首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To investigate the possibility that the opioid peptide precursor proenkephalin A was glycosylated, we utilized an antiserum raised against the COOH terminus of Met-enkephalin Arg6-Gly7-Leu8 (MERGL) to identify and characterize enkephalin-containing peptides from extracts of bovine adrenal medulla. Sephadex G-50 gel filtration separated two immunoreactive peaks which had apparent masses of 9 and 6 kDa. Anion-exchange chromatography and reverse-phase high pressure liquid chromatography (HPLC) revealed that the 9-kDa material was a heterogenous mixture of immunoreactive peptides, of which one (9K-MERGL Ia) was purified to homogeneity. The 6-kDa material separated into two major immunoreactive peaks (6K-MERGL I and 6K-MERGL II) on anion-exchange chromatography, and these were obtained in an homogenous form after reverse-phase HPLC. Amino acid sequencing, together with immunological characterization, indicated that the three peptides were identical in chain length, and corresponded to proenkephalin A 116-165. They contained the sequence Asn-Ser-Ser which is a potential N-glycosylation site. In 9K-MERGL Ia, but not the others, automated Edman amino acid sequencing was unable to detect the relevant asparagine residue, suggesting that this residue has been chemically modified. Further investigation of the 9K-MERGL material using lectin affinity chromatography provided direct evidence of glycosylation. Verification of this result was obtained using the specific enzyme glycopeptidase F (glycopeptide-N-glycosidase) which demonstrated that 9K-MERGL contained, in part, N-linked oligosaccharide chains. These results show that an NH2 terminally extended Met-enkephalin Arg6-Gly7-Leu8 variant was N-glycosylated, and hence indicate that the precursor polypeptide proenkephalin A can be glycosylated during translation in the rough endoplasmic reticulum.  相似文献   

2.
Previous studies suggest the processing of proenkephalin A in the porcine upper digestive tract might differ from that in the brain. To characterise more precisely some of the products, we have used antibodies to Met-enkephalin Arg6Phe7 (MERF) in radioimmunoassay to monitor the isolation of immunoreactive peptides from extracts of porcine pyloric antral muscle, antral mucosa, and duodenum. Sephadex G50 gel filtration of each extract produced a single broad peak of high-molecular-weight MERF-immunoreactivity. On anion-exchange chromatography the antral muscle MERF-immunoreactivity fractionated into two major peaks, and that from the antral mucosa and duodenum each into four major peaks, suggesting tissue specific processing of proenkephalin A within the porcine gut. Reverse-phase HPLC and Edman degradation analysis revealed that the least acidic antral muscle peptide was a 31-residue N-terminally extended form of MERF that is equivalent to proenkephalin A 209-239. Alkaline phosphatase digestion of the N-terminally extended MERF variants indicated that some of these peptides were modified by phosphorylation. We conclude that there are complex patterns of proenkephalin A processing in the porcine gut, which in part are due to phosphorylation.  相似文献   

3.
The distribution of cryptic forms (larger enkephalin-containing peptides) in neostriatum, hypothalamus, spinal cord T3-L1 and neurointermediate lobe of pituitary were determined by radioimmunoassay. Optimal conditions for enzymic hydrolysis of the cryptic enkephalins by trypsin and carboxypeptidase B were established. The proportion of total Met- and Leu-enkephalin represented by native pentapeptide varied markedly among these central nervous system regions. Also, the distributions of native and cryptic Met-enkephalin were distinct from that of Leu-enkephalin. Chromatographic separation by HPLC of immunoreactive Met-enkephalin peptides revealed only two peaks corresponding to Met-enkephalin and Met-enkephalin sulfoxide in rather equal amounts. Hydrolysis of cryptic Met-enkephalin also produced only two HPLC-separable peaks of immunoreactive Met-enkephalin, again corresponding to Met-enkephalin and Met-enkephalin sulfoxide. Bioactivity of cryptic striatal Met-enkephalin after hydrolysis was demonstrated by antinociception and catalepsy in rats following its intracerebroven-tricular injection. Repeated short-term administration of nicotine, 0.1 mg/kg IP six times at 30 min intervals, produced significant increases in native and cryptic Met-enkephalin in striatum, consistent with an increase in neuronal release of Met-enkephalin together with increases in synthesis and processing of proenkephalin A in this brain region. This regimen of nicotine also decreased levels of native Met-enkephalin and of both native and cryptic Leu-enkephalin in neurointermediate lobe, consistent with nicotine-induced release of both proenkephalin A- and prodynorphin-derived peptides from neurointermediate lobe.  相似文献   

