共查询到20条相似文献,搜索用时 0 毫秒
1.
O'Brien NC Charlton B Cowden WB Willenborg DO 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(12):6841-6847
Experimental autoimmune encephalomyelitis (EAE) is a T cell-mediated autoimmune disease of the CNS and an animal model for the human demyelinating disease, multiple sclerosis. In the Lewis rat, myelin basic protein (MBP)-CFA-induced EAE is an acute monophasic disease from which animals recover fully, do not relapse, and develop a robust long-term resistance to further active reinduction of disease. In this paper, we report that rats recovering from MBP-CFA-induced EAE have significantly increased serum levels of reactive nitrogen intermediates indicative of increased NO production. These levels remain elevated after the recovery period and increase even further early after a rechallenge with MBP-CFA, and all animals are totally refractory to a second episode of disease. Oral treatment of rats with N-methyl-l -arginine acetate (l -NMA), beginning at peak disease on day 11 postimmunization, results in significant prolongation of disease and an alteration in the presentation of clinical symptoms from that of solely hind limb paresis/paralysis to severe fore limb involvement as well. Treatment of fully recovered rats with l -NMA 24 h before a rechallenge with MBP-CFA leads to decreased serum reactive nitrogen intermediate levels and results in a second episode of EAE in 100% of animals. Furthermore, l -NMA treatment of fully recovered rats in the absence of a rechallenge immunization leads to spontaneous relapse of disease. 相似文献
2.
Schiffmann S Ferreiros N Birod K Eberle M Schreiber Y Pfeilschifter W Ziemann U Pierre S Scholich K Grösch S Geisslinger G 《Journal of immunology (Baltimore, Md. : 1950)》2012,188(11):5723-5733
Ceramides are mediators of apoptosis and inflammatory processes. In an animal model of multiple sclerosis (MS), the experimental autoimmune encephalomyelitis (EAE) model, we observed a significant elevation of C(16:0)-Cer in the lumbar spinal cord of EAE mice. This was caused by a transiently increased expression of ceramide synthase (CerS) 6 in monocytes/macrophages and astroglia. Notably, this corresponds to the clinical finding that C(16:0)-Cer levels were increased 1.9-fold in cerebrospinal fluid of MS patients. NO and TNF-α secreted by IFN-γ-activated macrophages play an essential role in the development of MS. In murine peritoneal and mouse-derived RAW 264.7 macrophages, IFN-γ-mediated expression of inducible NO synthase (iNOS)/TNF-α and NO/TNF-α release depends on upregulation of CerS6/C(16:0)-Cer. Downregulation of CerS6 by RNA interference or endogenous upregulation of C(16:0)-Cer mediated by palmitic acid in RAW 264.7 macrophages led to a significant reduction or increase in NO/TNF-α release, respectively. EAE/IFN-γ knockout mice showed a significant delay in disease onset accompanied by a significantly less pronounced increase in CerS6/C(16:0)-Cer, iNOS, and TNF-α compared with EAE/wild-type mice. Treatment of EAE mice with l-cycloserine prevented the increase in C(16:0)-Cer and iNOS/TNF-α expression and caused a remission of the disease. In conclusion, CerS6 plays a critical role in the onset of MS, most likely by regulating NO and TNF-α synthesis. CerS6 may represent a new target for the inhibition of inflammatory processes promoting MS development. 相似文献
3.
Antibody efficacy in murine pulmonary Cryptococcus neoformans infection: a role for nitric oxide 总被引:3,自引:0,他引:3
Rivera J Mukherjee J Weiss LM Casadevall A 《Journal of immunology (Baltimore, Md. : 1950)》2002,168(7):3419-3427
We investigated the pathogenesis of pulmonary Cryptococcus neoformans infection and passive Ab efficacy in mice deficient in inducible NO synthase (NOS2(-/-)) and the parental strain. Parental mice lived significantly longer than NOS2(-/-) mice after intratracheal infection, despite having a higher lung fungal burden. Administration of Ab reduced lung CFU in both NOS2(-/-) and parental mice, but prolonged survival and increased the inflammatory response only in parental mice. Ab administration was associated with increased serum nitrite and reduced polysaccharide levels in parental mice. Eosinophils were present in greater numbers in the lung of infected NOS2(-/-) mice than parental mice, irrespective of Ab administration. C. neoformans infection in NOS2(-/-) mice resulted in significantly higher levels of IFN-gamma, monocyte chemoattractant protein-1, and macrophage-inflammatory protein-1alpha than parental mice. Ab administration had different effects on infected NOS2(-/-) and parental mice with respect to IFN-gamma, monocoyte chemoattractant protein-1, and macrophage-inflammatory protein-1alpha levels. Ab administration increased lung levels of IFN-gamma in parental mice and reduced levels in NOS2(-/-) mice. The results indicate that NO is involved in the regulation of cytokine expression in response to cryptococcal pneumonia and is necessary for Ab efficacy against C. neoformans in mice. Our findings indicate a complex relationship between Ab efficacy against C. neoformans and cytokine expression, underscoring the interdependency of cellular and humoral defense mechanisms. 相似文献
4.
