首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preparation of cocaine analogues has been aimed largely at development of stable compounds with high affinity and selectivity for the dopamine transporter (DAT). We now report the synthesis and monoamine transporter affinity of 10 new 2beta-carbomethoxy-3beta-[4-(substituted thiophenyl)]phenyltropanes. Among these, compound 4b exhibited very high affinity for the serotonin transporter (SERT: K(i)=17 pM) and good selectivity over dopamine (DAT: 710-fold) and norepinephrine transporters (NET: 11,100-fold).  相似文献   

2.
A series of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-(substituted benzyl) piperidines with substituents at the ortho and meta positions in the aromatic ring of the N-benzyl side chain were synthesized and their affinities and selectivities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) were determined. One analogue, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine (the C(2)-trifluoromethyl substituted compound), has been found to act as an allosteric modulator of hSERT binding and function. It had little affinity for any of the transporters. Several compounds showed affinity for the DAT in the low nanomolar range and displayed a broad range of SERT/DAT selectivity ratios and very little affinity for the NET. The pharmacological tools provided by the availability of compounds with varying transporter affinity and selectivity could be used to obtain additional information about the properties a compound should have to act as a useful pharmacotherapeutic agent for cocaine addiction and help unravel the pharmacological mechanisms relevant to stimulant abuse.  相似文献   

3.
In our effort to delineate novel pharmacophoric configuration of bioisosteric pyran versions of cis-(6-benzhydryl-piperidin-3-yl)-benzylamine derivatives in interacting with the monoamine transporter, further structure-activity relationship study was carried out. Both cis and trans 2,4- and 3,6-disubstituted derivatives were synthesized to determine the positional importance of N-substitution on affinity for monoamine transporters, that is the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET) in rat brain. For that purpose, the potency of compounds was determined in competing for the binding of [(3)H]WIN 35,428, [(3)H]citalopram, and [(3)H]nisoxetine, respectively. Selected compounds were also evaluated for their activity in inhibiting the uptake of [(3)H]DA by DAT. Our binding results demonstrated potency in 3,6-disubstituted derivatives while 2,4-disubstituted derivatives failed to exhibit any appreciable binding affinity. Further structural exploration of the exocyclic N-atom in 3,6-disubstituted derivatives produced compounds potent at both DAT and NET. Compounds 16h and 16o with hydroxyl and amino groups in the phenyl moiety of the benzyl group produced the highest activity for the NET. In this regard, compound 16e with a methoxy substituent produced weak affinity at NET, which upon conversion into a hydroxyl functionality as in 16h produced potent affinity for the NET. Various indole derivatives displayed different interactions; the 5-substituted indole derivative 16n exerted potent affinity for NET, confirming the bioisosteric equivalence between this indole moiety and the phenyl-4-hydroxy group in 16h.  相似文献   

4.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

5.
A series of 2beta,3alpha-(substituted phenyl)nortropanes was synthesized and evaluated in vitro for human monoamine transporters. All compounds studied in this series exhibited nanomolar potency for the norepinephrine transporter (NET). Radiolabeling and nonhuman primate microPET brain imaging studies were performed with the most promising compound, [(11)C]1, to determine its utility as a NET imaging agent. Despite high in vitro affinity for the human NET, the high uptake of [(11)C]1 in the caudate and putamen excludes its use as an in vivo PET imaging agent for the NET.  相似文献   

6.
In our effort to further understand interaction of novel pyran derivatives with monoamine transporters, we have designed, synthesized, and biologically characterized side-chain-extended derivatives of our earlier developed cis- and trans-(6-benzhydryl-tetrahydro-pyran-3-yl)-benzylamine derivatives. Both 3- and 6-position extensions were explored. All synthesized derivatives were tested for their affinities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting the uptake of [(3)H]DA, [(3)H]5-HT, and [(3)H]NE, respectively. Compounds were also tested for their binding affinity at the DAT by their ability to inhibit binding of [(3)H]WIN 35, 428. The results indicated that extension at the 3-position resulted in loss of activity compared to the original compound I. On the other hand, extension at the 6-position resulted in improvement of activity in the compound cis-12 by 2-fold over the parent compound I indicating favorable interaction. In addition, two glycoside derivatives were designed, synthesized, and biologically characterized. The glycosidic trans-isomer 24 exhibited highest potency for the NET in the current series of compounds.  相似文献   

