首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoid (GC) hormones play a central role in the bidirectional communication between the neuroendocrine and the immune systems and exert, via GC receptors (GR), potent immunosuppressive and anti-inflammatory effects. In this study, we report that GR deficiency of transgenic mice expressing GR antisense RNA from early embryonic life has a dramatic impact in programming the susceptibility to experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. GR deficiency renders mice resistant to myelin oligodendrocyte glycoprotein-induced EAE, and such mice do not develop clinical or histological signs of disease compared with EAE-susceptible wild-type mice. Resistance to EAE in GR-deficient mice is associated not with endogenous GC levels, but with a significant reduction in spleen and lymph node cell proliferation. The use of NO inhibitors in vitro indicates that NO is the candidate immunosuppressor molecule. GR-deficient mice develop 3- to 6-fold higher nitrite levels in the periphery and are resistant to NO inhibition by GCs. Specific inhibition of NO production in vivo by treatment with the inducible NO synthase inhibitor, L-N(6)-(1-iminoethyl)-lysine, suppressed circulating nitrites, increased myelin oligodendrocyte glycoprotein-specific cell proliferation, and rendered GR-deficient mice susceptible to EAE. Thus, life-long GR deficiency triggers inducible NO synthase induction and NO generation with consequent down-regulation of effector cell proliferation. These findings identify a novel link among GR, NO, and EAE susceptibility and highlight NO as critical signaling molecule in bidirectional communication between the hypothalamic-pituitary-adrenocortical axis and the immune system.  相似文献   

2.
Experimental autoimmune encephalomyelitis (EAE) is a CD4(+) Th1 T cell-mediated disease of the CNS, used to study certain aspects of multiple sclerosis. CXCR3, the receptor for CXCL10, CXCL9, and CXCL11, is preferentially expressed on activated Th1 T cells and has been proposed to govern the migration of lymphocytes into the inflamed CNS during multiple sclerosis and EAE. Unexpectedly, CXCL10-deficient mice were susceptible to EAE, leaving uncertain what the role of CXCR3 and its ligands might play in this disease model. In this study, we report that CXCR3(-/-) mice exhibit exaggerated severity of EAE compared with wild-type (CXCR3(+/+)) littermate mice. Surprisingly, there were neither quantitative nor qualitative differences in CNS-infiltrating leukocytes between CXCR3(+/+) and CXCR3(-/-) mice with EAE. Despite these equivalent inflammatory infiltrates, CNS tissues from CXCR3(-/-) mice with EAE showed worsened blood-brain barrier disruption and more von Willebrand factor-immunoreactive vessels within inflamed spinal cords, as compared with CXCR3(+/+) mice. Spinal cords of CXCR3(-/-) mice with EAE demonstrated decreased levels of IFN-gamma, associated with reduced inducible NO synthase immunoreactivity, and lymph node T cells from CXCR3(-/-) mice primed with MOG(35-55) secreted less IFN-gamma in Ag-driven recall responses than cells from CXCR3(+/+) animals. CXCR3(-/-) lymph node T cells also showed enhanced Ag-driven proliferation, which was reduced by addition of IFN-gamma. Taken with prior findings, our data show that CXCL10 is the most relevant ligand for CXCR3 in EAE. CXCR3 does not govern leukocyte trafficking in EAE but modulates T cell IFN-gamma production and downstream events that affect disease severity.  相似文献   