N C O'Brien B Charlton W B Cowden D O Willenborg 《Journal of immunology (Baltimore, Md. : 1950)》2001,167(10):5904-5912
Myelin basic protein-CFA-induced experimental autoimmune encephalomyelitis (EAE) in Lewis rats is an acute monophasic disease from which animals recover. In this model, spontaneous relapses do not occur and rats develop a resistance to further active reinduction of disease. Previously, we reported that oral administration of the NO synthase inhibitor N-methyl-L-arginine acetate (L-NMA) to recovered rats precipitated a second episode of disease in 100% of animals. Further studies now show that this second clinical episode is actually a chronic relapsing disease that persists for months. This occurs only in rats that have recovered from actively induced EAE and not in rats recovered from passively induced EAE, suggesting the need for a peripheral Ag depot to induce secondary disease. We have also determined that clinical signs of EAE in L-NMA-treated recovered rats do not appear until L-NMA treatment has stopped. This is despite the fact that, at the same time point, CNS inflammatory lesions in symptomless animals receiving L-NMA are qualitatively and quantitatively similar to those with severe disease symptoms from whom L-NMA treatment has been withdrawn. The latter animals have significantly higher levels of reactive nitrogen intermediates in the cerebrospinal fluid than the former group. This study examines the mechanism of reinduction of disease by L-NMA treatment, and the findings suggest a dual role for NO in regulation of pathology in EAE that is dependent on site and timing of NO production. 相似文献
5.
Intracerebral inoculation of susceptible strains of mice with Theiler's murine encephalomyelitis virus (TMEV) results in immune-mediated demyelinating disease. We examined the pathogenic roles of nitric oxide (NO) and inducible NO synthase (iNOS) in TMEV-induced demyelinating disease (TMEV-IDD). The presence of iNOS was confirmed in the spinal cords of TMEV-infected mice using immunohistochemical staining with anti-iNOS antibody on day 0 (control) and days 15, 30, 60, and 120. Aminoguanidine (AG), a specific inhibitor of iNOS, was injected intraperitoneally (ip) on 1, 3, 5, 8, 10, and 12 days post-TMEV inoculation as induction phase or 15, 17, 19, 22, 24, and 26 days as effector phase. Control animals in each experiment received phosphate-buffered saline (PBS) ip at similar time intervals. Few iNOS-positive cells were observed in the spinal cords of naive SJL/J mice. In the early phase (day 15) of TMEV-IDD, an increase of iNOS-positive cells was detected in the leptomeninges and perivascular space of the spinal cords. The number of iNOS-positive cells was increased and reached its peak on day 60, when histology of the animals showed peak infiltration with inflammatory cells. The clinical course of TMEV-IDD on each day postintracerebral infection was significantly reduced in mice treated with AG in the effector phase, and there was no significant difference between mice treated with AG in induction phase versus those administered PBS. Thus, NO production via iNOS appears to be a pathogenic factor in the effector phase of TMEV-IDD. 相似文献
6.
