共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutational analysis of a prokaryotic recombinational enhancer element with two functions. 总被引:37,自引:6,他引:37
下载免费PDF全文

The site-specific DNA inversion system Cin encoded by the bacteriophage P1 consists of a recombinase, two inverted crossing-over sites and a recombinational enhancer. The latter approximately 75 bp long genetic element is bifunctional due to its location within the 5' part of the cin gene encoding the recombinase. In order to determine the essential nucleotides for each of its two biological functions we randomly mutated the recombinational enhancer sequence sis(P1) and analysed both functions of the mutants obtained. Three distinct regions of this sequence were found to be important for the enhancer activity. One of them occupies the middle third of the enhancer sequence and it can suffer a number of functionally neutral base substitutions, while others are detrimental. The other two regions occupy the two flanking thirds of the enhancer. They coincide with binding sites of the host-coded protein FIS (Factor for Inversion Stimulation) needed for efficient DNA inversion in vitro. These sequences appear to be highly evolved allowing only a few mutations without affecting either of the biological functions. Taking the effect of mutations within these FIS binding sites into account a consensus sequence for the interaction with FIS was compiled. This FIS consensus implies a palindromic structure for the recombinational enhancer. This is in line with the orientation independence of enhancer action with respect to the crossing-over sites. 相似文献
2.
Bent DNA functions as a replication enhancer in Saccharomyces cerevisiae. 总被引:14,自引:11,他引:14
下载免费PDF全文

Previous studies have demonstrated that bent DNA is a conserved property of Saccharomyces cerevisiae autonomously replicating sequences (ARSs). Here we showed that bending elements are contained within ARS subdomains identified by others as replication enhancers. To provide a direct test for the function of this unusual structure, we analyzed the ARS activity of plasmids that contained synthetic bent DNA substituted for the natural bending element in yeast ARS1. The results demonstrated that deletion of the natural bending locus impaired ARS activity which was restored to a near wild-type level with synthetic bent DNA. Since the only obvious common features of the natural and synthetic bending elements are the sequence patterns that give rise to DNA bending, the results suggest that the bent structure per se is crucial for ARS function. 相似文献
3.
DNA conformational change in Gal repressor-operator complex: involvement of central G-C base pair(s) of dyad symmetry. 总被引:2,自引:1,他引:2
下载免费PDF全文

