首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The demand for automation of liquid-liquid extraction (LLE) in drug analysis combined with the demand for reduced sample preparation time has led to the recent development of liquid-phase microextraction (LPME) based on disposable hollow fibres. In LPME, target drugs are extracted from aqueous biological samples, through a thin layer of organic solvent immobilised within the pores of the wall of a porous hollow fibre, and into an microl volume of acceptor solution inside the lumen of the hollow fibre. After extraction, the acceptor solution is subjected directly to a final analysis either by high performance liquid chromatography (HPLC), capillary electrophoresis (CE), mass spectrometry (MS), or capillary gas chromatography (GC) without any further treatments. Hollow fibre-based LPME may provide high enrichment of drugs and excellent sample clean-up, and probably has a broad application potential within the area of drug analysis. This review focuses on the principle of LPME, and recent applications of three-phase, two-phase, and carrier mediated LPME of drugs from plasma, whole blood, urine, and breast milk.  相似文献   

2.
The behaviour of weak basic analytes in liquid-phase microextraction (LPME) and the optimisation of parameters in whole blood are described. Benzodiazepines and non-benzodiazepine drugs were chosen as model substances. Liquid-phase microextraction based on disposable polypropylene hollow fibres was used in the three-phase extraction of five weak bases from whole blood. The sample work up with the liquid-phase microextraction technique can be impeded by low recovery due to incomplete trapping in the acceptor phase of weakly basic drugs and the complexity of the whole blood matrix. Different parameters related to this problem were experimentally studied. Additionally the stability of the analytes was examined because of low pH in the acceptor phase. The investigation resulted in optimised LPME conditions for the extraction of weak bases from whole blood. The parameters limiting the recovery were evaluated.  相似文献   

3.
We report a method for the simultaneous determination of methamphetamine, amphetamine and their hydroxylated metabolites in plasma and urine samples using a GC-NPD system. The analytical procedures are: (1) adjust the sample to pH 11.5 with bicarbonate buffer, saturate with NaCl and extract with acetate; (2) back-extract the amines in the ethyl acetate fraction with 0.1 M HCl; (3) adjust the pH of the acid fraction to 11.5 and follow by extraction in ethyl acetate; (4) reduce the volume of ethyl acetate under nitrogen and derivatize the concentrate with trifluoroacetic anhydride or heptaflourobutyric anhydride before the GC analysis. The derivatives were separated on a GC-NPD system equipped with a HP-5 column of 25 m×0.32 m I.D. and a 0.52 μm film of 5% phenylmethylsilicone. The detection limit (taking a signal-to-noise ratio of 2) of heptafluorobutyl derivatives of methamphetamine and its metabolites in plasma and the trifluoroacetyl derivatives in urine was 1 ng/ml (22 pg on column). The limit of quantitation of the heptafluorobutyl derivatives in the plasma was 1 ng/ml (22 pg on column), and that of the trifluoroacetyl derivatives in urine was 20 ng/ml (73 pg on column). The between-day variation was from 0.9 to 17.4% and within-day variation from 0.9 to 8.3%. This method was used successfully in the quantitative determination of methamphetamine and its p-hydroxylated metabolites in the plasma and urine of human subjects.  相似文献   

4.
Hatami M  Farhadi K  Tukmechi A 《Chirality》2012,24(8):634-639
The applicability of two-phase liquid-phase micro-extraction (LPME) in porous hollow polypropylene fiber for the sample preparation and the stereoselective pharmacokinetics of mebeverine (MEB) enantiomers (an antispasmodic drug) in rat after intramuscular administration were studied. Plasma was assayed for MEB enantiomer concentrations using stereospecific high-performance liquid chromatography with ultraviolet detection after a simple, inexpensive, and efficient preconcentration and clean-up hollow fiber-based LPME. Under optimized micro-extraction conditions, MEB enantiomers were extracted with 25 μl of 1-octanol within a lumen of a hollow fiber from 0.5 ml of plasma previously diluted with 4.5 ml alkalized water (pH 10). The chromatographic analysis was carried out through chiral liquid chromatography using a DELTA S column and hexane-isopropyl alcohol (85:15 v/v) containing 0.2% triethylamine as mobile phase. The mean recoveries of (+)-MEB and (-)-MEB were 75.5% and 71.0%, respectively. The limit of detection (LOD) was 3.0 ng/ml with linear response over the concentration range of 10-2500 ng/ml with correlation coefficient higher than 0.993 for both enantiomers. The pharmacokinetic studies showed that the mean plasma levels of (+)-MEB were higher than those of (-)-MEB at almost all time points. Also, (+)-MEB exhibited greater t(max) (peak time in concentration-time profile), C(max) (peak concentration in concentration-time profile), t(1/2) (elimination half-life), and AUC(0-240 min) (area under the curve for concentration versus time) and smaller CL (clearance) and V(d) (apparent distribution volume) than its antipode. The obtained results implied that the absorption, distribution, and elimination of (-)-MEB were more rapid than those of (+)-MEB and there were stereoselective differences in pharmacokinetics.  相似文献   