7.
A series of racemic 6-hydroxy and carboalkoxy substituted-4('),4"-difluorobenztropines was synthesized and evaluated for binding at the dopamine (DAT), the serotonin (SERT), the norepinephrine (NET) transporters, and the muscarinic M1 receptor. Each of the analogues displaced [(3)H]WIN 35,428 (DAT) with a range of affinities from 5.81 to 175 nM and [(3)H]pirenzepine (M1), with a range of affinities ( K(i)= -8430 nM). Binding affinities at the SERT and the NET were generally low.  相似文献   

8.
A series of front bridged tricyclic 3beta-(4'-halo or 4'-methyl)phenyltropanes bearing methylene or carbomethoxymethylene on the bridge to the 2beta-position was synthesized, and their binding affinities were determined in cells transfected to express human norepinephrine transporter (NET), serotonin transporter (SERT), and dopamine transporter (DAT) via competition binding assays. All compounds studied in this series exhibit a moderate to high potency at all three transporters with SERT or DAT selectivity. 3beta-(4'-iodo)phenyltropane bearing methylene on the bridge to the 2beta-position (24) presents a particularly attractive pharmacological profile, with very high SERT affinity (K(i) = 0.09 nM) and selectivity versus NET (65-fold) and DAT (94-fold).  相似文献   

9.
The 3'-iodo positional isomer of 2-beta-carbomethoxy-3-beta-(4'-iodophenyl)tropane (beta-CIT) and other 3'-substituted analogs were synthesized and evaluated for binding to monoamine transporters in rat forebrain and membranes of cell lines selectively expressing human transporter genes. All 3'-substituted compounds displayed affinity for both serotonin (SERT) and dopamine (DAT), but much less for norepinephrine transporters (NET), with selectivity for rat (r) or human (h) SERT over NET, but only 3'-iodo-substituted phenyltropanes showed selectivity for SERT versus DAT. The 3'-iodo, N-methyl analog of beta-CIT (7) displayed 29-fold selectivity and high affinity for hSERT (K(i) =9.6 nM) over hDAT (K(i) =279 nM), and its nor-congener (8) showed even higher hSERT potency (K(i) =1.2 nM) and selectivity over DAT (415-fold).  相似文献   

10.
A series of 2beta-alkynyl and 2beta-(1,2,3-triazol)substituted 3beta-(substituted phenyl)tropanes were synthesized and evaluated for affinities at dopamine, serotonin, and norepinephrine membrane transporters using competitive radioligand binding assays. All tested compounds were found to exhibit nanomolar or subnanomolar affinity for the dopamine transporter (DAT). One of the most potent and selective compounds in the series was 3beta-(4-chlorophenyl)-2beta-(4-nitrophenylethynyl)tropane (10c) that possessed an IC(50) value of 0.9nM at the DAT and K(i) values of 230nM and 620nM at the norepinephrine transporter (NET) and serotonin transporter (5-HTT), respectively.  相似文献   

11.
Human organic cation transporters (OCTs) represent an understudied neurotransmitter uptake mechanism for which no selective agents have yet been identified. Several neurotransmitters (e.g. serotonin, norepinephrine) are low-affinity substrates for these transporters, but possess higher affinity for other transporters (e.g. the serotonin or norepinephrine transporters; SERT and NET, respectively). We have identified a new class of OCT inhibitors with a phenylguanidine structural scaffold. Here, we examine the actions of a series of such compounds and report preliminary structure–activity relationships (SARs) – the first dedicated SAR study of OCT3 action. Initial results showed that the presence of a substituent on the phenyl ring, as well as its position, contributes to the phenylguanidines’ inhibitory potency (IC50 values ranging from 2.2 to >450 μM) at hOCT3. There is a trend towards enhanced inhibitory potency of phenylguanidines with increased lipophilic character and the size of the substituent at the phenyl 4-position, with the latter reaching a ceiling effect. The first PiPT-based hOCT3 homology models were generated and are in agreement with our biological data.  相似文献   