Ren G Su J Zhao X Zhang L Zhang J Roberts AI Zhang H Das G Shi Y 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(5):3277-3284
Apoptotic cells induce immunosuppression through unknown mechanisms. To identify the underlying molecular mediators, we examined how apoptotic cells induce immunoregulation by dendritic cells (DC). We found that administration of DC exposed to apoptotic cells (DC(ap)) strongly inhibited the expansion of lymphocytes in draining lymph nodes in vivo and the subsequent Ag-specific activation of these lymphocytes ex vivo. Unexpectedly, DC(ap) supported T cell activation to a similar extent as normal DC in vitro, leading to proliferation and IL-2 production, except that DC(ap) did not support T cell production of IFN-gamma. Surprisingly, when DC(ap) were cocultured with normal DC, they completely lost their ability to support T cell activation, an effect reversed by anti-IFN-gamma or inhibitors of inducible NO synthase (iNOS). As expected, exposure to apoptotic cells rendered DC(ap) capable of producing much more NO in response to exogenous IFN-gamma than normal DC. Furthermore, DC(ap) from iNOS(-/-) or IFN-gammaR1(-/-) mice were not inhibitory in vitro or in vivo. Therefore, the IFN-gamma-induced production of NO by apoptotic cell-sensitized DC plays a key role in apoptotic cell-mediated immunosuppression. 相似文献
7.
Nitrate and nitrite have been considered stable inactive end products of nitric oxide (NO). While several recent studies now imply that nitrite can be reduced to bioactive NO again, the more stable anion nitrate is still considered to be biologically inert. Nitrate is concentrated in saliva, where a part of it is reduced to nitrite by bacterial nitrate reductases. We tested if ingestion of inorganic nitrate would affect the salivary and systemic levels of nitrite and S-nitrosothiols, both considered to be circulating storage pools for NO. Levels of nitrate, nitrite, and S-nitrosothiols were measured in plasma, saliva, and urine before and after ingestion of sodium nitrate (10 mg/kg). Nitrate levels increased greatly in saliva, plasma, and urine after the nitrate load. Salivary S-nitrosothiols also increased, but plasma levels remained unchanged. A 4-fold increase in plasma nitrite was observed after nitrate ingestion. If, however, the test persons avoided swallowing after the nitrate load, the increase in plasma nitrite was prevented, thereby illustrating its salivary origin. We show that nitrate is a substrate for systemic generation of nitrite. There are several pathways to further reduce this nitrite to NO. These results challenge the dogma that nitrate is biologically inert and instead suggest that a complete reverse pathway for generation of NO from nitrate exists. 相似文献
8.
Hydroxylamine is a vasorelaxant and a possible intermediate in the oxidative conversion of L-arginine to nitric oxide 总被引:3,自引:0,他引:3
E G DeMaster L Raij S L Archer E K Weir 《Biochemical and biophysical research communications》1989,163(1):527-533
Our objective was to determine whether hydroxylamine is a possible intermediate in the oxidative conversion of L-arginine to nitric oxide. Vasorelaxation by hydroxylamine is known to be mediated by nitric oxide. The vasorelaxant properties of hydroxylamine were examined using rat aortic rings and an isolated rat lung perfusion model. Hydroxylamine and acetylcholine were equally effective in relaxing norepinephrine-contracted intact aortic rings, whereas only hydroxylamine relaxed aortic rings with endothelium removed. This endothelium-independent vasorelaxation by hydroxylamine indicated that the hydroxylamine-converting enzyme is not localized solely within endothelial cells. Catalase, an enzyme known to oxidize hydroxylamine to nitric oxide, was present in homogenates of intact and endothelium-denuded rings. Cyanamide, another catalase substrate and a known precursor of nitroxyl (HNO), was not a vasorelaxant of aortic rings or of isolated, hypoxia-constricted lungs. These results suggest that free nitroxyl is not an intermediate in the oxidation of hydroxylamine to nitric oxide. An overall pathway for the oxidative conversion of L-arginine through an hydroxylamine intermediate to nitric oxide is proposed. 相似文献
9.
