首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Australine [(1R,2R,3R,7S,7aR)-3-(hydroxymethyl)-1,2,7-trihydroxypyrrolizid ine] is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis [Molyneux et al. (1988) J. Nat. Prod. (in press)]. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, we tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the alpha-glucosidase amyloglucosidase (50% inhibition at 5.8 microM), but it did not inhibit beta-glucosidase, alpha- or beta-mannosidase, or alpha- or beta-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc3Man7-9(GlcNAc)2-oligosaccharides.  相似文献   

2.
Castanospermine (1,6,7,8-tetrahydroxyoctahydroindolizine) is an indolizidine alkaloid that was isolated from the Australian plant, Castanospermum australe. This alkaloid was found to be a potent inhibitor of lysosomal alpha- and beta-glucosidases. In this report, the mechanism of inhibition of amyloglucosidase (an exo-1,4-alpha-glucosidase) and almond emulsin beta-glucosidase was examined. Castanospermine proved to be a competitive inhibitor of amyloglucosidase at both pH 4.5 and 6.0 when assayed with the p-nitrophenyl-alpha-D-glucoside. It was also a competitive inhibitor of almond emulsin beta-glucosidase at pH 6.5, but in this case previous studies had shown that inhibition was of the mixed type at pH 4.5 to 5.0. Th pH of the incubation mixture had a marked effect on the inhibition. Thus, in all cases, castanospermine was a much better inhibitor at pH 6.0 to 6.5 than it was at lower pH values. The pK for castanospermine was found to be 6.09, indicating that the alkaloid was probably more active in the unprotonated form. This was also suggested by the fact that the N-oxide of castanospermine, while still a competitive inhibitor, was 50 to 100 times less active than was castanospermine, and its activity was not markedly altered by pH. These results probably explain why castanospermine is a good inhibitor of the glycoprotein processing enzyme, glucosidase I, since this is a neutral enzyme.  相似文献   

3.
A second indolizidine alkaloid, epimeric with castanospermine, has been isolated from seeds of the Australian tree Castanospermum australe. The structure was established as 6-epicastanospermine by proton and carbon-13 nuclear magnetic resonance spectroscopy and mass spectrometry. 6-Epicastanospermine was found to be a potent inhibitor of amyloglucosidase, (an exo-1,4,-α-glucosidase), a weak inhibitor of β-galactosidase, and not to inhibit β-glucosidase and α-mannosidase. These results indicate that glycosidase inhibitory activity cannot be predicted by comparison of the structure and stereochemistry with the appropriate sugars, since 6-epicastanospermine is an analog of mannose and not of glucose. The inhibition of amyloglucosidase was found to be competitive and to be more effective at higher pH values. Castanospermine and 6-epicastanospermine differed in their effect upon the mung bean processing enzymes, glucosidase I and II, in that the former is a potent inhibitor whereas the latter is a very poor inhibitor. Subtle alterations in stereochemistry of these alkaloids can therefore produce significant changes in their biological activity.  相似文献   

4.
Indole alkaloids from the leaves of Philippine Alstonia scholaris   总被引:4,自引:0,他引:4  
The first seco-uleine alkaloids, manilamine (1) (18-hydroxy-19,20-dehydro-7,21-seco-uleine) and N4-methyl angustilobine B (2), were isolated from the (pH 5) alkaloid extract of Philippine Alstonia scholaris leaves together with the known indole alkaloids 19,20-(E)-vallesamine (3), angustilobine B N4-oxide (4), 20(S)-tubotaiwine (5), and 6,7-seco-angustilobine B (6). The structure of the alkaloids was established from MS and NMR experiments.  相似文献   

5.
The inhibitory activity of Coptis chinensis rhizome-derived material was evaluated against sortase, a bacterial surface protein anchoring transpeptidase, from Staphylococcus aureus ATCC 6538p and compared to that of four commercially available isoquinoline alkaloids. The biologically active constituent of C. chinensis extract was characterized as the isoquinoline alkaloid, berberine chloride, by spectral analysis. The isolate was a potent inhibitor of sortase, with an IC50 value of 8.7 microg/ml and had antibacterial activity against Gram-positive bacteria with a minimum inhibitory concentration (MIC) in the range of 50-400 microg/ml. Among the four isoquinoline alkaloids tested, berberine chloride had strong inhibitory activity. These results indicate that berberine is a possible candidate for the development of a bacterial sortase inhibitor.  相似文献   