4.
Immunohistochemical localization of Met-enkephalin, Met-enkephalin-Arg6-Gly7-Leu8, Met-enkephalin-Arg6-Phe7 and Leu-enkephalin was studied in human adrenal medulla and pheochromocytomas at the light and electron microscopic levels. Both adrenal medulla and pheochromocytomas (4 adrenal, 1 extra-adrenal) showed scattered or clustered cells which contained all of the above peptides and suggested the production of proenkephalin A. The presence of these peptides predominantly in the secretory granules suggested that proenkephalin A is processed to final products mainly in the secretory granules. The localization of Met-enkephalin-Arg6-Gly7-Leu8 and Met-enkephalin-Arg6-Phe7 in cisternae of rough endoplasmic reticula indicated their actual production in pheochromocytomas.  相似文献   

5.
An antiserum was generated against a synthetic peptide corresponding to amino acids 95-117 of bovine proenkephalin, and a sensitive radioimmunoassay was developed. Comparison of the reactivities of the synthetic peptide, its specific cleavage products, and other synthetic peptides showed that the important immunological determinant was contained within residues 101-109 of bovine proenkephalin (-Gly-Gly-Glu-Val-Leu-Gly-Lys-Arg-Tyr-). Radioimmunoassay of fractions after gel filtration of bovine adrenal medullary chromaffin granule lysate showed three pools of immunoreactivity: pool 1 (Mr 20,000-30,000), pool 2 (Mr 10,000-20,000), and pool 3 (Mr approximately 5,000). Further characterization by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting showed that the antiserum recognized 27-, 20.5-, 16.5-, and 5.6-kilodalton enkephalin-containing proteins. The radioimmunoassay was also used to detect proenkephalin-like material in extracts of rat adrenal and regions of rat brain and spinal cord following gel filtration. Immunoreactivity from the rat adrenal chromatographed predominantly as high molecular weight material (Mr 31,500-43,500), whereas material in regions of rat brain showed a broader molecular weight distribution (Mr 4,000-43,500). This indicated differences in the processing of proenkephalin between rat adrenal and brain tissue. Differences were also seen in the molecular weight profile of immunoreactivity in different brain regions, most noticeable in the case of striatum and hypothalamus, suggesting regional differences in processing. Based on quantitation of higher molecular weight immunoreactive proenkephalin-like material and free Met-enkephalin immunoreactivity in different brain regions, it was apparent that extensive processing of proenkephalin occurs in brain. We concluded that antisera against proenkephalin-(95-117) recognize a wide range of intermediates in the processing of proenkephalin in both bovine adrenal medulla and rat adrenal, brain, and spinal cord, making it a useful tool for further studies concerned with the expression and post-translational processing of proenkephalin.  相似文献   

6.
There is increasing evidence that the opioid peptide precursor, proenkephalin A, and its products undergo extensive post-translational modification, in addition to the cleavage at dibasic amino acid sites. We have used an antiserum directed toward the C terminus of Met-enkephalin Arg6-Phe7 in a radioimmunoassay to monitor the purification to homogeneity of four peptide B variants from bovine adrenal medulla, using gel filtration, anion exchange chromatography, and reverse phase high performance liquid chromatography. Amino acid sequence analysis, together with immunochemical data, confirmed that each comprised the primary sequence, proenkephalin A-(209-239). In addition, three of the four variants were shown to be phosphorylated by alkaline phosphatase digestion, microphosphate analysis, and ethanethiol derivatization coupled with amino acid sequence analysis; these variants were shown to have 1, 2, or 3 phosphate groups per peptide chain, which corresponded to their increasing acidic nature. The phosphorylation sites were clustered together at positions Ser7, Ser13, and Ser15 and were in close association with acidic residues. The clustering of phosphorylated residues is unique among regulatory peptide precursors. This region of proenkephalin A is well conserved, which suggests that it constitutes an important novel functional domain.  相似文献   