Lymphocyte proliferation in Con A- or LPS-stimulated murine splenic cell (SC) cultures was suppressed by the addition of excess macrophages. In Con A-stimulated cultures, suppression was associated with the expression of nitric oxide-synthesizing pathway (NOSP) activity as demonstrated by the accumulation of nitrite, a degradation product of nitric oxide (NO), in the culture supernatants. That NO, a cytotoxic and anti-proliferative metabolite of l-arginine, or other reactive nitrogen intermediates generated through the NOSP mediated the suppressive effect was suggested by the reversal of suppression brought about by the addition of a specific inhibitor of the NOSP (NG-monomethyl-l-arginine acetate) to the culture media. No NOSP activity was detectable in LPS-stimulated SC/macrophage cocultures. The role of T cell-derived IFN-gamma in the induction of the NOSP was investigated by the use of anti-IFN-gamma-mAb. Antibody-treated Con A supernatants failed to induce the NOSP in macrophages, and the addition of the mAb to Con A-stimulated SC/macrophage cocultures obviated the suppressive effects. Indomethacin and catalase only partially restored proliferation in Con A-stimulated SC/macrophage cocultures but were remarkably efficient in preventing macrophage-dependent suppression when LPS was used as the mitogenic stimulus. These results demonstrate a regulatory system of potential relevance in sites of predominant macrophage infiltration by which T cell-derived IFN-gamma activates the production of the mediator, NO, that suppresses T cell proliferation. In addition, these data demonstrate that, although the suppressive effects of excess macrophages appear to be expressed nonspecifically toward both T and B cells, suppression is mediated through a different mechanism in each case. 相似文献
10.
Recombinational repair is critical for survival of Escherichia coli exposed to nitric oxide 总被引:4,自引:0,他引:4
下载免费PDF全文

Spek EJ Wright TL Stitt MS Taghizadeh NR Tannenbaum SR Marinus MG Engelward BP 《Journal of bacteriology》2001,183(1):131-138
Nitric oxide (NO(.)) is critical to numerous biological processes, including signal transduction and macrophage-mediated immunity. In this study, we have explored the biological effects of NO(.)-induced DNA damage on Escherichia coli. The relative importance of base excision repair, nucleotide excision repair (NER), and recombinational repair in preventing NO(.)-induced toxicity was determined. E. coli strains lacking either NER or DNA glycosylases (including those that repair alkylation damage [alkA tag strain], oxidative damage [fpg nei nth strain], and deaminated cytosine [ung strain]) showed essentially wild-type levels of NO(.) resistance. However, apyrimidinic/apurinic (AP) endonuclease-deficient cells (xth nfo strain) were very sensitive to killing by NO(.), which indicates that normal processing of abasic sites is critical for defense against NO(.). In addition, recA mutant cells were exquisitely sensitive to NO(.)-induced killing. Both SOS-deficient (lexA3) and Holliday junction resolvase-deficient (ruvC) cells were very sensitive to NO(.), indicating that both SOS and recombinational repair play important roles in defense against NO(.). Furthermore, strains specifically lacking double-strand end repair (recBCD strains) were very sensitive to NO(.), which suggests that NO(.) exposure leads to the formation of double-strand ends. One consequence of these double-strand ends is that NO(.) induces homologous recombination at a genetically engineered substrate. Taken together, it is now clear that, in addition to the known point mutagenic effects of NO(.), it is also important to consider recombination events among the spectrum of genetic changes that NO(. ) can induce. Furthermore, the importance of recombinational repair for cellular survival of NO(.) exposure reveals a potential susceptibility factor for invading microbes. 相似文献
11.
Balaban PM Roshchin MV Korshunova TA 《Zhurnal vysshe? nervno? deiatelnosti imeni I P Pavlova》2011,61(3):274-280
One of ways of nitric oxide (NO) influence on neuronal activity is S-nitrosylation, the covalent attachment of NO group to the thiol side chain of cysteine, changes function of existing proteins, inhibiting their normal role in physiological functions including memory. Influence of NO via GC activates intracellular signaling cascades and triggers increased synthesis ofproteins, influencing the memory. In the present paper we want to express and test the hypothesis that the NO is necessary both for erasure and development of memory. In our experiments in terrestrial snail Helix we tested the idea that NO besides well shown participation in memory development is involved in erasure/lockout of memory during relearning and reconsolidation. 相似文献
12.