3.
Production of nitric oxide (NO) in response to bacterial lipopolysaccharide (LPS) was investigated using cultures of mouse peritoneal exudate cells (PEC) and the macrophage cell line RAW264.7. In the presence of anti-(interferon-gamma) (IFN-gamma), NO production was markedly suppressed in the PEC culture but not in the RAW264.7 culture. In the PEC culture, LPS induced both IFN-gamma production and activation of IFN response factor-1, which leads to the gene expression of inducible NO synthase, but neither was induced in the culture of RAW264.7 cells. In addition to anti-(IFN-gamma), antibodies against interleukin (IL)-12 and IL-18 showed a suppressive effect on LPS-induced NO production in the PEC culture, and these antibodies in synergy showed strong suppression. Stimulation of the PEC culture with IL-12 or IL-18 induced production of IFN-gamma and NO, and these cytokines, in combination, exhibited marked synergism. Stimulation of the culture with IFN-gamma induced production of NO, but not IL-12. The macrophage population in the PEC, prepared as adherent cells, responded well to LPS for IL-12 production, but weakly for production of IFN-gamma and NO. The macrophages also responded well to IFN-gamma for NO production. For production of IFN-gamma by stimulation with LPS or IL-12 + IL-18, nonadherent cells were required in the PEC culture. Considering these results overall, the indirect pathway, through the production of intermediates (such as IFN-gamma-inducing cytokines and IFN-gamma) by the cooperation of macrophages with nonadherent cells, was revealed to play the main role in the LPS-induced NO production pathway, as opposed to the direct pathway requiring only a macrophage population.  相似文献   

4.
5.
Lacto-N-fucopentaose III (LNFPIII) is found in human milk and on the Th2 driving helminth parasite Schistosoma mansoni. This pentasaccharide drives Th2-type responses in vivo and in vitro when conjugated to a carrier. In an attempt to further understand early events in Th1 to Th2 switching, we examined phenotypic and functional changes in peritoneal cell populations in BALB/c and SCID mice following LNFPIII-dextran injection. We found that i.p. injection with LNFPIII-dextran resulted in rapid (<20 h) expansion of the Gr1(+) subpopulation of F4/80(+)/CD11b(+) peritoneal cells, comprising up to 75% of F4/80(+)/CD11b(+) peritoneal cells compared with 18% in uninjected or dextran-injected mice. Functionally, these cells suppressed anti-CD3- and anti-CD28-induced proliferation of naive CD4(+) T cells. LNFPIII-dextran also expanded functional Gr1(+) suppressor macrophages in SCID mice, demonstrating that expansion and function of suppressor cells did not require T cells. Suppression in both BALB/c and SCID mice was NO and IFN-gamma dependent, as addition of inhibitors of inducible NO synthase (N(G)-monomethyl-L-arginine), as well as anti-IFN-gamma Abs, restored the ability of CD4(+) T cells to proliferate in vitro. Depletion of the F4/80(+) subset of Gr1(+) cells eliminated the suppressive activity of peritoneal exudate cells showing that these cells were macrophages. Thus, LNFPIII-dextran rapidly expands the Gr1(+) suppressor macrophage population in the peritoneal cavities of otherwise naive mice. These Gr1(+) cells suppress proliferation of naive CD4(+) T cells in an NO-dependent mechanism, and may play a regulatory role in the switching of Th1- to Th2-type responses.  相似文献   

6.
The development of subunit vaccines requires the use of adjuvants that act by stimulating components of the innate immune response. Immune-stimulating complexes (ISCOMS) containing the saponin adjuvant Quil A are potential vaccine vectors that induce a wide range of Ag-specific responses in vivo encompassing both humoral and CD4 and CD8 cell-mediated immune responses. ISCOMS are active by both parenteral and mucosal routes, but the basis for their adjuvant properties is unknown. Here we have investigated the ability of ISCOMS to recruit and activate innate immune responses as measured in peritoneal exudate cells. The i.p. injection of ISCOMS induced intense local inflammation, with early recruitment of neutrophils and mast cells followed by macrophages, dendritic cells, and lymphocytes. Many of the recruited cells had phenotypic evidence of activation and secreted a number of inflammatory mediators, including nitric oxide, reactive oxygen intermediates, IL-1, IL-6, IL-12, and IFN-gamma. Of the factors that we investigated further only IL-12 appeared to be essential for the immunogenicity of ISCOMS, as IL-6- and inducible nitric oxide synthase knockout (KO) mice developed normal immune responses to OVA in ISCOMS, whereas these responses were markedly reduced in IL-12KO mice. The recruitment of peritoneal exudate cells following an injection of ISCOMS was impaired in IL-12KO mice, indicating a role for IL-12 in establishing the proinflammatory cascade. Thus, ISCOMS prime Ag-specific immune responses at least in part by activating IL-12-dependent aspects of the innate immune system.  相似文献   

