首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
  • Genome size evolution and its relationship with pollen grain size has been investigated in sweet potato (Ipomoea batatas), an economically important crop which is closely related to diploid and tetraploid species, assessing the nuclear DNA content of 22 accessions from five Ipomoea species, ten sweet potato varieties and two outgroup taxa.
  • Nuclear DNA amounts were determined using flow cytometry. Pollen grains were studied using scanning and transmission electron microscopy.
  • 2C DNA content of hexaploid I. batatas ranged between 3.12–3.29 pg; the mean monoploid genome size being 0.539 pg (527 Mbp), similar to the related diploid accessions. In tetraploid species I. trifida and I. tabascana, 2C DNA content was, respectively, 2.07 and 2.03 pg. In the diploid species closely related to sweet potato e.g. I. ×leucantha, I. tiliacea, I. trifida and I. triloba, 2C DNA content was 1.01–1.12 pg. However, two diploid outgroup species, I. setosa and I. purpurea, were clearly different from the other diploid species, with 2C of 1.47–1.49 pg; they also have larger chromosomes. The I. batatas genome presents 60.0% AT bases.
  • DNA content and ploidy level were positively correlated within this complex. In I. batatas and the more closely related species I. trifida, the genome size and ploidy levels were correlated with pollen size. Our results allow us to propose alternative or complementary hypotheses to that currently proposed for the formation of hexaploid Ipomoea batatas.
  相似文献   

3.
Summary Tetraploid F1 hybrids between Ipomoea batatas, sweet potato (2n = 6x = ca. 90), and diploid (2n = 2x = 30) I. trifida (H. B. K.) Don. showed various degrees of fertility reduction. The present study aimed to clarify its causes by cytological analysis of meiotic chromosome behavior in the diploid and sweet potato parents and their tetraploid hybrids. The diploid parents showed exclusively 15 bivalents, and the sweet potato parents exhibited almost perfect chromosome pairing along with predominant multivalent formation. Their hybrids (2n = 4x= 57–63) formed 2.6–5.0 quadrivalents per cell, supporting the autotetraploid nature. The meiotic aberratios of the hybrids were characterized by the formation of univalents, micronuclei, and abnormal sporads (monad, dyad, triad, and polyad). The causes underlying these aberrations were attributed in part to the multivalent formation, and in part to a disturbance in the spindle function. Three hybrids showing serious meiotic aberrations were very low in fertility. The utilization of the sweet potato-diploid I. trifida hybrids for sweet potato improvement is described and, further, the role of interploidy hybridization in the study of the sweet potato evolution is discussed.  相似文献   

4.
5.
Summary More than 28,000 pollinations were carried out between 5 Ipomoea batatas and 41 diploid I. trifida accessions of diverse origins to obtain 4x interspecific hybrids. From the resultant 730 seeds, 248 plants were finally obtained. Ploidy level determination of the progeny showed unexpected results: 52 individuals were hexaploid, 5 were pentaploid, 190 were tetraploid, as expected, and one was not determined. The existence of 5x and 6x progenies from 6x x 2x crosses not only confirmed the presence of 2n gametes but also their successful function in gene flow between ploidy levels and polyploidization within this genus. The progeny and their cultivated parents were planted in an observation field. The cultivated parents produced 0.49 kg/plant or less. Most 4x progenies did not produce storage roots or had very poor yields; nonetheless, and despite their cultivated parents' poor yields, 8 genotypes yielded between 0.81 and 1.50 kg/plant.A new scheme, using the 4x interspecific hybrids, is proposed for evaluating 2x and 4x wild accessions of the section Batatas to which the sweet potato belongs. Other possible uses of the 4x hybrids in breeding and genetics of the sweet potato are also discussed.  相似文献   