Gal repressor dimer binds to two gal operator sites, OE and OI, which are 16 bp long similar sequences with hyphenated dyad symmetries (11,12). Repressor occupation hinders the reactivity of the N7 atoms in the major groups of guanines, located at positions 1, 3 and 8, and the rotational 1', 3' and 8' of the symmetries. We have shown that Gal repressor binding to OE or OI DNA fragments increases the circular dichroism (CD) spectral peak in the 270 to 300 nm range. The CD change is similar to that observed for Lac repressor binding to its operator site (14). It is consistent with a DNA conformational change during complex formation between Gal repressor and OE and OI DNA. The CD spectral change was not observed when the central 8,8' G-C base pairs in the DNA-protein complex were replaced by A-T base pairs, whereas substitution of the 1,1' G-C base pairs do show the accompanying increase in the spectra during repressor binding. The absence of CD change of the Gal repressor complex with DNA mutated at the 8,8' base pairs suggest that the central G-C base pairs are required for the repressor induced conformational change. 相似文献
4.
Schwartz EK Wright WD Ehmsen KT Evans JE Stahlberg H Heyer WD 《Molecular and cellular biology》2012,32(15):3065-3080
The formation of crossovers is a fundamental genetic process. The XPF-family endonuclease Mus81-Mms4 (Eme1) contributes significantly to crossing over in eukaryotes. A key question is whether Mus81-Mms4 can process Holliday junctions that contain four uninterrupted strands. Holliday junction cleavage requires the coordination of two active sites, necessitating the assembly of two Mus81-Mms4 heterodimers. Contrary to this expectation, we show that Saccharomyces cerevisiae Mus81-Mms4 exists as a single heterodimer both in solution and when bound to DNA substrates in vitro. Consistently, immunoprecipitation experiments demonstrate that Mus81-Mms4 does not multimerize in vivo. Moreover, chromatin-bound Mus81-Mms4 does not detectably form higher-order multimers. We show that Cdc5 kinase activates Mus81-Mms4 nuclease activity on 3' flaps and Holliday junctions in vitro but that activation does not induce a preference for Holliday junctions and does not induce multimerization of the Mus81-Mms4 heterodimer. These data support a model in which Mus81-Mms4 cleaves nicked recombination intermediates such as displacement loops (D-loops), nicked Holliday junctions, or 3' flaps but not intact Holliday junctions with four uninterrupted strands. We infer that Mus81-dependent crossing over occurs in a noncanonical manner that does not involve the coordinated cleavage of classic Holliday junctions. 相似文献
5.
Autoregulation of fos: the dyad symmetry element as the major target of repression. 总被引:34,自引:12,他引:34
H K?nig H Ponta U Rahmsdorf M Büscher A Sch?nthal H J Rahmsdorf P Herrlich 《The EMBO journal》1989,8(9):2559-2566
Fos and Jun co-operatively repress the fos promoter. Removal of all putative Fos/Jun binding sites from the fos promoter neither obliterates the repression by Fos/Jun in transient cotransfection experiments in NIH3T3 cells nor the turn-off kinetics of serum-induced fos expression in stably transfected NIH3T3 cells. The dyad symmetry element (DSE) suffices to subject a promoter to this type of repression. However, one of the putative Fos/Jun binding sites (-292 to -299 and thus located immediately adjacent to the DSE), determines the very low level of basal expression. 相似文献
6.
7.
The adenovirus inverted terminal repeat functions as an enhancer in a cell-free system 总被引:6,自引:0,他引:6
V J Miralles P Cortes N Stone D Reinberg 《The Journal of biological chemistry》1989,264(18):10763-10772
8.
9.
10.
11.
12.
13.
The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon 总被引:5,自引:0,他引:5
Miyagi S Nishimoto M Saito T Ninomiya M Sawamoto K Okano H Muramatsu M Oguro H Iwama A Okuda A 《The Journal of biological chemistry》2006,281(19):13374-13381
Sox2 is expressed at high levels in neuroepithelial stem cells and persists in neural stem/progenitor cells throughout adulthood. We showed previously that the Sox2 regulatory region 2 (SRR2) drives strong expression in these cells. Here we generated transgenic mouse strains with the beta-geo reporter gene under the control of the SRR2 in order to examine the spatiotemporal function of this regulatory region. We show that the SRR2 functions specifically in neural stem/progenitor cells. However, unlike Nestin 2nd intronic enhancer, the SRR2 shows strong regional specificity functioning only in restricted areas of the telencephalon but not in any other portions of the central nervous system such as the spinal cord. We also show by in vitro clonogenic assay that at least some of these SRR2-functioning cells possess the hallmark properties of neural stem cells. In adult brains, we could detect strong beta-geo expression in the subventricular zone of the lateral ventricle and along the rostral migrating stream where actively dividing cells reside. Chromatin immunoprecipitation assays reveal interactions of POU and Sox factors with SRR2 in neural stem/progenitor cells. Our data also suggest that the specific recruitment of these proteins to the SRR2 in the telencephalon defines the spatiotemporal activity of the enhancer in the developing nervous system. 相似文献
14.
Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair
下载免费PDF全文

RecR, together with RecF and RecO, facilitates RecA loading in the RecF pathway of homologous recombinational DNA repair in procaryotes. The human Rad52 protein is a functional counterpart of RecFOR. We present here the crystal structure of RecR from Deinococcus radiodurans (DR RecR). A monomer of DR RecR has a two-domain structure: the N-terminal domain with a helix-hairpin-helix (HhH) motif and the C-terminal domain with a Cys4 zinc-finger motif, a Toprim domain and a Walker B motif. Four such monomers form a ring-shaped tetramer of 222 symmetry with a central hole of 30-35 angstroms diameter. In the crystal, two tetramers are concatenated, implying that the RecR tetramer is capable of opening and closing. We also show that DR RecR binds to both dsDNA and ssDNA, and that its HhH motif is essential for DNA binding. 相似文献
15.
16.
The generation of concatemeric plasmid DNA in Bacillus subtilis as a consequence of bacteriophage SPP1 infection. 总被引:3,自引:1,他引:3
下载免费PDF全文