7.
Processing of Proenkephalin in Adrenal Chromaffin Cells   总被引:1,自引:0,他引:1  
The processing of proenkephalin was studied using [35S]methionine pulse-chase techniques in primary cultures of bovine adrenal medullary chromaffin cells. Following radiolabeling, proenkephalin-derived peptides were extracted from the cells and separated by reverse-phase HPLC. Fractions containing proenkephalin fragments were digested with trypsin and carboxypeptidase B to liberate Met-enkephalin sequences and subjected to a second HPLC step to demonstrate association of radiolabel with Met-enkephalin. Processing of proenkephalin is complete within 2 h of synthesis, suggesting completion at or soon after incorporation into storage vesicles. Pretreatment of the cells with nicotine, histamine, or vasoactive intestinal peptide to enhance the rate of proenkephalin synthesis failed to alter the time course of processing and had minimal effects on the distribution of products formed. Addition of tetrabenazine, an inhibitor of catecholamine uptake into chromaffin vesicles, during radiolabeling and a 6-h chase period caused enhanced proenkephalin processing. These results suggest that the full range of proenkephalin fragments normally found in the adrenal medulla (up to 23.3 kDa) represents final processing products of the tissue and that termination of processing may depend on the co-storage of catecholamines.  相似文献   

8.
The octapeptide Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu was recently isolated from bovine adrenal chromaffin granules and serves as a marker for proenkephalin from which it is derived. Polyclonal antisera which are highly specific for the carboxyl terminus have been raised against the synthetic peptide. The only significant cross-reactivity was with the 18.2-k Da and 5.3-k Da enkephalin-containing peptides (EC peptides) which contain the octapeptide at their carboxyl termini and the [des-Tyr] and [des-Tyr-Gly] congeners of the octapeptide. Extracts of bovine adrenal medulla and rat spinal cord were shown to contain significant amounts of the octapeptide, the two larger EC peptides, and the two smaller congeners.  相似文献   

9.
There appears to be only one possible site for the production of an amidated peptide in the human proenkephalin sequence; this will give rise to the peptide named metorphamide. Since amidation of peptides is commonly an activation step in the synthesis of regulatory peptides, we have examined the levels and form of immunoreactivity to metorphamide in human post-mortem adrenal and phaeochromocytoma extracts. In three out of four post-mortem adrenal extracts, and in each of the two phaeochromocytoma extracts examined, there was 3-4 times more immunoreactivity to the carboxy-terminus of pro-enkephalin, Met-enkephalin(Arg6,Phe7), than to metorphamide. The metorphamide immunoreactivity was shown in each extract to measure only the amidated octapeptide according to gel exclusion and reverse-phase chromatography data. The implications for processing of proenkephalin in human adrenal are indicated.  相似文献   

10.
Wang H  Dass C 《Peptides》2002,23(12):2143-2150
A method based upon a combination of fast high-performance liquid chromatography (HPLC) and electrospray ionization (ESI)–mass spectrometry (MS) is developed for the analysis of bioactive peptides in bovine adrenal medulla. The fast HPLC uses a short column (33 mm×4.6 mm) packed with nonporous silica-based C-18 stationary phase. Prior to HPLC separation, the medulla was homogenized and the peptide-rich fraction was isolated from it by solid-phase extraction. In-source collision-induced dissociation and tandem MS were used to obtain the sequence of the suspected peptides. Several peptides, including Met–Enk, Leu–Enk, Leu–Enk–Lys, bovine adrenal medullary (BAM)-12 (Met–Enk–RRVGRPE), Leu–Enk–Arg, and YGGT, were unambiguously identified. The first four peptides are the products of proenkephalin A precursor protein and Leu–Enk–Arg belongs to the dynorphin family and is derived from proenkephalin B (prodynorphin) precursor. The database search revealed that YGGT is a part of the sequence of five different precursor proteins.  相似文献   