5.
A reversed-phase ion-pair high-performance liquid chromatography method for the determination of acyclovir and its metabolite 9-carboxymethoxymethylguanine is described. The samples are purified by reversed-phase solid-phase extraction. The components are separated on a C18 column with a mobile phase containing 18% acetonitrile, 5 mM dodecyl sulphate and 30 mM phosphate buffer, pH 2.1, and measured by fluorescence detection using an excitation wavelength of 285 nm and an emission wavelenght of 380 nm. Detection limits are 0.12 μM (plasma)) and 0.60 μM (urine) for acyclovir, and 0.26 μM (plasma) and 1.3 μM (urine) for metabolite. Correlation coefficients that were better than 0.998 were obtained normally. This analytical method, which enables simultaneous measurement of parent compound and metabolite, has been used in kinetics studies and for therapeutic drug monitoring in different patient groups with variable degrees of renal dysfunction.  相似文献   

6.
A selective and sensitive HPLC assay for the quantitative determination of a new antifilarial drug, 6,4′-bis-(2-imidazolinylhydrazone)-2-phenylimidazo[1,2-a]pyridine (CDR 101) is described. After extraction from plasma and blood, CDR 101 was analysed using a C18 Nucleosil ODS column (250×4.6 mm, 5 μm particle size) and mobile phase of acetonitrile-0.05 M ammonium acetate adjusted to pH 3.0, with UV detection at 318 nm. The mean recoveries of CDR 101 in plasma and blood over a concentration range of 25–500 ng/ml were 95.5±2.01% and 83.3±1.87%, respectively. The within-day and day-to-day coefficient of variations for plasma were 3.23-6.21% and 2.59-9.90%, respectively, those for blood were 2.59-5.92% and 2.89-6.82%, respectively. The minimum detectable concentration for CDR 101 was 1 ng/ml in plasma and 2.5 ng/ml in whole blood. This method was found to be suitable for clinical pharmacokinetic studies.  相似文献   

7.
The determination of drug-protein binding and free drug concentration in plasma applying the equilibrium sampling through membrane (ESTM) technique has been studied using supported liquid membrane extraction in a single hollow fibre without any membrane carrier. In the extraction setup, the donor phase (plasma or buffer) was placed in the vial, into which was immersed the hollow fibre with the acceptor phase situated in the lumen. This proposed technique was applied to study the drug-protein binding of five local anaesthetics and two antidepressants as model substances, and the influence of the total drug concentration on the drug-protein binding was investigated. The brief theoretical background for determination of the drug-protein binding under equilibrium conditions is described. The developed method shows a new, improved and simple procedure for determination of free drug concentration in plasma and extent of drug-protein binding.  相似文献   

8.
A method is described for the determination of pyronaridine in plasma using high-performance liquid chromatography with fluorescence detection. The method involves liquid-liquid extraction with phosphate buffer (pH 6.0, 0.05 M) and diethyl ether-hexane (70:30%, v/v) and chromatographic separation on a C18 column (Nucleosil, 250 × 4.6 mm I.D., 5 μm particle size) with acetonitrile-0.05 M phosphate buffer pH 6.0 (60:40%, v/v) as the mobile phase (1 ml/min) and detection by fluorescence (λex = 267 nm, λem = 443 nm). The detector response is linear up to 1000 ng and the overall recoveries pyronaridine and quinine were 90.0 and 60.3%, respectively. The assay procedure was adequately sensitive to measure 10 ng/ml pyronaridine in plasma samples with acceptable precision (< 15% C.V.). The method was found to be suitable for use in clinical pharmacological studies.  相似文献   