7.
Rapidly fatal leishmaniasis in resistant C57BL/6 mice lacking TNF   总被引:14,自引:0,他引:14  
The resolution of infections with the protozoan parasite Leishmania major in mice requires a Th1 response that is closely associated with the expression of IL-12, IFN-gamma, and inducible NO synthase. Previous Ab neutralization studies or the use of mice deficient for both TNF receptors suggested that TNF plays only a limited role in the control of parasite replication in vivo. In this study we demonstrate that resistant C57BL/6 (B6.WT) mice locally infected with L. major rapidly succumb to progressive visceral leishmaniasis after deletion of the TNF gene by homologous recombination. A reduction of the parasite inoculum to 3000 promastigotes did not prevent the fatal outcome of the disease. An influence of the altered morphology of secondary lymphoid organs in C57BL/6-TNF(-/-) (B6.TNF(-/-)) mice on the course of disease could be excluded by the generation of reciprocal bone marrow chimeras. Although infected B6.TNF(-/-) mice mounted an L. major-specific IFN-gamma response and expressed IL-12, the onset of the immune reaction was delayed. After in vitro stimulation, B6.TNF(-/-) inflammatory macrophages released 10-fold less NO in response to IFN-gamma than B6.WT cells. However, in the presence of a costimulus, e.g., L. major infection or LPS, the production of NO by B6.WT and B6.TNF(-/-) macrophages was comparable. In vivo, inducible NO synthase protein was readily detectable in skin lesions and draining lymph nodes of B6.TNF(-/-) mice, but its expression was more disperse and less focal in the absence of TNF. These are the first data to demonstrate that TNF is essential for the in vivo control of L. major.  相似文献   

8.
During experimental autoimmune encephalomyelitis (EAE), autoreactive Th1 T cells invade the CNS. Before performing their effector functions in the target organ, T cells must recognize Ag presented by CNS APCs. Here, we investigate the nature and activity of the cells that present Ag within the CNS during myelin oligodendrocyte glycoprotein-induced EAE, with the goal of understanding their role in regulating inflammation. Both infiltrating macrophages (Mac-1(+)CD45(high)) and resident microglia (Mac-1(+)CD45(int)) expressed MHC-II, B7-1, and B7-2. Macrophages and microglia presented exogenous and endogenous CNS Ags to T cell lines and CNS T cells, resulting in IFN-gamma production. In contrast, Mac-1(-) cells were inefficient APCs during EAE. Late in disease, after mice had partially recovered from clinical signs of disease, there was a reduction in Ag-presenting capability that correlated with decreased MHC-II and B7-1 expression. Interestingly, although CNS APCs induced T cell cytokine production, they did not induce proliferation of either T cell lines or CNS T cells. This was attributable to production by CNS cells (mainly by macrophages) of NO. T cell proliferation was restored with an NO inhibitor, or if the APCs were obtained from inducible NO synthase-deficient mice. Thus, CNS APCs, though essential for the initiation of disease, also play a down-regulatory role. The mechanisms by which CNS APCs limit the expansion of autoreactive T cells in the target organ include their production of NO, which inhibits T cell proliferation, and their decline in Ag presentation late in disease.  相似文献   