6.
Since the diamine putrescine can be metabolized into the pyrrolidine ring of tobacco alkaloids as well as into the higher polyamines, we have investigated the quantitative relationship between putrescine and these metabolites in tobacco callus cultured in vitro. We measured levels of free and conjugated putrescine and spermidine, and pyrrolidine alkaloids, as well as activities of the putrescine-biosynthetic enzymes arginine and ornithine decarboxylase. In callus grown on high (11.5 micromolar) α-naphthalene acetic acid, suboptimal for alkaloid biosynthesis, putrescine and spermidine conjugates were the main putrescine derivatives, while in callus grown on low (1.5 micromolar) α-naphthalene acetic acid, optimal for alkaloid formation, nornicotine and nicotine were the main putrescine derivatives. During callus development, a significant negative correlation was found between levels of perchloric acid-soluble putrescine conjugates and pyrrolidine alkaloids. The results suggest that bound putrescine can act as a pool for pyrrolidine alkaloid formation in systems where alkaloid biosynthesis is active. In addition, changes in arginine decarboxylase activity corresponding to increased alkaloid levels suggest a role for this enzyme in the overall biosynthesis of pyrrolidine alkaloids.  相似文献   

7.
Chemical studies of the Chinese herb Corydalis saxicola Bunting led to the isolation and identification of 14 alkaloids, 1-14. Seven of these compounds, 4-9 and 11, were obtained from this plant for the first time. Feruloylagmatine (7) is the first guanidine-type alkaloid to be identified in the family Papaveraceae and in dicotyledonous plants. All of the isolated compounds were assayed for inhibitory activity against human DNA topoisomerase I. A DNA cleavage assay demonstrated that these alkaloids specifically inhibit topoisomerase through stabilization of the enzyme-DNA complex. Among the isolated alkaloids, (-)-pallidine (8) and (-)-scoulerine (11) showed strong inhibitory activities toward topoisomerase I that were comparable to camptothecin, a typical topoisomerase I inhibitor. A preliminary structure-activity relationship study suggested that the quaternary ammonium ion might play an important role in topoisomerase I inhibition by the isoquinoline alkaloids. These data indicated that DNA topoisomerase I inhibition represents probably one of the anticarcinogenic mechanisms of C. saxicola.  相似文献   

8.
Robinson SL  Panaccione DG 《Mycologia》2012,104(4):804-812
Aspergillus fumigatus is an opportunistic human pathogen that synthesizes a group of mycotoxins via a branch of the ergot alkaloid pathway. This fungus is globally distributed, and genetic data indicate that isolates recombine freely over that range; however, previous work on ergot alkaloids has focused on a limited number of isolates. We hypothesized that A. fumigatus harbors variation in the chemotype of ergot alkaloids and genotype of the ergot alkaloid gene cluster. Analysis of 13 isolates by high performance liquid chromatography revealed four distinct ergot alkaloid profiles or chemotypes. Five isolates completed the A. fumigatus branch of the ergot alkaloid pathway to fumigaclavine C. Six independent isolates accumulated fumigaclavine A, the pathway intermediate immediately before fumigaclavine C. One isolate accumulated only the early pathway intermediates chanoclavine-i and chanocla-vine-i aldehyde, and one isolate lacked ergot alkaloids altogether. A genetic basis for each of the observed chemotypes was obtained either by PCR analysis of the ergot alkaloid gene cluster or through sequencing of easL, the gene encoding the prenyl transferase that reverse prenylates fumigaclavine A to fumigaclavine C. Isolates also exhibited differences in pigmentation and sporulation. The ergot alkaloid chemotypes were widely distributed geographically and among substrate of origin.  相似文献   