6.
7.
Overwhelming evidence points to an American origin for the sweet potato Ipomoea batatas (L.) Lam. Attempts have been made to identify related diploid species from Mexico, and to use these in hybridisation experiments with I. batatas. The sweet potato is a poor seed setter but abundant bloom occurs in Jamaica very late in the year. Attempts at hybridisation between I. batatas (2n=90) and I. trichocarpa (Elliott) (2n=30) or I. gracilis (2n=30) has been tolerably successful. A very high degree of self-incompatibility was demonstrated in all three species investigated but successful crosses were made using different plants of I. trichocarpa. An investigation of pollen viability showed that in all cases pollen could germinate but pollen tube growth was abnormal in incompatible pollinations. I. trichocarpa hybridised readily with I. batatas when the former was used as female parent. Embryo development in such a cross proceeded slowly, and stopped before cotyledon formation. No viable seeds were obtained. A comparison of embryo development in hybrid and normal seeds brought to light anomalies in development and structure of endosperm and maternal tissue in the hybrid.  相似文献   

8.
As a major root-knot nematode (RKN), Meloidogyne incognita causes serious losses in the yield of sweet potato (Ipomoea batatas L.). To successfully colonize the host plant, RKNs elicit changes of dramatic physiological and morphological features in the plants. The expression of several genes is regulated as the nematode establishes its feeding site. Therefore, in this study, we analyzed the proteomes in the fibrous roots of sweet potato plants by an infection of RKN to understand the effect of the infection on the plant root regions. This study revealed differences in proteomes of the RKN-resistant sweet potato cultivar Juhwangmi and RKN-sensitive cultivar Yulmi. During plant growth, Juhwangmi plants were shown to be more resistant to M. incognita than Yulmi plants. No M. incognita egg formation was observed in Juhwangmi plants, whereas 587 egg masses were formed in Yulmi plants. Differentially expressed 64 spots were confirmed by proteomic analysis using 2-D gel electrophoresis with three spots up-regulated in the two cultivars during RKN infection. Of these 64 protein spots, 20 were identified as belonging to such different functional categories as the defense response, cell structure, and energy metabolism. This study provides insight into the molecular and biochemical mechanics of the defense response and metabolism of sweet potato plant during nematode invasion. We anticipate that this study will also provide a molecular basis for useful crop breeding and the development of nematode-tolerant plants.  相似文献   

9.
Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.  相似文献   

10.
Ipomeamarone accumulation in sweet potato (Ipomoea batatas) roots infected with Ceratocystis fimbriata (black rot) was decreased by one-third when roots were stored under 100 ppm ethylene. This effect of ethylene was not observed when infected tissue was also treated with benzylisothiocyanate. Ethylene treatment and long term infection were associated with the accumulation of 4-ipomeanol and 1-ipomeanol.  相似文献   

11.
  • 1 The sweet potato butterfly Acraea acerata is an indigenous species in Ethiopia that has become a major pest on the introduced sweet potato Ipomoea batatas. To assess the role of wild Ethiopian Ipomoea species as host plants, the presence of larvae on wild ipomoeas was studied, and female oviposition choice and larval performance were tested on five wild ipomoeas, as well as on sweet potato.
  • 2 In laboratory tests, oviposition and larval development were successful on two wild ipomoeas (Ipomoea tenuirostris and Ipomoea cairica) but no oviposition occurred on the remaining three species. Of the latter, larvae did not feed on Ipomoea hochstetteri and Ipomoea indica, and survival rates were extremely low on Ipomoea purpurea.
  • 3 Sweet potato was a better host plant than I. tenuirostris and I. cairica in terms of oviposition preference, larval survival and pupal size; pupae were larger, resulting in more fecund female butterflies.
  • 4 In the wild butterfly populations were abundant on I. tenuirostris but absent on I. cairica. Females also tended to prefer I. tenuirostris to I. cairica in oviposition choice experiments. However, no significant differences in performance were found between larvae raised on I. tenuirostris and I. cairica in the laboratory.
  • 5 Wild populations of A. acerata also existed on Ipomoea obscura, a plant not investigated in the present study.
  • 6 The abundance of A. acerata on wild ipomoeas is too low to likely affect butterfly population densities on sweet potato. However, wild populations may act as reservoirs subsequent to butterfly population bottlenecks on sweet potato.
  相似文献   

