuoles of uncertain content. Certain nonkeratinizing elements within the epidermis are tentatively interpreted as nerve terminations. Two morphologically distinct keratinized strata can be distinguished, the inner stratum consisting of flattened cells similar to those of the stratum corneum of mammalian epidermis; individual cell outlines cannot be distinguished in the outer stratum, which has a structure similar to that of avian feather keratin. A shallow surface zone of the outer keratinized stratum has been identified as the Oberhautchen. This consists of longitudinally disposed leaflets or laminae which are responsible for the sculptured pattern of the epidermal surface. The observations reported here provide a basis for analysis of changes occurring at other stages of the sloughing cycle.  相似文献   

13.
Jong-Chang  Tsai 《Journal of Zoology》1996,239(3):591-599
Cell kinetics of the epidermal cells of normal juvenile loach ( Misgurnus anguillicaudatus ) were studied with autoradiography. Fish were labelled with single tritiated thymidine injections and killed at regular time intervals. Three cell types are identified by light microscopy, namely the epithelial cells, the club cells and the mucous cells. Epithelial cells are the only cell type that is involved in cell proliferation and, like the epithelial cells in the epidermis of other teleosts, proliferation of these cells occurs at all epidermal layers. The club cells and the mucous cells seem to be differentiated from the epithelial cells. Based on the time-course study of the labelling index and the grain count halving method, the generation time of the epithelial cells is estimated to be 4 days. From the labelling index of double injections, the duration of the S phase is determined as 8.3 h. Significant cell loss from the outermost layer and cell translocation from the lower layer to the upper layer within 4 days are inferred from the fluctuations of the labelling index curve. The renewal of these cells in the tissue seems rapid in comparison to the epidermis of terrestrial vertebrates.  相似文献   

14.
A histological study on the epidermis of eight body regions, five fins and the sucking disc was performed on the mudskipper, Periophthalmus magnuspinnatus. The study aimed to determine the role of the skin in respiration and to assess which region of the skin was most effective. The structure of the epidermis, consisting of the superficial layer, middle layer and the stratum germinativum, was the same in all regions. Large numbers of blood capillaries were situated at the superficial layer and occasionally at the middle layer. The mean diffusion distance between the capillary endothelial cells and the surface of the epidermis ranged from 2.6 to 15.4 μm: the lowest value was on the back (mean 2.0 μm) and the highest value was at the base of the anal fin (mean 15.4 μm). Relative surface area of respiratory epithelium in 14 regions was highest in the 1st and 2nd dorsal fins with a thinner epidermis and a lower diffusion distance (mean value 3.2% and 2.5% respectively), whereas the lowest was found at the base of the anal fin (mean 0.7%). Among the 14 regions of the epidermis, it can be surmised that the two dorsal fins toward the upper region may often be more exposed to air and for longer time periods than the other body regions during the amphibious life phase of Periophthalmus magnuspinnatus.  相似文献   

15.
This study was undertaken to identify the normal morphologic, immunohistochemical and ultrastructural features of skin of the turbot (Psetta maxima L.). In the turbot skin, three morphologically distinct layers were identified: epidermis, dermis and hypodermis. The epidermis was non-keratinizing, stratified squamous epithelium that varies in thickness from 5 to 14 cells and 60 to 100 μm in size. Goblet cells were seen randomly distributed between malpighian cells in the epidermal layer. These mucous cells were mainly located in the upper third of the epidermis and displayed a spherical to elongated morphology. Dermis was divided in two well-differentiated layers, the superficial stratum laxum and the deeper stratum compactum. Hypodermis was a loose layer mainly composed by adipocytes but we could observe variable amounts of fibroblast, collagen and blood vessels. In turbot two pigmentary layers could be identified: the pigmentary layer of dermis was located between basement membrane and dermis and the pigmentary layer of hypodermis immediately above the muscular layer. Three different types of chromatophores were present: melanophores, iridophores and xanthophores. The main differences observed between groups of fish with different colouration were in the amount of melanophores and xanthophores. The purpose of this article is to provide an overview of normal cutaneous biology prior to consideration of specific cutaneous alterations and diseases in turbot.  相似文献   

16.
The morphological origin of the dark and pink‐orange areas in the skin of the venomous lizard Heloderma suspectum is not known. Histology and electron microscopy show that dark‐grey areas of the skin derived from dermal chromatophores localized in specific areas present underneath the epidermis. A dynamic chromatophoric unit in the dermis is absent. In the darkest areas of the skin, the accumulation of melanosomes in cells of the beta‐layer contributes to increase the black intensity. In the orange‐pink areas, the superficial dermis contains xantophores storing numerous carotenoid vesicles, rare or absent lamellated pterinosomes and a variable number of melanosomes. These xanto‐melanophores predominate over the remaining chromatophores and form a continuous stratum underneath the epidermis. Beneath this lipoid‐rich stratum, iridophores are infrequent and do not form a continuous layer in the dermis. In the paler areas of the skin, melanophores are sparse in both superficial and deeper part of the dermis where irregularly oriented bundles of collagen fibrils are present. The prevalent xanto‐melanophores localized in the pink‐orange areas of the skin contribute to an effective sunlight protection in desert conditions in addition to the darker regions occupied by melanophores.  相似文献   