9.
We studied the effects of inhibitors of ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and spermidine synthase (Spd synthase) on organogenesis and the titers of polyamines (PA) and alkaloids in tobacco calli. DL--difluoromethylarginine (DFMA) and D-arginine (D-Arg), both inhibitors of ADC activity, were more effective than DL--difluoromethylornithine (DFMO), an inhibitor of ODC, in reducing titers of PA and the putrescine (Put)-derived alkaloids (nornicotine and nicotine). Dicyclohexylammonium sulfate (DCHA), an inhibitor of Spd synthase, was also more efficient than DFMO in reducing PA and alkaloid levels. Root organogenesis is inversely related to the titers of Put and alkaloids. Thus, DFMA and D-Arg, which strongly inhibit Put and alkaloid biosynthesis, markedly promote root organogenesis, while control callus with high Put and alkaloid content showed poor root organization. These results suggest that morphological differentiation is not required for activation of secondary metabolic pathways and support the view that ADC has a major role in the generation of Put going to the pyrrolidine ring of tobacco alkaloids.  相似文献   

10.
The chemical synthesis of swainsonine [(1S,2R,8R,8 alpha R)-trihydroxyindolizidine] from trans-1,4-dichloro-2-butene was previously described [Adams, C. E., Walker, F. J., & Sharpless, K. B. (1985) J. Org. Chem. 50, 420-424]. A modification of that synthesis provided two other isomers, referred to here as "Glc-swainsonine" [(1S,2S,8R,8 alpha R)-trihydroxyindolizidine] and "Ido-swainsonine" [(1S,2S,8S,8 alpha R)-trihydroxyindolizidine]. To determine whether these new compounds had biological activity, they were compared to swainsonine as inhibitors of a number of commercially available glycosidases. While swainsonine is a potent inhibitor of jack bean alpha-mannosidase but does not inhibit other glycosidases, its two isomers were inactive on alpha-mannosidase but did inhibit other enzymes. Thus, Glc-swainsonine was an inhibitor of the fungal alpha-glucosidase amyloglucosidase, and this inhibition was of a competitive nature (Ki = 5 X 10(-5) M) with respect to the substrate p-nitrophenyl alpha-D-glucopyranoside. This alkaloid also inhibited beta-glucosidase, but much less effectively than alpha-glucosidase. On the other hand, Ido-swainsonine was more effective toward beta-glucosidase than toward alpha-glucosidase, and this inhibition was also of a competitive nature. None of these inhibitors were effective against beta-mannosidase or alpha- or beta-galactosidase. Glc-swainsonine was also tested against the glycoprotein processing glycosidases. Surprisingly, in this respect, the alkaloid was like swainsonine in that it inhibited mannosidase II but had no effect or only slight effect on glucosidase I, glucosidase II, and mannosidase I. Glc-swainsonine also inhibited glycoprotein processing in cell culture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The occurrence and distribution of tropane and biogenetically related pyrrolidine alkaloids in 18 Merremia species of paleo-, neo-, and pantropical occurrence have been studied. The extensive GC-MS study included members of almost all sections of the genus and has been carried out with epigeal vegetative parts as well as with roots. It comprises altogether 74 tropanes and 13 pyrrolidines including nicotine. Along with datumetine known already from a solanaceous species, the study led to the isolation (from M. dissecta and M. guerichii, respectively) and structure elucidation (spectral data) of four novel 3alpha-acyloxytropanes, merresectines A-D: 3alpha-(4-methoxybenzoyloxy)nortropane (A), 3alpha-kurameroyloxytropane (B), 3alpha-nervogenoyloxytropane (C), 3alpha-[4-(beta-D-glucopyranosyloxy)-3-methoxy-5-(3-methyl-2-butenyl)benzoyloxy]tropane (beta-d-glucoside of D). Moreover, the novel 3alpha,6beta-di-(4-methoxybenzoyloxy)tropane (merredissine) has been isolated from M. dissecta and structurally elucidated. In addition the structures of datumetine and merresectine A could be confirmed by synthesis. Spectral data for two known 3alpha-acyloxytropanes (merresectine E beta-D-glucoside, 4'-dihydroconsabatine) and one known 3beta-acyloxytropane (concneorine) are documented for the first time. The structures of three further merresectines (F-H) have been determined by mass spectrometry. Furthermore, the linkage (2',3- and 2',4-, respectively) of two position isomer N-methylpyrrolidinylhygrines was proven by synthesis. The results of the study contribute to the solution of infrageneric taxonomic problems. Whereas all species yield pyrrolidine alkaloids without suitably differentiating results the diverging occurrence of tropane alkaloids leads to three groups of sections: (1) taxa free of tropanes, (2) taxa with simple tropanes, and (3) taxa with merresectines in addition to simple tropanes.  相似文献   