9.
IFN-gamma production is a hallmark of acute infection with the protozoan parasite Toxoplasma gondii. The tryptophan-catabolising enzyme indoleamine 2,3-dioxygenase (IDO), as well as inducible nitric oxide synthase (NOS2) are induced by IFN-gamma and can play extremely diverse roles in immune regulation, defence against pathogens and physiological homeostasis. We investigated the regulation of these two central enzymes in the placenta during acute infection of pregnant female mice. Using IFN-gamma receptor knockout (IFNgammaR-/-) mice, we showed that IDO is not constitutively expressed in term placentas. In contrast, NOS2 expression was observed, largely dependent on IFN-gamma signalling. Upon infection with the avirulent PRU strain of T. gondii, IDO mRNA expression was induced in an IFNgammaR-dependent manner. Surprisingly, NOS2 mRNA was severely suppressed. Importantly, we showed in crossing experiments of heterozygote (IFNgammaR+/-) mothers with IFNgammaR-/- males and vice versa that IDO expression largely depends on the presence of IFN-gamma receptors on foetal cells, and to a lesser extent on maternal cells. Immunohistochemical analysis localised foetal IDO production to invasive trophoblasts within the maternal part of the placenta. The placental vascular endothelium only stained positive when the mothers possessed functional IFN-gamma receptors. In contrast, placental NOS2 expression, but also its suppression following infection, seems to be largely dependent on IFN-gamma signalling in maternal cells. Neither factor appears to regulate placental T. gondii growth, as we observed no difference in parasite numbers between (+/-) and (-/-) foetuses. Taken together, our results demonstrate the crucial role of the foetus in placental IDO, but not NOS2, production following T. gondii infection.  相似文献   

10.
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.  相似文献   

11.
We have shown previously that treatment of SJL/J mice with anti-interferon-gamma monoclonal antibody (mAb) exacerbated experimental allergic encephalomyelitis (EAE) only if administered at the time of encephalitogenic challenge. Here we investigate the role of interferon-gamma (IFN-gamma) and anti-IFN-gamma mAb in the early events of T cell activation in vitro. Pretreatment of murine peritoneal exudate cells (PEC) with IFN-gamma led to a significant increase in their ability to activate myelin basic protein (MBP)-specific, short-term T cell lines. When exogenous IFN-gamma was added to cocultures of T cells and MBP-pulsed PEC, the antigen-specific T cell proliferation was considerably reduced. Anti-IFN-gamma mAb added to these cultures neutralized the inhibitory effect of the exogenous IFN-gamma on T cell proliferation but had no visible effect on class II MHC expression by the antigen-pulsed PEC present in the same cultures. A reduction in T cell proliferation was also observed when the T cells were treated with IFN-gamma prior to coculture with the MBP-pulsed PEC. These results demonstrate that, on one hand, IFN-gamma enhances the ability of PEC to induce antigen-specific T cell proliferation but, on the other hand, acts on the T cells themselves by inhibiting their proliferation in response to the antigen-pulsed PEC. This may explain why treatment with anti-IFN-gamma antibody in vivo induces EAE exacerbation.  相似文献   

12.
Regulation of macrophage activities in response to inflammatory stimuli must be finely tuned to promote an effective immune response while, at the same time, preventing damage to the host. Our lab and others have previously shown that macrophage-stimulating protein (MSP), through activation of its receptor RON, negatively regulates NO production in response to IFN-gamma and LPS by inhibiting the expression of inducible NO synthase (iNOS). Furthermore, activated macrophages from mice harboring targeted mutations in RON produce increased levels of NO both in vitro and in vivo, rendering them more susceptible to LPS-induced endotoxic shock. In this study, we demonstrate that stimulation of murine peritoneal macrophages with MSP results in the RON-dependent up-regulation of arginase, an enzyme associated with alternative activation that competes with iNOS for the substrate L-arginine, the products of which are involved in cell proliferation and matrix synthesis. Expression of other genes associated with alternative activation, including scavenger receptor A and IL-1R antagonist, is also up-regulated in MSP-stimulated murine macrophages. Stimulation of cells with IFN-gamma and LPS blocks the ability of MSP to induce arginase activity. However, pretreatment of cells with MSP results in the up-regulation of arginase and inhibits their ability to produce NO in response to IFN-gamma and LPS, even in the presence of excess substrate, suggesting that the inhibition of NO by MSP occurs primarily through its ability to regulate iNOS expression.  相似文献   

