首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human renal dipeptidase is a membrane-bound glycoprotein hydrolyzing dipeptides and is involved in hydrolytic metabolism of penem and carbapenem beta-lactam antibiotics. The crystal structures of the saccharide-trimmed enzyme are determined as unliganded and inhibitor-liganded forms. They are informative for designing new antibiotics that are not hydrolyzed by this enzyme. The active site in each of the (alpha/beta)(8) barrel subunits of the homodimeric molecule is composed of binuclear zinc ions bridged by the Glu125 side-chain located at the bottom of the barrel, and it faces toward the microvillar membrane of a kidney tubule. A dipeptidyl moiety of the therapeutically used cilastatin inhibitor is fully accommodated in the active-site pocket, which is small enough for precise recognition of dipeptide substrates. The barrel and active-site architectures utilizing catalytic metal ions exhibit unexpected similarities to those of the murine adenosine deaminase and the catalytic domain of the bacterial urease.  相似文献   

2.
PepV from Lactobacillus delbrueckii, a dinuclear zinc peptidase, has been characterized as an unspecific amino dipeptidase. The crystal structure of PepV in complex with the phosphinic inhibitor AspPsi[PO(2)CH(2)]AlaOH, a dipeptide substrate mimetic, reveals a "catalytic domain" and a "lid domain," which together form an internal active site cavity that traps the inhibitor. The catalytic domain is topologically similar to catalytic domains from amino- and carboxypeptidases. However, the lid domain is unique among the related enzymes. In contrast to the other related exopeptidases, PepV recognizes and fixes the dipeptide backbone, while the side chains are not specifically probed and can vary, rendering it a nonspecific dipeptidase. The cocrystallized inhibitor illustrates the two roles of the two catalytic zinc ions, namely stabilization of the tetrahedral intermediate and activation of the catalytic water molecule.  相似文献   

3.
Isoaspartyl dipeptidase (IAD) is a member of the amidohydrolase superfamily and catalyzes the hydrolytic cleavage of beta-aspartyl dipeptides. Structural studies of the wild-type enzyme have demonstrated that the active site consists of a binuclear metal center positioned at the C-terminal end of a (beta/alpha)(8)-barrel domain. Steady-state kinetic parameters for the hydrolysis of beta-aspartyl dipeptides were obtained at pH 8.1. The pH-rate profiles for the hydrolysis of beta-Asp-Leu were obtained for the Zn/Zn-, Co/Co-, Ni/Ni-, and Cd/Cd-substituted forms of IAD. Bell-shaped profiles were observed for k(cat) and k(cat)/K(m) as a function of pH for all four metal-substituted forms. The pK(a) of the group that must be unprotonated for catalytic activity varied according to the specific metal ion bound in the active site, whereas the pK(a) of the group that must be protonated for catalytic activity was relatively independent of the specific metal ion present. The identity of the group that must be unprotonated for catalytic activity was consistent with the hydroxide that bridges the two divalent cations of the binuclear metal center. The identity of the group that must be protonated for activity was consistent with the free alpha-amino group of the dipeptide substrate. Kinetic constants were obtained for the mutant enzymes at conserved residues Glu77, Tyr137, Arg169, Arg233, Asp285, and Ser289. The catalytic properties of the wild-type and mutant enzymes, coupled with the X-ray crystal structure of the D285N mutant complexed with beta-Asp-His, are consistent with a chemical reaction mechanism for the hydrolysis of dipeptides that is initiated by the polarization of the amide bond via complexation to the beta-metal ion of the binuclear metal center. Nucleophilic attack by the bridging hydroxide is facilitated by abstraction of its proton by the side chain carboxylate of Asp285. Collapse of the tetrahedral intermediate and cleavage of the carbon-nitrogen bond occur with donation of a proton from the protonated form of Asp285.  相似文献   