Background. Nitric oxide (NO) generated by nitric oxide synthase (NOS) is known to be an important modulator of the mucosal inflammatory response. In this study, we questioned whether Helicobacter pylori infection could up‐regulate the epithelial cell inducible NOS (iNOS) gene expression and whether NO production could show polarity that can be regulated by immune mediators. Materials and Methods. Human gastric epithelial cell lines were infected with H. pylori, and the iNOS mRNA expression was assessed by quantitative RT‐PCR. NO production was assayed by determining nitrite/nitrate levels in culture supernatants. To determine the polarity of NO secretion by the H. pylori‐infected epithelial cells, Caco‐2 cells were cultured as polarized monolayers in transwell chambers, and NO production was measured. Results. iNOS mRNA levels were significantly up‐regulated in the cells infected with H. pylori, and expression of iNOS protein was confirmed by Western blot analysis. Increased NO production in the gastric epithelial cells was seen as early as 18 hours postinfection, and reached maximal levels by 24 hours postinfection. The specific MAP kinase inhibitors decreased H. pylori‐induced iNOS and NO up‐regulation. After H. pylori infection of polarized epithelial cells, NO was released predominantly into the apical compartment, and IL‐8 was released predominantly into basolateral compartment. The addition of IFN‐γ to H. pylori‐infected polarized epithelial cells showed a synergistically higher apical and basolateral NO release. Conclusion. These results suggest that apical NO production mediated by MAP kinase in H. pylori‐infected gastric epithelial cells may influence the bacteria and basolateral production of NO and IL‐8 may play a role in the tissue inflammation. 相似文献
13.
Mast cells (MC) are biologically potent, ubiquitously distributed immune cells with fundamental roles in host integrity and disease. MC diversity and function is regulated by exogenous nitric oxide; however, the production and function of endogenously produced NO in MC is enigmatic. We used rat peritoneal MC (PMC) as an in vivo model to examine intracellular NO production. Live cell confocal analysis of PMC using the NO-sensitive probe diaminofluorescein showed distinct patterns of intracellular NO formation with either antigen (Ag)/IgE (short term) or interferon-gamma (IFN-gamma) (long term). Ag/IgE-induced NO production is preceded by increased intracellular Ca2+, implying constitutive nitric-oxide synthase (NOS) activity. NO formation inhibits MC degranulation. NOS has obligate requirements for tetrahydrobiopterin (BH4), a product of GTP-cyclohydrolase I (CHI), IFN-gamma-stimulated PMC increased CHI mRNA, protein, and enzymatic activity, while decreasing CHI feedback regulatory protein mRNA, causing sustained NO production. Treatment with the CHI inhibitor, 2,4-diamino-6-hydroxypyrimidine, inhibited NO in both IFN-gamma and Ag/IgE systems, increasing MC degranulation. Reconstitution with the exogenous BH4 substrate, sepiapterin, restored NO formation and inhibited exocytosis. Thus, Ag/IgE and IFN-gamma induced intracellular NO plays a key role in MC mediator release, and alterations in NOS activity via BH4 availability may be critical to the heterogeneous responsiveness of MC. 相似文献
14.
Axtell RC Webb MS Barnum SR Raman C 《Journal of immunology (Baltimore, Md. : 1950)》2004,173(5):2928-2932
The induction phase of experimental autoimmune encephalomyelitis (EAE) in mice is T cell dependent and coreceptors that regulate T cell activation modulate disease development. We report here that mice lacking CD5, an important modulator of T cell activation, exhibit significantly delayed onset and decreased severity of EAE. The resistance to EAE in CD5(-/-) mice was not due to the inability of T cells to respond efficiently to stimulation with MOG(35-55) but was associated with the presence of elevated frequency of apoptotic activated T cells in spleens and DLN. We also observed a net decrease in peripheral activated CD4(+) T cells in CD5(-/-) spleens and DLN 10 days after immunization. We further show that in vivo blockade of CD5 engagement after induction of EAE by soluble CD5-Fc, a treatment that induces elimination of activated T cells, promoted recovery from EAE. Our studies indicate that CD5 regulates survival of activated T cells and provides a target for treatment of T cell-dependent autoimmune diseases such as multiple sclerosis. 相似文献
15.