13.
Ceramides are mediators of apoptosis and inflammatory processes. In an animal model of multiple sclerosis (MS), the experimental autoimmune encephalomyelitis (EAE) model, we observed a significant elevation of C(16:0)-Cer in the lumbar spinal cord of EAE mice. This was caused by a transiently increased expression of ceramide synthase (CerS) 6 in monocytes/macrophages and astroglia. Notably, this corresponds to the clinical finding that C(16:0)-Cer levels were increased 1.9-fold in cerebrospinal fluid of MS patients. NO and TNF-α secreted by IFN-γ-activated macrophages play an essential role in the development of MS. In murine peritoneal and mouse-derived RAW 264.7 macrophages, IFN-γ-mediated expression of inducible NO synthase (iNOS)/TNF-α and NO/TNF-α release depends on upregulation of CerS6/C(16:0)-Cer. Downregulation of CerS6 by RNA interference or endogenous upregulation of C(16:0)-Cer mediated by palmitic acid in RAW 264.7 macrophages led to a significant reduction or increase in NO/TNF-α release, respectively. EAE/IFN-γ knockout mice showed a significant delay in disease onset accompanied by a significantly less pronounced increase in CerS6/C(16:0)-Cer, iNOS, and TNF-α compared with EAE/wild-type mice. Treatment of EAE mice with l-cycloserine prevented the increase in C(16:0)-Cer and iNOS/TNF-α expression and caused a remission of the disease. In conclusion, CerS6 plays a critical role in the onset of MS, most likely by regulating NO and TNF-α synthesis. CerS6 may represent a new target for the inhibition of inflammatory processes promoting MS development.  相似文献   

14.
By implanting nondisrupted pieces of human lung tumor biopsy tissues into SCID mice, it has been possible to establish viable grafts of the tumor, as well as the tumor-associated microenvironment, including inflammatory cells, fibroblasts, tumor vasculature, and the extracellular matrix. Using this xenograft model, we have evaluated and characterized the effects of a local and sustained release of human rIL-12 (rhIL-12) from biodegradable microspheres. In response to rhIL-12, the human CD45+ inflammatory cells present within the xenograft mediate the suppression or the complete arrest of tumor growth in SCID mice. Analysis of the cellular events reveals that human CD4+ and CD8+ T cells are induced by rhIL-12 to produce and secrete IFN-gamma. Serum levels of human IFN-gamma in mice bearing rhIL-12-treated tumor xenografts correlate directly with the degree of tumor suppression, while neutralizing Abs to human IFN-gamma abrogate the IL-12-mediated tumor suppression. Gene expression profiling of tumors responding to intratumoral rhIL-12 demonstrates an up-regulation of IFN-gamma and IFN-gamma-dependent genes not observed in control-treated tumors. Genes encoding a number of proinflammatory cytokines, chemokines (and their receptors), adhesion molecules, activation markers, and the inducible NO synthase are up-regulated following the introduction of rhIL-12, while genes associated with tumor growth, angiogenesis, and metastasis are decreased in expression. NO contributes to the tumor killing because an inhibitor of inducible NO synthase prevents IL-12-induced tumor suppression. Cell depletion studies reveal that the IL-12-induced tumor suppression, IFN-gamma production, and the associated changes in gene expression are all dependent upon CD4+ T cells.  相似文献   

15.
Oral administration of lactoferrin (LF), an innate-defense protein present in exocrine secretions such as milk and in neutrophils, is reported to improve host-protection against infections with microorganisms including pathogenic fungi, possibly due to an immunomodulatory effect. This study aimed to evaluate the effect of bovine LF feeding on peritoneal macrophage activities in mice intraperitoneally injected with inactivated Candida albicans. Time course analysis during the 14 days following Candida-priming revealed that LF administration slightly increased the number of peritoneal exudate cells, and significantly enhanced the production of superoxide anion (O2(-)) and nitric oxide (NO) by peritoneal macrophages at day 7. LF administration facilitated NO production and Candida hyphal-growth inhibition by macrophages derived from Candida-primed mice but not non-primed mice, suggesting that the action of LF is dependent on the immune status of the host. LF administration altered the kinetics of cytokines in the peritoneal lavage fluid of Candida-primed mice. Enhancement of cytokine levels by LF was observed for IL-12 at day 5 and IFN-gamma at day 9, but not for TNF-alpha or IL-10. In conclusion, LF feeding augmented the activities of macrophages in a manner dependent on Candida-priming and these effects may be related to enhanced cytokine levels.  相似文献   