11.
The molecular forms of opioid peptides in human adrenal have not been well characterised. These peptides are predominantly derived from the proenkephalin A precursor, which has the sequence of Met-enkephalin(Arg6,Phe7) as its carboxyl terminus. We have looked in the present study at the subcellular distribution and the molecular form of immunoreactivity to this sequence in post-mortem human adrenal medulla and in phaeochromocytoma. In the human adrenal homogenates, the immunoreactivity distributes on a sucrose gradient in a manner consistent with localisation in chromaffin granules. On chromatography, the immunoreactivity from adrenal medulla is predominantly in the heptapeptide form; the intermediate (3000–4000) molecular weight material is only a minor component of immunoreactivity, in contrast to bovine tissue extracts where this is the major form of immunoreactivity. In the phaeochromocytoma extracts, the heptapeptide sequence again predominates over a minor amount of intermediate sized material. The results are discussed in terms of post-mortem changes, precursor processing and the function of the adrenal medulla.  相似文献   

12.
Carboxypeptidase H is one of several enzymes required for the processing of peptide hormone precursors. In this study, inhibition of carboxypeptidase H by its peptide products was investigated. Carboxypeptidase H activity in bovine adrenal medulla chromaffin granules and rat adrenal medulla homogenate was inhibited by the peptides Met- and Leu-enkephalin, vasopressin, oxytocin, luteinizing hormone-releasing hormone, substance P, and thyrotropin-releasing hormone, with oxytocin and ACTH 1-14 having the least effect, at concentrations of 2-20 mM. Inhibition by amidated peptide products (vasopressin, oxytocin, luteinizing hormone-releasing hormone, substance P, and thyrotropin-releasing hormone) show that the final products of the precursor processing pathway can regulate carboxypeptidase H. These levels of peptides are similar to known intragranular peptide concentrations indicating that product and feedback inhibition of carboxypeptidase H may play a role in the control of neuropeptide synthesis. The proenkephalin-derived peptides Met-enkephalin, Leu-enkephalin, Met-enkephalin-Arg6-Gly7-Leu8, and Met-enkephalin-Arg6-Phe7 competitively inhibited bovine and rat carboxypeptidase H with Ki values of 12.0, 6.5, 7.0, and 5.5 mM, respectively. The significantly greater Ki for Met-enkephalin may reflect the effects of higher intragranular concentration of Met-enkephalin, since one proenkephalin molecule contains four copies of Met-enkephalin and only one copy of each of the other enkephalin peptides. Thus, the products from one multivalent precursor molecule may equivalently inhibit carboxypeptidase H activity. Product inhibition of carboxypeptidase H and perhaps other processing enzymes may serve to limit the maximum peptide concentration within the secretory vesicle.  相似文献   

13.
We have used an antiserum to a synthetic peptide fragment of bovine chromogranin A (ChrgA)[Tyr0] bovine ChrgA (306-313): YLSKEWEDA, together with antibodies to proenkephalin-derived peptides, to measure the release of immunoreactive peptides from nicotine-stimulated cultured bovine adrenal chromaffin cells. Over a period of 6 hr the accumulation of YLSKEWEDA immunoreactivity and Met-enkephalin Arg6Gly7Leu8 (MERGL) immunoreactivity in the medium of 10 microM nicotine-stimulated cells was shown to be biphasic; the initial phase occurred in the first 15-30 min and the second phase reached a peak after 4 hr. In contrast, catecholamine release occurred monophasically over the initial 15-30 min. Investigation of the second phase of peptide accumulation revealed that it was due in part to nicotine-evoked exocytosis and in part to extracellular processing of high molecular weight precursor proteins.  相似文献   