12.
Two new pyrrolidine alkaloids, ficushispimines A ( 1 ) and B ( 2 ), a new ω‐(dimethylamino)caprophenone alkaloid, ficushispimine C ( 3 ), and a new indolizidine alkaloid, ficushispidine ( 4 ), together with the known alkaloid 5 and 11 known isoprenylated flavonoids 6  –  16 , were isolated from the twigs of Ficus hispida. Their structures were elucidated by spectroscopic methods. Isoderrone ( 8 ), 3′‐(3‐methylbut‐2‐en‐1‐yl)biochanin A ( 11 ), myrsininone A ( 12 ), ficusin A ( 13 ), and 4′,5,7‐trihydroxy‐6‐[(1R*,6R*)‐3‐methyl‐6‐(1‐methylethenyl)cyclohex‐2‐en‐1‐yl]isoflavone ( 14 ) showed inhibitory effects on α‐glucosidase in vitro.  相似文献   

13.
Zhang X  Ye W  Zhao S  Che CT 《Phytochemistry》2004,65(7):929-932
Three isoquinoline alkaloids and an isoindole alkaloid, along with eight known compounds, were isolated from the roots of Menispermum dauricum (Menispermacese). The alkaloids were characterized as 7-hydroxy-6-methoxy-1(2H)-isoquinolinone, 6,7-dimethoxy-N-methyl-3,4-dioxo-1(2H)-isoquinolinone, 1-(4-hydroxybenzoyl)-7-hydroxy-6-methoxy-isoquinoline and 6-hydroxy-5-methoxy-N-methylphthalimide, on the basis of spectral evidence including 1D- and 2D-NMR and MS analyses.  相似文献   

14.
Introduction . Ammodendrine ( 1 ), anabasine ( 2 ) and coniine ( 3 ) can cause congenital malformations in livestock. They appear naturally in both enantiomeric forms, and can cause variable physiological responses. A method to measure the enantiomeric ratio of these natural toxins is needed. Objective . To develop a simple and economical method in order to determine the enantiomeric ratios of piperidine and pyrrolidine alkaloids in small samples of plant material. Methodology . Mixtures of isolated or purified plant alkaloids were converted to their Fmoc‐l ‐Ala‐alkaloid analogues forming diastereomeric mixtures, which were then analysed by high pressure liquid chromatography (HPLC) with mass spectrometry (MS) and ultraviolet (UV) detection to determine enantiomeric ratios. Results . The diastereomeric analogs for ammodendrine, anabasine and nornicotine could be separated and the enantiomeric ratios determined. The Fmoc‐l ‐Ala‐coniine analogue was not resolved under the HPLC conditions studied. The enantiomeric ratios of the selected plant alkaloids were measured and found to differ between both location within a species and location between species. Conclusion . A low‐cost HPLC method to analyse the enantiomeric ratio of plant alkaloids containing primary or secondary amine nitrogens via conversion to their respective diastereomeric analogues has been developed. Published in 2008 by John Wiley & Sons.  相似文献   

15.
A procedure was developed to isolate and determine ergot alkaloid production by Acremonium coenophialum, the endophytic fungus of tall fescue. The procedure established that macerated leaf sheath or pith from inflorescence stem placed either in a liquid medium or on a corn meal-malt extract agar medium produced isolated mycelium and characteristic conidia within a 3- to 3.5-week period. Once isolated, each fungus was placed in another liquid medium, M104T, where competent strains produced total ergot alkaloids ranging from 38 to 797 mg/liter. Several isolates were negative for ergot alkaloid synthesis. The production of ergot alkaloids by individual isolates was unstable; isolates rapidly degenerated in their ability to produce ergot alkaloids during subculture. However, the procedure as presented allows the assessment of an isolate for ergot alkaloid synthesis during its initial isolation.  相似文献   