16.
Intracellular killing of Francisella tularensis by macrophages depends on interferon-gamma (IFN-gamma)-induced activation of the cells. The importance of inducible nitric oxide synthase (iNOS) or NADPH phagocyte oxidase (phox) for the cidal activity was studied. Murine IFN-gamma-activated peritoneal exudate cells (PEC) produced nitric oxide (NO), measured as nitrite plus nitrate, and superoxide. When PEC were infected with the live vaccine strain, LVS, of F. tularensis, the number of viable bacteria was at least 1000-fold lower in the presence than in the absence of IFN-gamma after 48 h of incubation. PEC from iNOS-gene-deficient (iNOS-/-) mice killed F. tularensis LVS less effectively than did PEC from wild-type mice. PEC from phox gene-deficient (p47phox-/-) mice were capable of killing the bacteria, but killing was less efficient, although still significant, in the presence of NG-monomethyl-L-arginine (NMMLA), an inhibitor of iNOS. A decomposition catalyst of ONOO-, FeTPPS, completely reversed the IFN-gamma-induced killing of F. tularensis LVS. Under host cell-free conditions, F. tularensis LVS was exposed to S-nitroso-acetyl-penicillamine (SNAP), which generates NO, or 3-morpholinosydnonimine hydrochloride (SIN-1), which generates NO and superoxide, leading to formation of ONOO-. During 6 h of incubation, SNAP caused no killing of F. tularensis LVS, whereas effective killing occurred in the presence of equimolar concentrations of SIN-1. The results suggest that mechanisms dependent on iNOS and to a minor degree, phox, contribute to the IFN-gamma-induced macrophage killing of F. tularensis LVS. ONOO- is likely to be a major mediator of the killing.  相似文献   

17.
Immunity to Toxoplasma gondii critically depends on TNFR type I-mediated immune reactions, but the precise role of the individual ligands of TNFR1, TNF and lymphotoxin-alpha (LTalpha), is still unknown. Upon oral infection with T. gondii, TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-) mice failed to control intracerebral T. gondii and succumbed to an acute necrotizing Toxoplasma encephalitis, whereas wild-type (WT) mice survived. Intracerebral inducible NO synthase expression and-early after infection-splenic NO levels were reduced. Additionally, peritoneal macrophages produced reduced levels of NO upon infection with T. gondii and had significantly reduced toxoplasmastatic activity in TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-) mice as compared with WT animals. Frequencies of parasite-specific IFN-gamma-producing T cells, intracerebral and splenic IFN-gamma production, and T. gondii-specific IgM and IgG titers in LTalpha(-/-) and TNF/LTalpha(-/-) mice were reduced only early after infection. In contrast, intracerebral IL-10 and IL-12p40 mRNA expression and splenic IL-2, IL-4, and IL-12 production were identical in all genotypes. In addition, TNF(-/-), LTalpha(-/-), and TNF/LTalpha(-/-), but not WT, mice succumbed to infection with the highly attenuated ts-4 strain of T. gondii or to a subsequent challenge infection with virulent RH toxoplasms, although they had identical frequencies of IFN-gamma-producing T cells as compared with WT mice. Generation and infection of bone marrow reconstitution chimeras demonstrated an exclusive role of hematogeneously produced TNF and LTalpha for survival of toxoplasmosis. These findings demonstrate the crucial role of both LTalpha and TNF for control of intracerebral toxoplasms.  相似文献   