14.
Nicotine acts in CNS, but the pathways and mechanisms of its actions are poorly understood. Recent studies suggest an interaction between brain nicotinic receptors and endogenous opioid peptides. Acute administration of nicotine may alter enkephalin release without affecting brain enkephalin level. Tyr-Gly-Gly has been shown previously to be an extraneuronal metabolite of opioid peptides derived from proenkephalin A. Concentrations of Tyr-Gly-Gly in brain were used to provide an index of enkephalin release in vivo. Thus we examined the thesis that nicotine alters brain neuronal enkephalin release, by measuring Tyr-Gly-Gly levels in specific brain nuclei from rats treated with nicotine 0.3 mg/kg SC 10 min before decapitation. Of 30 brain regions investigated, acute nicotine increased Tyr-Gly-Gly immunoreactivity in nucleus accumbens and in lower brain stem areas including dorsal raphe, pontine reticular formation, gigantocellular reticular formation, locus coeruleus, sensory trigeminal nucleus and the caudal part of ventrolateral medulla oblongata. Concomitantly, nicotine produced a significant decrease in native Met-enkephalin in central amygdala, flocculo-nodular lobe of cerebellum, caudal part of the ventrolateral medulla and intermediolateral cell column of the spinal cord. It is probable that the effects of nicotine to increase Tyr-Gly-Gly and alter Met-enkephalin concentration are mediated by nicotine-induced release of enkephalin at these brain sites. Furthermore, some of the physiologic and pharmacologic effects of nicotine may be mediated by such enkephalin release.  相似文献   

15.
Abstract: The primary sequence of adrenal proenkephalin was recently deduced from the structure of the cloned cDNA that codes for this protein. Several enkephalin-containing proteins with molecular weights between 8,000 and 20,000 daltons were purified from the bovine adrenal medulla. These proteins appear to represent intermediates in the processing of proenkephalin into physiologically active opioid peptides. While the concentrations of these large processing intermediates in the adrenal medulla are quite high, similar proteins have not yet been shown to be present in brain, and there is some question as to whether the brain synthesizes an enkephalin precursor similar to adrenal proenkephalin. We report here the purification from bovine caudate nucleus of synenkephalin, the N-terminal fragment of adrenal proenkephalin. The amino acid composition of synenkephalin indicates that the protein represents residues 1–70 of adrenal proenkephalin. Thus the brain and adrenal glands appear to utilize a similar precursor for enkephalin biosynthesis.  相似文献   

16.
Abstract: Affinity chromatography has been used for rapid and high-yield purification of synenkephalin (proenkephalin 1 -70) containing peptides present in bovine adrenal medulla (BAM) chromaffin granular lysate. A column of CN-Br-activated Sepharose 4B coupled to synenkephalin antiserum bound synenkephalin immunoreactivity which was eluted by a stepwise gradient of 50 mM ammonium acetate containing 20% (vol/vol) acetonitrile over the pH range 7–3. Synenkephalin immunoreactivity emerged as two peaks, eluting at pH 5.5 and 4.5. Characterization of the two peaks by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting indicated that the pH 5.5 peak contained principally low-molecular-weight proenkephalin species (8.6 and 12.6 kilodaltons), whereas the pH 4.5 peak contained, in addition, high-molecular-weight proenkephalin species (18.2 and 23.3 kilodaltons). The 8.6- and 12.6- kilodalton species were isolated from the pH 5.5 peak by TSK gel filtration HPLC, whereas the pH 4.5 peak was further purified by passage over successive affinity columns coupled to antiserum against BAM 22P (proenkephalin 182–203) and [Met5]-enkephalin-Arg6-Gly7-Leu8. The former column retains the 23.3-kilodalton species, whereas the latter column retains the 18.2-kilodalton species. The 23.3- kilodalton peptide represents a novel putative proenkephalin intermediate (proenkephalin-1–206), containing [Leu5]- enkephalin at the C-terminus.  相似文献   