17.
Summary The morphology and ultrastructure of the lateral body integument of the leptocephalus, glass eel, pigmented elver, and adult stages of the American eel, Anguilla rostrata, were examined with light and electron microscopy. The integument consists of an epidermis separated by a basal lamina from the underlying dermis. Three cell types are present in the epidermis in all stages. Filament-containing cells, which are the principal structural cell type, are increasingly numerous at each stage. Mucous cells, which secrete the mucous that compose the mucous surface coat, are also more numerous in each subsequent stage and are more numerous in the anterior lateral body epidermis than in the posterior lateral body epidermis of the adult. Club cells, whose function is unknown, are most numerous in the glass eel and pigmented elver. Chloride cells are common in the leptocephalus which is marine and infrequent in the glass eel. They are not present in the pigmented elver and adult which inhabit estuaries and fresh-water. Lymphocytes and melanocytes are also present in some stages. The dermis comprises two layers: a layer of collagenous lamellae, the stratum compactum, and an underlying layer of loose connective tissue, the stratum spongiosum.There is a progressive increase in epidermal thickness at each stage which is paralleled by an increase in the thickness of the stratum compactum. Rudimentary scales are present in the dermis of the adult. The increase in the number of epidermal filament-containing cells, epidermal thickness and stratum compactum thickness is correlated with an increased need for protection from abrasion and mechanical damage as the eel moves from a pelagic, oceanic habitat to a benthic, freshwater habitat. The increase in mucous cell numbers is likewise correlated with an increased need for the protective and anti-bacterial action of the mucous surface coat in the freshwater environment.This investigation was supported by NIH research grant NS-11276 from National Institute of Neurological Diseases and Stroke to Dr. J.D. McCleave and by N.S.F. Grant GD 38933 to the Bermuda Biological Station, St. Georges West, Bermuda. Bermuda Biological Station Contribution No. 668  相似文献   

18.
The histological structure and development of spines on the skin surface of Takifugu obscurus were studied during larval development conducted artificially with an average 30‰ salinity and 18.0–20.3°C water temperature. The epidermis comprises an outermost layer, middle layer, and the stratum germinativum, and contains three types of gland cells: small spherical or flask‐shaped mucous cells, larger sacciform mucous cells, and large granular cells. The dermis and subcutis follow. The spines first appear over the ventral region at 10 days after hatching and consist of two parts: a central long tapering portion which projects into the epidermis and eventually outside of the body, and a short supporting basal portion that is embedded within the stratum compactum layer of the dermis. The central, long tapering portion has two very short processes on top until 25 days after hatching, but these two separate spines fuse into one 30 days after hatching. In contrast, the short supporting spines rooted at the base consist of three to six small spines (usually four to five spines) and are present even in the adult stage. Therefore, calcareous spines consisting of one central long spine and three to six smaller supporting spines form tetra‐ and septaradiate spines (mainly penta‐ and hexaradiate). The spines first appear over the ventral region.  相似文献   

19.
Summary The outer surface of adult Gallus domesticus scutate scale was studied as a model for epidermal cornification involving accumulation of both alpha and beta keratins. Electron-microscopic analysis demonstrated that the basal cells of the adult epidermis contained abundant lipid droplets and that filament bundles and desmosomes were distributed throughout the cell layers. Indirect immunofluorescence microscopy and double-labeling immunogold-electron microscopy confirmed that the stratum germinativum contained alpha keratin but not beta keratin. Beta keratins were first detected in the stratum intermedium and were always found intermingled with filament bundles of alpha keratin. As the differentiating cells moved into the outer regions of the stratum intermedium and the stratum corneum, the large mixed keratin filament bundles labeled increasingly more with beta keratin antiserum and relatively less so with alpha keratin antiserum. Sodium dodecyl sulfate-polyacrylamide gel analysis of vertical layers of the outer surface of the scutate scale confirmed that cells having reached the outermost layers of stratum corneum had preferentially lost alpha keratin. The mixed bundles of alpha and beta keratin filaments were closely associated with desmosomes in the lower stratum intermedium and with electron-dense aggregates in the cytoplasm of cells in the outer stratum intermedium. Using anti-desmosomal serum it was shown that these cytoplasmic plaques were desmosomes.  相似文献   

20.
The proliferation of the epidermis in soft skin, claws, and scutes of the carapace and plastron in the tortoise (Testudo hermanni) and the turtle (Chrysemys picta) were studied using autoradiographic and immunocytochemical methods. During the growing season, a basal keratinocyte in the epidermis of soft skin and claws takes 5-9 days to migrate into the corneous layer. In the tortoise, during fall/winter (resting season) a few alpha-keratin cells are produced in soft epidermis and hinge regions among scutes and occasional beta-keratin cells in the outer scute surface. When growth is resumed in spring (growing season), cell proliferation is intense, mainly around hinge regions and tips of marginal scutes. No scute shedding occurs and numerous beta-keratin cells are produced around the hinge regions, while alpha-keratin cells disappear. Beta-cells form a new thick corneous layer around the hinge regions, which constitute the growing rings of scutes. Beta-keratin cells produced in more central parts of scutes maintain a homogeneous thickness of the corneous layer along the whole scute surface. In the turtle, a more complicated process of scute growth occurs than in the tortoise. At the end of the growing season (late fall) the last keratinocytes formed beneath the old stratum corneum of the outer scale surface and hinge regions produce more alpha- than beta-keratin. These thin alpha-keratin cells form a scission layer below the old stratum corneum, which extends from the hinge regions toward the center of scutes and the tip of marginal scutes. In the resting season (fall/winter) most cells remain within the germinative layer of the carapace and plastron and a few alpha-cells move in 7-9 days into the corneous layer above hinge regions. In the following spring/summer (growing season) a new generation of beta-keratin cells is produced beneath the scission layer from the hinge region and more central part of the scutes. The epidermis of the inner surface of scutes and hinge regions contains most of the cells incorporating thymidine and histidine, while the remaining outer scute surface is less active. It takes 5-9 days for a newly produced beta-cell to migrate into the corneous layer. These cells form a new corneous layer that extends the whole scute surface underneath the maturing scission layer. The latter contains lipids and eventually flakes off, determining shedding of the above outer corneous layer in late spring or summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号