4.
Isoaspartyl dipeptidase from Escherichia coli functions in protein degradation by catalyzing the hydrolysis of beta-L-isoaspartyl linkages in dipeptides. The best substrate for the enzyme reported thus far is iso-Asp-Leu. Here we report the X-ray analysis of the enzyme in its resting state and complexed with aspartate to 1.65 and 2.1 A resolution, respectively. The quaternary structure of the enzyme is octameric and can be aptly described as a tetramer of dimers. Each subunit folds into two distinct domains: the N-terminal region containing eight strands of mixed beta-sheet and the C-terminal motif that is dominated by a (beta,alpha)(8)-barrel. A binuclear zinc center is located in each subunit at the C-terminal end of the (beta,alpha)(8)-barrel. Ligands to the binuclear metal center include His 68, His 70, His 201, His 230, and Asp 285. The two zincs are bridged by a carboxylated lysine residue (Lys 162) and a solvent molecule, most likely a hydroxide ion. The product of the reaction, aspartate, binds to the enzyme by displacing the bridging solvent with its side chain functional group. From this investigation it is proposed that the reaction mechanism of the enzyme proceeds through a tetrahedral intermediate and that the bridging solvent attacks the re face of the carbonyl carbon of the scissile peptide bond. This structural analysis confirms the placement of isoaspartyl dipeptidase into the urease-related amidohydrolase superfamily.  相似文献   

5.
We describe the expression, purification, and biochemical characterization of two homologous enzymes, with amidohydrolase activities, of plant (Lupinus luteus potassium-independent asparaginase, LlA) and bacterial (Escherichia coli, ybiK/spt/iaaA gene product, EcAIII) origin. Both enzymes were expressed in E. coli cells, with (LlA) or without (EcAIII) a His-tag sequence. The proteins were purified, yielding 6 or 30 mg.L(-1) of culture, respectively. The enzymes are heat-stable up to 60 degrees C and show both isoaspartyl dipeptidase and l-asparaginase activities. Kinetic parameters for both enzymatic reactions have been determined, showing that the isoaspartyl peptidase activity is the dominating one. Despite sequence similarity to aspartylglucosaminidases, no aspartylglucosaminidase activity could be detected. Phylogenetic analysis demonstrated the relationship of these proteins to other asparaginases and aspartylglucosaminidases and suggested their classification as N-terminal nucleophile hydrolases. This is consistent with the observed autocatalytic breakdown of the immature proteins into two subunits, with liberation of an N-terminal threonine as a potential catalytic residue.  相似文献   

6.
Peptidases of Prevotella spp. play an important role in the breakdown of protein to ammonia in the rumen. This study describes a peptidase cloned from Prevotella albensis M384. DNA from P. albensis was used to complement a peptidase-deficient strain of Escherichia coli, CM107. A cloned fragment, Pep581, which enabled growth of E. coli CM107, contained an ORF of 1452 bp, encoding a 484 amino acid residue protein with a calculated molecular weight of 53.2 kDa and a theoretical pI of 4.90. Pep581 shared similar sequence identity of 47% with PepD from E. coli, and it was also a metallo-aminopeptidase. A putative catalytic metal binding region was identified in Pep581, similar to that found in the related PepT (a tripeptidase) and PepA (an oligopeptidase). Gel filtration indicated Pep581 was a dimer in its native state, similar to PepD of E. coli. PepD is a broad specificity dipeptidase that has been found in several prokaryotes. The enzyme expressed from Pep581 differed from PepD enzymes previously characterised in that it hydrolysed tri- and oligopeptides in addition to dipeptides, cleaving single amino acids from the N terminus.  相似文献   