Kim DD Sánchez FA Durán RG Kanetaka T Durán WN 《American journal of physiology. Heart and circulatory physiology》2007,292(5):H2131-H2137
Danshen, a Chinese herb, reduces hypertension in Oriental medicine. We hypothesized that Danshen acts partially through endothelial nitric oxide synthase (eNOS) signaling mechanisms. We tested the hypothesis using tanshinone II(A), an active ingredient of Danshen, and the two-kidney, one-clip renovascular hypertension model in hamsters. Oral tanshinone (50 microg/100 g body wt) reduced mean arterial pressure (MAP) from 161.2 +/- 6.9 to 130.0 +/- 7.8 mmHg (mean +/- SE; P < 0.05) in hypertensive hamsters. MAP in sham-operated hamsters was 114.3 +/- 9.2 mmHg. Topical tanshinone at 1 microg/ml and 5 microg/ml increased normalized arteriolar diameter from 1.00 to 1.25 +/- 0.08 and 1.57 +/- 0.11, respectively, and increased periarteriolar nitric oxide concentration from 87.1 +/- 11.3 to 146.9 +/- 23.1 nM (P < 0.05) at 5 microg/ml in hamster cheek pouch. N(G)-monomethyl-L-arginine inhibited tanshinone-induced vasodilation. Hypertension reduced eNOS protein relative to sham-operated control. Tanshinone prevented the hypertension-induced reduction of eNOS and increased eNOS expression to levels higher than sham-operated control in hamster cheek pouch. Topical tanshinone increased normalized arteriolar diameter from 1.0 to 1.47 +/- 0.08 in the cremaster muscle of control mice and to 1.12 +/- 0.13 in cremasters of eNOS knockout mice. In ECV-304 cells transfected with eNOS-green fluorescent protein, tanshinone increased eNOS protein expression 1.35 +/- 0.05- and 1.85 +/- 0.07-fold above control after 5-min and 1-h application, respectively. Tanshinone also increased eNOS phosphorylation 1.19 +/- 0.07- and 1.72 +/- 0.20-fold relative to control after 5-min and 1-h application. Our data provide a basis to understand the action of a Chinese herb used in alternative medicine. We conclude that eNOS stimulation is one mechanism by which tanshinone induces vasodilation and reduces blood pressure. 相似文献
16.
White AR Curtis SA Walker RJ 《Comparative biochemistry and physiology. Toxicology & pharmacology : CBP》2004,137(2):95-108
The effects of nitric oxide (NO) donors, S-nitroso-N-acetylpenicillamine, S-nitroso-l-glutathione, sodium nitroprusside and sodium nitrite were investigated on the activity of the isolated hearts of Achatina fulica and Helix aspersa. NO donors inhibited heart activity in a concentration-dependent manner. The only exception was sodium nitroprusside, which excited H. aspersa heart. The inhibitory effects of these NO donors were reduced by the NO scavenger, methylene blue, the guanylyl cyclase inhibitor, 1H-(1,2,4) Oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), and potentiated by 8-Br-cGMP and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Acetylcholine also inhibited the heart activity, and this inhibition was reduced by methylene blue and ODQ. Positive NADPH-diaphorase staining was located in the outer pericardial layer of the heart of A. fulica. The present results provide evidence that NO may modulate the activity of gastropod hearts, and this modulation may modify the inhibitory action of acetylcholine on heart activity. 相似文献
17.
Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages 总被引:21,自引:0,他引:21
Guo H Cai CQ Schroeder RA Kuo PC 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(2):1079-1086
18.
The authors analyze the published data and results of their own experiments, and, on the basis of this information, interpret the role of nitric oxide in neural inhibitory control of circulation. 相似文献
19.
A possible role of nitric oxide in the regulation of dopamine transporter function in the striatum. 总被引:5,自引:0,他引:5
Brain microdialysis and high-performance liquid chromatography with electrochemical detection were used to study the effect of the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) on striatal dopamine (DA) release in the anesthetized rat. Systemic administration of L-NAME (10 mg/kg, i.p.) significantly decreased the resting release of DA. The peak effect (23% decrease) was reached 45 min after injection. The inactive enantiomer D-NAME (10 mg/kg, i.p.) or the vehicle (saline, 5 ml/kg i.p.) had no effect on the striatal DA level. Neither treatment altered significantly the concentration of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). To investigate the possible involvement of the DA uptake system L-NAME was injected also in the presence of the DA uptake inhibitor nomifensine. Local application of nomifensine (10 microM in the dialysate medium) increased the extracellular concentration of DA to about eight-fold of the basal value and stabilized it at this higher level. Under these conditions L-NAME (10 mg/kg, i.p.) was not able to alter the striatal DA level. Neither nomifensine nor L-NAME caused any change in the level of DOPAC and HVA. Our data suggest that endogenously produced nitric oxide may influence the activity of the DA transporter which effect may have special importance in the regulation of extracellular transmitter concentration in the striatum. 相似文献
20.
IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis 总被引:7,自引:0,他引:7
Thakker P Leach MW Kuang W Benoit SE Leonard JP Marusic S 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(4):2589-2598
Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways. 相似文献