12.
Endophytic bacteria associated with sweet potato plants (Ipomoea batatas (L.) Lam.) were isolated, identified and tested for their ability to fix nitrogen, produce indole acetic acid (IAA), and exhibit stress tolerance. Eleven different strains belonging to the genera, Enterobacter, Rahnella, Rhodanobacter, Pseudomonas, Stenotrophomonas, Xanthomonas and Phyllobacterium, were identified. Four strains were shown to produce IAA (a plant growth hormone) and one strain showed the ability to grow in nitrogen free medium and had the nitrogenase subunit gene, nifH. To determine if IAA production by the endophytes had any role in protecting the cells against adverse conditions, different stress tests were conducted. The IAA producer grew well in the presence of some antibiotics, UV and cold treatments but the response to pH, osmotic shock, thermal and oxidative treatments was the same for both the IAA producer and the no IAA producer. To determine if IAA produced by the strains was biologically relevant to plants, cuttings of poplar were inoculated with the highest IAA producing strain. The inoculated cuttings produced roots sooner and grew more rapidly than uninoculated cuttings. These studies indicate that endophytes of sweet potato plants are beneficial to plant growth.  相似文献   

13.
Sweet potato (Ipomoea batatas) is one of the most important crops in the world, and its production rate is mainly decreased by the sweet potato virus disease (SPVD) caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus. However, methods for improving SPVD resistance have not been established. Thus, this study aimed to enhance SPVD resistance by targeting one of its important pathogenesis-related factors (i.e., SPCSV-RNase3) by using the CRISPR-Cas13 technique. First, the RNA targeting activity of four CRISPR-Cas13 variants were compared using a transient expression system in Nicotiana benthamiana. LwaCas13a and RfxCas13d had more efficient RNA and RNA virus targeting activity than PspCas13b and LshCas13a. Driven by the pCmYLCV promoter for the expression of gRNAs, RfxCas13d exhibited higher RNA targeting activity than that driven by the pAtU6 promoter. Furthermore, the targeting of SPCSV-RNase3 using the LwaCas13a system inhibited its RNA silencing suppressor activity and recovered the RNA silencing activity in N. benthamiana leaf cells. Compared with the wild type, transgenic N. benthamiana plants carrying an RNase3-targeted LwaCas13a system exhibited enhanced resistance against turnip mosaic virus TuMV-GFP and cucumber mosaic virus CMV-RNase3 co-infection. Moreover, transgenic sweet potato plants carrying an RNase3-targeted RfxCas13d system exhibited substantially improved SPVD resistance. This method may contribute to the development of SPVD immune germplasm and the enhancement of sweet potato production in SPVD-prevalent regions.  相似文献   

14.
Experiments were conducted to asymmetrically fuse protoplasts from sweet potato (Ipomoea batatas L. Lam.) and its wild relativesI. trifida Don. andI. lacunosa L. Protoplasts of sweet potato were treated with iodoacetamide, whereas those ofI. trifida Don. andI. lacunosa L. were irradiated with X-rays. The asymmetric protoplast fusion was carried out by the electrofusion method and by polyethylene glycol treatment. Electrically-fused protoplasts initiated cell division, and then formed calli earlier than the polyethylene glycol-fused protoplasts. Plant regeneration occurred only in electrofused calli, suggesting that polyethylene glycol had some toxic effect on plant regeneration ability. Analysis of peroxidase isozymes confirmed the interspecific hybrid characteristics of both the fusion-derived calli and regenerated plants.  相似文献   