12.
A series of 3alpha-(4-substituted)nortropane-2beta-carboxylic acid methyl esters was synthesized and evaluated for the ability to inhibit radioligand binding at the dopamine, serotonin, and norepinephrine transporters. 3alpha-(4-Methylphenyl)nortropane-2beta-carboxylic acid methyl ester (4c) was found to be selective and highly potent for the norepinephrine transporter (NET) relative to the dopamine and serotonin transporters.  相似文献   

13.
11C-labeled (+)-trans-2-[[(3R,4S)-4-(4-chlorophenyl)-1-methylpiperidin-3-yl]methylsulfanyl]ethanol ([11C]5) and (+)-trans-2-[[(3R,4S)-4-(4-chlorophenyl)-1-methylpiperidin-3-yl]methylsulfanyl]-1-(piperidin-1-yl)ethanone ([11C]6) were synthesized and evaluated as new imaging agents for the norepinephrine transporter (NET). [11C]5 and [11C]6 display high affinity for the NET in vitro (Ki = 0.94 and 0.68 nM, respectively) and significant selectivity over the dopamine (DAT) and serotonin transporters (SERT). Because of their high affinity and favorable transporter selectivities we speculated that these ligands might serve as useful PET agents for imaging NET in vivo. Contrary to our expectations, both of these ligands provided brain images that were more typical of those shown by agents binding to the DAT.  相似文献   

14.
A series of novel fluoroalkyl-containing tropane derivatives (6-8, 10-14, 17, and 18) were synthesized from cocaine. Novel compounds were evaluated for affinity and selectivity in competitive radioligand binding assays selective for cerebral serotonin (5-HT), dopamine (DA), and norepinephrine (NE) transporters (SERT, DAT, and NET). The nortropane-fluoroalkyl esters (7, 10, 11) were most potent for SERT (K(i): 0.18, 0.24, and 0.30 nM, respectively). Tosylate esters 17 and 18, synthesized as precursors for [(18)F]-labeled, Positron Emission Tomography (PET) imaging agents, also showed high affinity for DAT.  相似文献   

15.
Novel chiral cyclohexylaryl amines were developed with potent reuptake inhibition against the serotonin, norepinephrine and dopamine transporters and activity at 10 and 30 mpk PO in the mouse tail suspension test. Prototype compound 31 (SERT, NET, DAT IC50 ? 1, 21, 28 nM) was highly brain penetrant, had minimal CYP and hERG inhibition, and represents a previously undisclosed architecture with potential for treatment of major depressive disorder.  相似文献   

16.
Our earlier effort to develop constrained analogues of flexible piperidine derivatives for monoamine transporters led to the development of a series of 3,6-disubstituted piperidine derivatives, and a series of 4,8-disubstituted 1,4-diazabicyclo[3.3.1]nonane derivatives. In further structure-activity relationship (SAR) studies on these constrained derivatives, several novel analogues were developed where an exocyclic hydroxyl group was introduced on the N-alkyl-aryl side chain. All synthesized derivatives were tested for their affinities for the dopamine transporter (DAT), serotonin (5-HT) transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting the uptake of [(3)H]DA, [(3)H]5-HT, and [(3)H]NE, respectively. Compounds were also tested for their binding potency at the DAT by their ability to inhibit binding of [(3)H]WIN 35,428. The results indicated that position of the hydroxyl group on the N-alkyl side chain is important along with the length of the side chain. In general, hydroxyl derivatives derived from more constrained bicyclic diamines exhibited greater selectivity for interaction with DAT compared to the corresponding 3,6-disubstituted diamines. In the current series of molecules, compound 11b with N-propyl side chain with the hydroxyl group attached in the benzylic position was the most potent and selective for DAT (K(i)=8.63nM; SERT/DAT=172 and NET/DAT=48.4).  相似文献   