9.
A method for the simultaneous determination of the three selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine, paroxetine and their metabolites in whole blood and plasma was developed. Sample clean-up and separation were achieved using a solid-phase extraction method with C8 non-endcapped columns followed by reversed-phase high-performance liquid chromatography with fluorescence and ultraviolet detection. The robustness of the solid-phase extraction method was tested for citalopram, fluoxetine, paroxetine, Cl-citalopram and the internal standard, protriptyline, using a fractional factorial design with nine factors at two levels. The fractional factorial design showed two significant effects for paroxetine in whole blood. The robustness testing for citalopram, fluoxetine, Cl-citalopram and the internal standard revealed no significant main effects in whole blood and plasma. The optimization and the robustness of the high-performance liquid chromatographic separation were investigated with regard to pH and relative amount of acetonitrile in the mobile phase by a central composite design circumscribed. No alteration in the elution order and no significant change in resolution for a deviation of ±1% acetonitrile and ±0.3 pH units from the specified conditions were observed. The method was validated for the concentration range 0.050–5.0 μmol/l with fluorescence detection and 0.12–5.0 μmol/l with ultraviolet detection. The limits of quantitation were 0.025 μmol/l for citalopram and paroxetine, 0.050 μmol/l for desmethyl citalopram, di-desmethyl citalopram and citalopram-N-oxide, 0.12 μmol/l for the paroxetine metabolites by fluorescence detection, and 0.10 μmol/l for fluoxetine and norfluoxetine by ultraviolet detection. Relative standard deviations for the within-day and between-day precision were in the ranges 1.4–10.6% and 3.1–20.3%, respectively. Recoveries were in the 63–114% range for citalopram, fluoxetine and paroxetine, and in the 38–95% range for the metabolites. The method has been used for the analysis of whole blood and plasma samples from SSRI-exposed patients and forensic cases.  相似文献   

10.
Flax fibres (Linum usitatissimum L.) were subjected to chemical and enzymatic analysis in order to determine the compositional changes brought about by the retting process and also to determine the accessibility of the fibre polymers to enzymatic treatment. Chemical analysis involved subjecting both retted and non retted fibres to a series of sequential chemical extractions with 1% ammonium oxalate, 0.05 M KOH, 1 M KOH and 4 M KOH. Retting was shown to cause minimal weight loss from the fibres but caused significant changes to the pectic polymers present. Retted fibres were shown to have significantly lower amounts of rhamnogalacturonan as well as arabinan and xylan. In addition the average molecular mass of the pectic extracts was considerably lowered. Enzyme treatment of the 1 M KOH extracts with two different enzymes demonstrated that the non retted extract contained a relatively high molecular weight xylan not found in the retted extract. Treatment of the 1 M KOH extracts and the fibres with Endoglucanase V from Trichoderma viride demonstrated that while this enzyme solubilised cellulose as well as xylan and xyloglucan oligomers from the extract, it had limited access to these polymers on the fibre. MALDI-TOF MS analysis of the material solubilised from the extract suggested that the xylan was randomly substituted with 4-O-methyl glucuronic acid moieties. The xyloglucan was shown to be of the XXXG type and was substituted with galactose and fucose units. The enzyme treatments of the fibres demonstrated that the xylan and xyloglucan polymers in the fibres were not accessible to the enzyme but that material which was entrapped by the cellulose could be released by the hydrolysis of this cellulose.  相似文献   

11.
Liquid phase microextraction (LPME), especially hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) offer high enrichments of target analytes in a single step. The analytical usefulness of these techniques is significantly enhanced by coupling them with suitable derivatization methods. Due to their simplicity, diverse bioanalytical applications have recently been reported. This review focuses on the recent developments of the combined LPME (mainly HF-LPME and single drop microextraction (SDME)) and DLLME techniques with derivatization for the analysis of biological samples. A broad range of sample matrices such as urine, blood, plasma and human hair samples with various derivatization methods for polar or ionizable organic compounds will be considered. These techniques can also be extended to the determination of trace metal ions, such as the heavy metal ions (Hg, Pb, and Co) and Se. Future trends of the techniques will also be discussed.  相似文献   

12.
A sensitive stereoselective HPLC method was developed for determination of mefloquine (MFQ) enantiomers in plasma, urine and whole blood. The assay involved liquid-liquid extraction of MFQ from biological fluids with a mixture of hexane and isopropanol in the presence of sodium hydroxide and derivatization of the residue by (+)-(S)-naphthylethylisocyanate (NEIC) as chiral derivatizing reagent. Separation of the resulting diastereomers was performed on a silica normal-phase column using chloroform-hexane-methanol (25:74:1) as the mobile phase with a flow-rate of 1 ml/min. Using 200 μl of plasma or whole blood, the limit of determination was 0.2 μg/ml with UV detection for both enantiomers. The limit of determination in 500 μl of urine was 0.08 μg/ml with UV detection.  相似文献   