15.
16.
When sweet potato (Ipomoea batatas) root tissue was infected by Ceratocystis fimbriata, activity of the enzyme system from mevalonate to isopentenyl pyrophosphate, especially of pyrophosphomevalonate decarboxylase (EC 4.1.1.33), was increased in the noninfected tissue adjacent to the infected region, preceding the furano-terpene production in the infected region. Cutting and incubation of sweet potato slices did not produce furano-terpenes, and only slightly increased the activity of the enzyme system from mevalonate to isopentenyl pyrophosphate. The enzymic activity in diseased tissue was localized in the soluble fraction, and was higher in the tissue from the surface to a depth of about 5 mm with gradual decrease toward the inner part.  相似文献   

17.
Specimens in the germplasm collection at the U.S. Vegetable Laboratory, United States Department of Agriculture (USDA) in Charleston, SC, were studied to examine phylogenetic relations of the tetraploid accessions inIpomoea sectionBatatas. This collection contains tetraploidsfrom a wide geographic range and most were tentatively identified by the collector asI. trifida. This study shows that corolla and sepal traits may be used to distinguish the tetraploidsfrom known specimens ofI. trifida (diploid) andI. batatas (hexaploid). All but one tetraploid accession examined (CH67.50) had corolla tubes and sepals shaped likeI. batatas and more closely resembled that species thanI. trifida. Use of corolla tube diameter allowed the hexaploidI. batatas and tetraploid accessions to be distinguished fromI. trifida because the corolla tubes were wider immediately above the calyx. Differences in sepal shape were quantified using the angle at the sepal apex. This angle was consistently obtuse in theI. batatas hexaploids and the tetraploids, but was acute in theI. trifida accessions. Due to similarities in sepal and corolla traits, these tetraploids should be reidentified as tetraploidI. batatas, a cytological race of the hexaploid I. batatas (the sweetpotato).  相似文献   

18.
《Plant science》1987,53(2):157-160
Mesophyll protoplasts of sweet potato (Ipomoea batatas L.) were readilyisolated by soaking chopped leaf tissue in distilled water for 16 h prior to enzymatic digestion. Isolated mesophyll protoplasts began to divide three days after start of culture in liquid modified N6 medium and and formed colonies after 30 days of culture. The colonies transferred to solid medium grew rapidly and differentiated into calli. Some of the calli transplanted onto regeneration medium produced roots.  相似文献   

19.
Sweet potato (Ipomoea batatas) is the staple food crop in the highlands of Papua New Guinea (PNG). Declining crop productivity, however, appears to be threatening the sustainability of sweet potato-based farming systems within the region, a probable cause being the exhaustion of soil nutrient reserves in continuously cultivated sweet potato gardens. To assess the extent of the problem, a survey of sweet potato gardens was conducted across four of the highlands provinces and information on soil and crop variables was obtained for old gardens (cultivated over many seasons) and new gardens (newly brought into cultivation) on soils of volcanic and non-volcanic origin. Crop leaf nutrient data collected in the survey were interpreted using the Diagnosis and Recommendation Integrated System (DRIS), to try to identify the main nutritional constraints on tuber production in different garden types on soils of volcanic or non-volcanic origin. The results suggested that K deficiency was the primary cause of poor crop production in almost a third of sweet potato gardens, but was more of a problem in old gardens than in new. Phosphorus deficiency was also a problem on volcanic soils, and S deficiency on non-volcanic soils. These latter deficiencies, however, were at least as prevalent in new gardens as in old. Important factors contributing to K and S depletion from garden systems were the removal of K and S-rich vines from cultivation areas, the shortening of fallow periods and the burning of weed and crop residues, the latter releasing S (SO2) to the atmosphere. Correction of K and S deficiencies may require the recycling of old vines back to sweet potato cultivation areas and the adoption of a zero-burn policy for fallow management. Correction of P deficiency may necessitate the use of P-accumulating fallow species, e.g. wild Mexican sunflower (Tithonia diversifolia), to extract the P fixed by sesquioxide and allophanic minerals  相似文献   

20.
ATP citrate lyase was detected in sweet potato (Ipomoea batatas) root tissue infected with Ceratocystis fimbriata. The activity increased strik  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号