17.
The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used as treatment of depression and anxiety disorders or as psychostimulant drugs of abuse. Despite their clinical importance, the molecular mechanisms by which various types of antidepressant drugs bind and inhibit SERT and NET are still elusive for the majority of the inhibitors, including the molecular basis for SERT/NET selectivity. Mutational analyses have suggested that a central substrate binding site (denoted the S1 pocket) also harbors an inhibitor binding site. In this study, we determine the effect of mutating six key S1 residues in human SERT (hSERT) and NET (hNET) on the potency of 15 prototypical SERT/NET inhibitors belonging to different drug classes. Analysis of the resulting drug sensitivity profiles provides novel information on drug binding modes in hSERT and hNET and identifies specific S1 residues as important molecular determinants for inhibitor potency and hSERT/hNET selectivity.  相似文献   

18.
The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET+/?), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface‐resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET+/? mouse establishes an activated state of existing surface NET proteins. The NET+/? mice exhibit increased anxiety in the open field and light–dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET+/? mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET+/? mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders .  相似文献   

19.
Ester analogs of (+/-)3-(4-(3-(bis(4-fluorophenyl)amino)propyl)piperazin-1-yl)-1-phenylpropan-1-ol were synthesized and evaluated for binding at DAT, SERT, NET, and sigma1 receptors, and compared to GBR 12909 and several known sigma1 receptor ligands. Most of these compounds demonstrated high affinity (K(i)=4.3-51 nM) and selectivity for the DAT among the monoamine transporters. S- and R-1-(4-(3-(bis(4-fluorophenyl)amino)propyl)piperazin-1-yl)-3-phenylpropan-2-ol were also prepared wherein modest enantioselectivity was demonstrated at the DAT. However, no enantioselectivity at sigma1 receptors was observed and most of the ester analogs of the more active S-enantiomer showed comparable binding affinities at both DAT and sigma1 receptors with a maximal 16-fold DAT/sigma1 selectivity.  相似文献   

20.
The norepinephrine (NET) and dopamine (DAT) transporters are highly homologous proteins, displaying many pharmacological similarities. Both transport dopamine with higher affinity than norepinephrine and are targets for the psychostimulants cocaine and amphetamine. However, they strikingly contrast in their affinities for tricyclic antidepressants (TCA). Previous studies, based on chimeric proteins between DAT and NET suggest that domains ranging from putative transmembrane domain (TMD) 5 to 8 are involved in the high affinity binding of TCA to NET. We substituted 24 amino acids within this region in the human NET with their counterparts in the human DAT, resulting in 22 different mutants. Mutations of residues located in extra- or intracytoplasmic loops have no effect on binding affinity of neither TCA nor cocaine. Three point mutations in TMD6 (F316C), -7 (V356S), and -8 (G400L) induced a loss of TCA binding affinity of 8-, 5-, and 4-fold, respectively, without affecting the affinity of cocaine. The triple mutation F316C/V356S/G400L produced a 40-fold shift in desipramine affinity. These three residues are strongly conserved in all TCA-sensitive transporters cloned in mammalian and nonmammalian species. A strong shift in TCA affinity (IC(50)) was also observed for double mutants F316C/D336T (35-fold) and S399P/G400L (80-fold for nortriptyline and 1000-fold for desipramine). Reverse mutations P401S/L402G in hDAT did not elicit any gain in TCA affinities, whereas C318F and S358V resulted in a 3- and 10-fold increase in affinity, respectively. Our results clearly indicate that two residues located in TMD6 and -7 of hNET may play an important role in TCA interaction and that a critical region in TMD8 is likely to be involved in the tertiary structure allowing the high affinity binding of TCA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号