16.
The alkaloids lycorine, 1-O-acetyllycorine and ismine were isolated from the basic dichloromethane-soluble fraction of Crinum x powellii "Albu m" bulbs. The alkaloid structures were established by physical and spectroscopic analyses, including 1D NMR techniques and GC-MS analysis. The three alkaloids are reported for the first time for this hybrid. Additionally, the three alkaloids isolated were tested against a mechanism-based bioassay utilizing genetically engineered mutants of the yeast Saccharomyces cerevisiae strains RAD+, RAD52Y and RS321 where lycorine was the only alkaloid that displayed moderate topoisomerase I inhibitory activity.  相似文献   

17.
C W Bacon 《Applied microbiology》1988,54(11):2615-2618
A procedure was developed to isolate and determine ergot alkaloid production by Acremonium coenophialum, the endophytic fungus of tall fescue. The procedure established that macerated leaf sheath or pith from inflorescence stem placed either in a liquid medium or on a corn meal-malt extract agar medium produced isolated mycelium and characteristic conidia within a 3- to 3.5-week period. Once isolated, each fungus was placed in another liquid medium, M104T, where competent strains produced total ergot alkaloids ranging from 38 to 797 mg/liter. Several isolates were negative for ergot alkaloid synthesis. The production of ergot alkaloids by individual isolates was unstable; isolates rapidly degenerated in their ability to produce ergot alkaloids during subculture. However, the procedure as presented allows the assessment of an isolate for ergot alkaloid synthesis during its initial isolation.  相似文献   

18.
Uncaria tomentosa cell suspension cultures were grown in a 2-L stirred tank bioreactor operating at a shear rate gamma(.)(avg)=86 s(-1). The cultures showed an early monophasic oxidative burst measured as H2O2 production (2.15 micromol H2O2 g(-1) dw). This response was followed by a transient production of monoterpenoid oxindole alkaloids (178 +/- 40 microg L(-1) at 24 h). At the stationary phase (144 h), the increase of the shear rate gamma(.)(avg) up to 150 s(-1) and/or oxygen tension up to 85% generated H2O2, restoring oxindole alkaloid production. U. tomentosa cells cultured in Erlenmeyer flasks also exhibited the monophasic oxidative burst but the H2O2 production was 16-fold lower and the alkaloids were not detected. These cells exposed to H2O2 generated in situ produced oxindole alkaloids reaching a maximum of 234 +/- 40 microg L(-1). A positive correlation was observed between the oxindole alkaloid production and the endogenous H2O2 level. On the other hand, addition of 1 microM diphenyleneiodonium (NAD(P)H oxidase inhibitor) or 10 microM sodium azide (peroxidases inhibitor) reduced both H2O2 production and oxindole alkaloids build up, suggesting that these enzymes might play a role in the oxidative burst induced by the hydrodynamic stress.  相似文献   

19.
The alkaloid composition of Convolvulus lanatus was investigated by GLC and GLC-MS. Altogether, thirteen tropane and pyrrolidine alkaloids were identified on the basis of mass spectral data and/or Kovats retention indices. Twelve of them have been recorded for the first time in this plant and some of these alkaloids were identified for the first time in the genus Convolvulus. Cuscohygrine is the major constituent. Qualitative and quantitative differences of root and aerial parts are discussed.  相似文献   

20.
Lentiginosine, a dihydroxyindolizidine alkaloid, was extracted from the leaves of Astragalus lentiginosus with hot methanol and was purified to homogeneity by ion-exchange, thin-layer, and radial chromatography. A second dihydroxyindolizidine, the 2-epimer of lentiginosine, was also purified to apparent homogeneity from these extracts. Gas chromatography of the two isomers (as the TMS derivatives) showed that they were better than 95% pure; lentiginosine eluted at 8.65 min and the 2-epimer at 9.00 min. Both compounds had a molecular ion in their mass spectra of 157, and the NMR spectra demonstrated that both were dihydroxyindolizidines differing in the configuration of the hydroxyl group at carbon 2. Lentiginosine was found to be a reasonably good inhibitor of the fungal alpha-glucosidase, amyloglucosidase (Ki = 1 x 10(-5) M), but it did not inhibit other alpha-glucosidases (i.e., sucrase, maltase, yeast alpha-glucosidase, glucosidase I) nor any other glycosidases. The 2-epimer had no activity against any of the glycosidases tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号