13.
A sensitive, selective and efficient reversed-phase high-performance liquid chromatographic (HPLC) method is reported for the determination of furosemide in human plasma and urine. The method has a sensitivity limit of 5 ng/ml in plasma, with acceptable within- and between-day reproducibilities and good linearity (r2>0.99) over a concentration range from 0.05 to 2.00 μg/ml. The one-step extract of furosemide and the internal standard (warfarin) from acidified plasma or urine was eluted through a μBondapak C18 column with a mobile phase composed of 0.01 M potassium dihydrogenphosphate and acetonitrile (62:38, v/v) adjusted to pH 3.0. Within-day coefficients of variation (C.V.s) ranged from 1.08 to 8.63% for plasma and from 2.52 to 3.10% for urine, whereas between-day C.V.s ranged from 4.25 to 10.77% for plasma and from 5.15 to 6.81% for urine at three different concentrations. The minimum quantifiable concentration of furosemide was determined to be 5 ng/ml. The HPLC method described has the capability of rapid and reproducible measurement of low levels of furosemide in small amounts of plasma and urine. This method was utilized in bioavailability/pharmacokinetic studies for the routine monitoring of furosemide levels in adults, children and neonate patients.  相似文献   

14.
Kraiczi, H., G. Karlsson and R. Ekman. Analytical extraction of regulatory peptides from rat lung tissue. Peptides 18(10) 1597–1601, 1997.—We evaluated protocols for the extraction of calcitonin gene-related peptide, neuropeptide Y, substance P, peptide YY and β-endorphin from rat lung tissue for subsequent radioimmunoassay. The effects of varying acidity of the extraction solution and repeating extraction on the recovery of peptide immunoreactivity and non-specific tracer-binding were compared by analysis of variance. Moreover, variability of immunoreactivity was quantified for comparison. Considering all three criteria, the optimal acidity for extraction was: 0.1 M or 1 M acetic acid for CGRP and β-endorphin, 0.1 M acetic acid for NPY, 1 M acetic acid for substance P and phosphate buffer for peptide YY. Double or combined extraction unambiguously improved assay results only for substance P. Reversed-phase high-performance liquid chromatography of CGRP-, NPY- and SP-immunoreactivity obtained from selected extracts suggested that differences in recovery of these peptides are not explainable by differential peptide fragmentation during extraction.  相似文献   

15.
A modified gas chromatographic—mass spectrometric (GC—MS) assay has been developed to quantitate metoclopramide (MCP) and two of its metabolites [monodeethylated-MCP (mdMCP), dideethylated-MCP (ddMCP)] in the plasma, bile and urine of sheep. The heptafluorobutyryl derivatives of the compounds were formed and quantitated using electron-impact ionization in the selected-ion monitoring mode (MCP, m/z 86, 380; mdMCP, m/z 380 and ddMCP, m/z 380). No interference was observed from endogenous compounds following the extraction of various biological fluids obtained from non-pregnant sheep. Sample preparation has been simplified and the method is more selective and sensitive (2 fold) than our previous assay using electron-capture detection. The limit of quantitation for MCP, mdMCP and ddMCP was 1 ng/ml in plasma, urine and bile, requiring 0.5 ml of sample. This represents 2.5 pg of the analytes at the detector. The standard curves were linear over a working range of 1–40 ng/ml. Absolute recoveries in plasma ranged from 76.5–94.7%, 79.2–96.8%, 80.3–102.2% for MCP, mdMCP and ddMCP, respectively. In urine, recoveries ranged from 56.5–87.8%, 61.5–87.5%, 62.6–90.2% for MCP, mdMCP and ddMCP, respectively. Recoveries in bile ranged from 83.5–100.9%, 78.5–90.5%, 66.9–79.2% for MCP, mdMCP and ddMCP, respectively. Overall intra-day precision ranged from 2.9% for MCP in plasma to 12.6% for mdMCP in bile. Overall inter-day precision ranged from 5.9% for MCP in urine to 14.9% for ddMCP in bile. Bias was the greatest at the 1 ng/ml concentration in all biological fluids ranging from a low of 2.4% for mdMCP in plasma to a high of 11.9% for ddMCP in urine. Applicability of the assay for pharmacokinetic studies of MCP, mdMCP and ddMCP in the plasma and urine of a non-pregnant ewe is demonstrated.  相似文献   

16.
Amberlite XAD-2® quantitatively adsorbs prostaglandins from body fluids. This capacity can be used for the extraction of prostaglandins from human plasma, with recoveries greater than 80 percent. Simple methods have been designed to deal with both small and large volumes of plasma. The procedures described can be applied to the extraction of whole blood as well as of serum and plasma.  相似文献   