18.
Interferon (IFN)-gamma plays an essential role in host defense against infection with Mycobacterium tuberculosis, and its synthesis is critically regulated by interleukin (IL)-12, IL-18 and the recently identified IL-23. The present study was designed to determine the roles of these cytokines in IFN-gamma-mediated host defenses against M. tuberculosis. For this purpose, we compared host protective responses in IL-12p40 and IL-18 double-knockout (DKO) mice (which lacked both IL-12/IL-18 and also IL-23) and IFN-gamma gene-disrupted (GKO) mice. DKO mice were more resistant to the infection than GKO mice, as indicated by their extended survival and reduced live colony numbers in spleen, liver and lung. IFN-gamma was detected by ELISA in liver and lung homogenates, but not in spleen and serum, and in all organs by RT-PCR in DKO mice at comparable or reduced levels to those in wild-type mice. IFN-gamma production was reduced by depletion of CD4+ T cells, but not of natural killer (NK), NKT, gammadeltaT and dendritic cells. Neutralization of IFN-gamma or TNF-alpha by specific monoclonal antibodies (mAbs) significantly shortened the survival time of the infected DKO mice. Furthermore, anti-TNF-alpha mAb partially attenuated IFN-gamma synthesis in the liver of these mice. Finally, the expression level of inducible nitric oxide synthase (iNOS) mRNA in the spleen, liver and lung was considerable in DKO mice but only marginal or undetected in GKO mice. Our results indicate the presence of IL-12-, IL-18- and IL-23-independent host protective responses against mycobacterial infection mediated by IFN-gamma, which was secreted from helper T cells.  相似文献   

19.
To investigate the roles of gammadelta T cells in Salmonella infection, we examined the resolution of an intraperitoneal infection with avirulent Salmonella choleraesuis 31N-1 in mice lacking T-cell-receptor (TCR) alphabeta T cells by disruption of the TCRbeta chain gene (TCRbeta(-/-)). The bacteria in TCRbeta(-/-) mice decreased with kinetics similar to that seen in control mice (TCRbeta(+/+)) after infection. The number of natural killer (NK) cells in the peritoneal cavity increased on day 6 after infection and thereafter decreased in both TCRbeta(-/-) and TCRbeta(+/+) mice, whereas the number of gammadelta T cells, in place of alphabeta T cells, increased remarkably in the peritoneal cavity of TCRbeta(-/-) mice on day 6 after infection. The NK cells from Salmonella-infected TCRbeta(-/-) mice produced interferon-gamma (IFN-gamma) but neither interleukin-4 (IL-4) nor IL-13 in response to immobilized anti-NK1.1 monoclonal antibody (mAb). The gammadelta T cells produced IFN-gamma but neither IL-4 nor IL-13 in response to heat-killed Salmonella, whereas both IFN-gamma and IL-13 but no IL-4 was produced by the gammadelta T cells stimulated with immobilized anti-TCRgammadelta mAb. In vivo administration of anti-NK1.1 mAb inhibited the reduction of Salmonella, whereas anti-TCRgammadelta mAb treatment did not affect the bacterial growth in TCRbeta(-/-) mice after Salmonella infection. However, neutralization of endogenous IL-13 with anti-IL-13 mAb enhanced the bacterial clearance in TCRbeta(-/-) mice after infection. These results suggest that NK1.1(+) cells serve mainly to protect against avirulent Salmonella infection in the absence of alphabeta T cells, whereas gammadelta T cells may play dichotomous roles in Salmonella infection through IFN-gamma and IL-13 in TCRbeta(-/-) mice.  相似文献   

20.
Experimental autoimmune encephalomyelitis (EAE), an inflammatory demyelinating disease of the CNS, is regarded as an experimental model for multiple sclerosis. The complement has been implicated in the pathogenesis of multiple sclerosis. To clarify the role of C in mouse EAE, we immunized mice deficient in C3 (C3(-/-)) and their wild-type (C3(+/+)) littermates with myelin oligodendrocyte glycoprotein peptide 35-55. C3(-/-) mice were susceptible to EAE as much as the C3(+/+) mice were. No differences were found for the production of IL-2, IL-4, IL-12, TNF-alpha, and IFN-gamma between C3(+/+) and C3(-/-) mice. This finding shows that C3, a key component in C activation, is not essential in myelin oligodendrocyte glycoprotein peptide-induced EAE in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号