17.
Non-opioid actions of opioid peptides   总被引:6,自引:0,他引:6  
Beside the well known actions of opioid peptides on mu-, delta- and kappa-opioid receptors, increasing amount of pharmacological and biochemical evidence has recently been published about non-opioid actions of various opioid peptides. These effects are not abolished by naloxone treatments. Such non-opioid effects are observed both in nervous tissues and in the cellular elements of the immune system. Peptides exhibiting non-opioid effects include beta-endorphin, dynorphin A, nociceptin/OFQ, endomorphins, hemorphins and a number of Proenkephalin A derived peptides, such as Met-enkephalin, Met-enkephalin-Arg-Phe (MERF) and bovine adrenal medullary peptide (BAM22). Non-opioid actions are exerted through different neuronal receptors, e.g., dynorphin hyperalgesia through NMDA receptor, Met-enkephalin induced regulation of cell growth through zeta receptors, pain modulation by nociceptin through ORL-1 or NOP receptors, while BAM22 acts through sensory neuron specific G protein-coupled receptors (SNSR). We have investigated Met-enkephalin-Arg-Phe (MERF) and its analogues by the means of direct and indirect radioligand binding assays. It has been found that in addition to kappa(2) and delta-opioid receptors, MERF can act also through sigma(2)- or probably via FMRF-NH(2) receptors in rat cerebellum. A role of functionally assembling heterodimer receptors in mediating the non-conventional actions of these peptide ligands can not be excluded as well.  相似文献   

18.
Concentrations of mRNA coding for the opioid peptide precursor proenkephalin A were measured in bovine brain areas, pituitary and adrenal medulla. In all tissues, a single hybridizable species of 1400 bases in size was found by Northern blot analysis using as a probe a single-stranded (ss) cDNA complementary to bovine proenkephalin A mRNA. In solution hybridization experiments the distribution of the mRNA was quantified. Considerable differences were found for the abundance of proenkephalin A mRNA in the various tissues: from 0.023% in the adrenal medulla to 0.00002% in the adenohypophysis. Relative abundance in the various brain areas varied greater than 20-fold, being highest in the caudate nucleus (0.0025%) and lowest in the thalamus and substantia nigra (0.0001%). Comparison with immunoreactive peptide concentrations in these tissues showed a close correlation between the levels of proenkephalin A mRNA and the immunoreactive peptides.  相似文献   

19.
Regulation of Proenkephalin Synthesis in Adrenal Medullary Chromaffin Cells   总被引:4,自引:4,他引:0  
The synthesis of proenkephalin was assessed in primary cultures of bovine adrenal medullary chromaffin cells by incubation of the cells with [35S]methionine, digestion of proenkephalin-derived peptides with trypsin and carboxy-peptidase B, and quantitation of radioactivity incorporated into Met-enkephalin following reversed-phase HPLC. Nicotine, histamine, and vasoactive intestinal peptide each enhanced the rate of proenkephalin synthesis approximately 10-fold when examined between 16 and 32 h after the drug or hormone addition. Inclusion of nifedipine (1 microM) partially blocked the stimulatory effect of nicotine, but not that of vasoactive intestinal peptide or histamine, or proenkephalin synthesis. Theophylline, tetrabenazine, and angiotensin II also increased the rate of proenkephalin synthesis (three- to eight-fold). These increases in the apparent rate of proenkephalin synthesis were not attributable to altered [35S]methionine specific radioactivity or rates of turnover and did not reflect similar increases in total protein synthesis. The half-life for turnover of Met-enkephalin sequences was 3-4 days in the cultured chromaffin cell. These studies directly show that proenkephalin synthesis is the primary regulatory step in control of chromaffin cell opioid peptide content.  相似文献   

20.
The distribution of synenkephalin, the N-terminal fragment of proenkephalin, was studied in various parts of the bovine brain (globus pallidus, caudate nucleus, hypothalamus) and in the posterior pituitary by the use of a radioimmunoassay. The distribution of synenkephalin-immunoreactivity (IR) was compared to the distribution of Met-enkephalin-IR. Gel exclusion chromatography was used to examine the molecular forms of the immunoreactivities present in the tissues. The distribution of synenkephalin-IR was similar to the distribution of Met-enkephalin-IR, with a molar ratio of Met-enkephalin/synenkephalin ranging between 2.7 and 5.9. In all regions tested except the hypothalamus the synenkephalin-IR was present as a single species. However, in the hypothalamus a small amount of IR material (3% of the total synenkephalin-IR) was detected in fractions where larger Met-enkephalin-containing peptides eluted. Based on the concordance between the molar ratio of Met-enkephalin to synenkephalin found in the tissues and the molar ratio present in the sequence of adrenal proenkephalin, it is concluded that the brain and adrenal glands utilize a similar precursor for enkephalin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号