Bacteriophage SPP1 infection of Bacillus subtilis cells bearing plasmids induces the synthesis of multigenome-length plasmid molecules. Two independent pathways can account for this synthesis. In one of those, homology to the phage genome is required, whereas in the other such homology is not a prerequisite. In wild type cells both modes overlap. In dnaB(Ts), at non permissive temperature, or in recE polA strains the main concatemeric plasmid replication mode is the homology-dependent plasmid (hdp) mode. The rate of recombination-dependent concatemeric plasmid DNA synthesis is a consequence of a phage-plasmid interaction which leads to chimeric phage::plasmid DNA. The second mode, which is an homology-independent plasmid (hip) mode seems to be triggered upon the synthesis of a phage encoded product(s) (e.g. inactivation of the exonuclease V enzyme). 相似文献
17.
The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. 总被引:1,自引:2,他引:1
In Drosophila, biogenesis of the major rhodopsin, Rh1, is dependent on the presence of a photoreceptor cell-specific cyclophilin, NinaA. In ninaA mutants, Rh1 is retained within the endoplasmic reticulum and rhodopsin levels are reduced > 100-fold. Cyclophilins have been shown to be peptidyl-prolyl cis-trans isomerases and have been implicated in catalyzing protein folding. We have generated transgenic animals expressing different functional rhodopsins containing a histidine tag. We isolated these molecules from wild-type and ninaA mutant retinas, and have demonstrated that in vivo NinaA forms a specific stable protein complex with its target Rh1. We also expressed ninaA under an inducible promoter and showed that NinaA is required quantitatively for Rh1 biogenesis. These results provide the first evidence for a biologically relevant physical interaction between a cyclophilin and its cellular target, and suggest that the normal cellular role of this class of cyclophilins is to function as chaperones, possibly escorting their protein substrates through the secretory pathway. 相似文献
18.
Reactions of cell nuclei on curvature of cylindrical surfaces (curvature radii 333, 75 or 61 mcm) in 9 lines of cultured transformed human, Syrian hamster, rat and murine fibroblasts were studied quantitatively. The nuclear elongation was assessed as a ratio of long to short axes. Contact orientation was characterized by values derived from the angles, formed by long nuclear axes with the direction of cylinder axis. Due to transformation, cells lost the ability to elongate their nuclei in response to cultivation on cylindrical surfaces. The ability of cells cultured on cylindrical surfaces to increase the contact orientation values was also lost or weakened considerably. 相似文献
19.
20.
Stimulation of DNA inversion by FIS: evidence for enhancer-independent contacts with the Gin-gix complex. 总被引:1,自引:0,他引:1
下载免费PDF全文

Efficient DNA inversion catalysed by the invertase Gin requires the cis-acting recombinational enhancer and the Escherichia coliFIS protein. Binding of FIS bends the enhancer DNA and, on a negatively supercoiled DNA inversion substrate, facilitates the formation of a synaptic complex with specific topology. Previous studies have indicated that FIS-independent Gin mutants can be isolated which have lost the topological constraints imposed on the inversion reaction yet remain sensitive to the stimulatory effect of FIS. Whether the effect of FIS is purely architectural, or whether in addition direct protein contacts between Gin and FIS are required for efficient catalysis has remained an unresolved question. Here we show that FIS mutants impaired in DNA binding are capable of either positively or negatively affecting the inversion reaction both in vivo and in vitro. We further demonstrate that the mutant protein FIS K25E/V66A/M67T dramatically enhances the cleavage of recombination sites by FIS-independent Gin in an enhancer-independent manner. Our observations suggest that FIS plays a dual role in the inversion reaction and stimulates both the assembly of the synaptic complex as well as DNA strand cleavage. 相似文献