17.
A method based on liquid-liquid-liquid microextraction combined with corona discharge ion mobility spectrometry was developed for the analysis of amantadine in human urine and plasma samples. Amantadine was extracted from alkaline aqueous sample as donor phase through a thin phase of organic solvent (n-dodecane) filling the pores of the hollow fiber wall and then back extracted into the organic acceptor phase (methanol) located in the lumen of the hollow fiber. All variables affecting the extraction of analyte including acceptor organic solvent type, concentration of NaOH in donor phase, ionic strength of the sample and extraction time were studied. The linear range was 20-1000 and 5-250 ng/mL for plasma and urine, respectively (r(2)≥0.990). The limits of detection were calculated to be 7.2 and 1.6 ng/mL for plasma and urine, respectively. The relative standard deviation was lower than 8.2% for both urine and plasma samples. The enrichment factors were between 45 and 54. The method was successfully applied for the analysis of amantadine in urine and plasma samples.  相似文献   

18.
Solid-phase microextraction (SPME) is under investigation for its usefulness in the determination of a widening variety of volatile and semivolatile analytes in biological fluids and materials. Semivolatiles are increasingly under study as analytical targets, and difficulties with small partition coefficients and long equilibration times have been identified. Amphetamines were selected as semivolatiles exhibiting these limitations and methods to optimize their determination were investigated. A 100- micro m polydimethylsiloxane (PDMS)-coated SPME fiber was used for the extraction of the amphetamines from human urine. Amphetamine determination was made using gas chromatography (GC) with flame-ionization detection (FID). Temperature, time and salt saturation were optimized to obtain consistent extraction. A simple procedure for the analysis of amphetamine (AMP) and methamphetamine (MA) in urine was developed and another for 3,4-methylenedioxyamphetamine (MDA), 3,4-methylenedioxy-N-methamphetamine (MDMA) and 3,4-methylenedioxy-N-ethylamphetamine (MDEA) using headspace solid-phase microextraction (HS-SPME) and GC-FID. Higher recoveries were obtained for amphetamine (19.5-47%) and methamphetamine (20-38.1%) than MDA (5.1-6.6%), MDMA (7-9.6%) and MDEA (5.4-9.6%).  相似文献   

19.
A rapid, selective, sensitive and reproducible HPLC with recutive electrochemical detection for quantitatvie determination of artemether (ART) and its plasma metabolite, dihydroartemisinin (DHA: and β isomers) in plasma is described. The procedure involved the extraction of ART, DHA and the internal standard, artemisinin (ARN) with dichloromethane-tert.-methylbutyl ether (1:1, v/v) or n-butyl chloride-ethyl acetate (9:1, v/v). Chromatographic separation was performed with a mobile phase of acetonitrile-water (20:80, v/v) containing 0.1 M acetic acid pH 5.0, running through a μBondapak CN column. The method was capable of separating the two isomeric forms of DHA (, β). The retention times of -DHA, β-DHA, ARN and ART were 4.6, 5.9, 7.9 and 9.6 min, respectively. Validation of the assay method was performed using both extraction systems. The two extraction systems produced comparable recoveries of the various analytes. The average recoveries of ART, DHA and ARN over the concentration range 80–640 ng/ml were 86–93%. The coefficients of variation were below 10% for all three drugs (ART, -DHA, ARN). The minimum detectable concentrations for ART and -DHA in spiked plasma samples were 5 and 3 ng/ml, respectively. The method was found to be suitable for use in clinical pharmacokinetic study.  相似文献   

20.
A reversed-phase high-performance liquid chromatographic method was developed for the determination of 3′-hydroxy-5′-(4-isobutyl-1-piperazinyl)benzoxazinorifamycin (KRM-1648, I), a new rifamycin derivative, and its 25-deacetyl metabolite (KRM-1671, II) in plasma, whole blood, tissues and urine from rats. I and II were coextracted with an internal standard from each sample matrix by solid-phase extraction (Bond Elut). Plasma and urine were directly loaded onto Bond Elut, while whole blood and tissues were homogenized and extracted with methanol or dichloromethane—chloroform prior to Bond Elut extraction. The extracts were chromatographed on Shim-pack CLC-ODS(M) using acetonitrile—0.02 M citrate buffer containing 0.1 M sodium perchlorate (2:1, v/v), and peaks were detected at 643 nm. The validation data showed that the assays for I and II in plasma, whole blood, tissues and urine were selective, accurate and reproducible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号