7.
Salmonella enterica serovar Typhimurium peptidase E (PepE) is an N-terminal Asp-specific dipeptidase. PepE is not inhibited by any of the classical peptidase inhibitors, and its amino acid sequence does not place it in any of the known peptidase structural classes. A comparison of the amino acid sequence of PepE with a number of related sequences has allowed us to define the amino acid residues that are strongly conserved in this family. To ensure the validity of this comparison, we have expressed one of the most distantly related relatives (Xenopus) in Escherichia coli and have shown that it is indeed an Asp-specific dipeptidase with properties very similar to those of serovar Typhimurium PepE. The sequence comparison suggests that PepE is a serine hydrolase. We have used site-directed mutagenesis to change all of the conserved Ser, His, and Asp residues and have found that Ser120, His157, and Asp135 are all required for activity. Conversion of Ser120 to Cys leads to severely reduced (10(4)-fold) but still detectable activity, and this activity but not that of the parent is inhibited by thiol reagents; these results confirm that this residue is likely to be the catalytic nucleophile. These results suggest that PepE is the prototype of a new family of serine peptidases. The phylogenetic distribution of the family is unusual, since representatives are found in eubacteria, an insect (Drosophila), and a vertebrate (Xenopus) but not in the Archaea or in any of the other eukaryotes for which genome sequences are available.  相似文献   

8.
Spontaneous formation of isoaspartyl residues (isoAsp) disrupts the structure and function of many normal proteins. Protein isoaspartyl methyltransferase (PIMT) reverts many isoAsp residues to aspartate as a protein repair process. We have determined the crystal structure of human protein isoaspartyl methyltransferase (HPIMT) complexed with adenosyl homocysteine (AdoHcy) to 1.6-A resolution. The core structure has a nucleotide binding domain motif, which is structurally homologous with the N-terminal domain of the bacterial Thermotoga maritima PIMT. Highly conserved residues in PIMTs among different phyla are placed at positions critical to AdoHcy binding and orienting the isoAsp residue substrate for methylation. The AdoHcy is completely enclosed within the HPIMT and a conformational change must occur to allow exchange with adenosyl methionine (AdoMet). An ordered sequential enzyme mechanism is supported because C-terminal residues involved with AdoHcy binding also form the isoAsp peptide binding site, and a change of conformation to allow AdoHcy to escape would preclude peptide binding. Modeling experiments indicated isoAsp groups observed in some known protein crystal structures could bind to the HPIMT active site.  相似文献   

9.
The protein SpoIVB plays a key role in signaling in the final sigma(K) checkpoint of Bacillus subtilis. This regulatory mechanism coordinates late gene expression during development in this organism and we have recently shown SpoIVB to be a serine peptidase. SpoIVB signals by transiting a membrane, undergoing self-cleavage, and then by an unknown mechanism activating a zinc metalloprotease, SpoIVFB, which cleaves pro-final sigma(K) to its active form, final sigma(K), in the outer mother cell chamber of the developing cell. In this work we have characterized the serine peptidase domain of SpoIVB. Alignment of SpoIVB with homologues from other spore formers has allowed site-specific mutagenesis of all potential active site residues within the peptidase domain. We have defined the putative catalytic domain of the SpoIVB serine peptidase as a 160-amino-acid residue segment at the carboxyl terminus of the protein. His236 and Ser378 are the most important residues for proteolysis, with Asp363 being the most probable third member of the catalytic triad. In addition, we have shown that mutations at residues Asn290 and His394 lead to delayed signaling in the final sigma(K) checkpoint. The active site residues suggest that SpoIVB and its homologues from other spore formers are members of a new family of serine peptidases of the trypsin superfamily.  相似文献   

10.
Peptidase E (PepE) is a nonclassical serine peptidase with a Ser-His-Glu catalytic triad. It is specific for dipeptides with an N-terminal aspartate residue (Asp-X dipeptidase activity). Its homolog from Listeria monocytogenes (PepElm) has a Ser-His-Asn “catalytic triad.” Based on sequence alignment we predicted that the PepE homolog from Deinococcus radiodurans (PepEdr) would have a Ser-His-Asp “catalytic triad.” We confirmed this by solving the crystal structure of PepEdr to 2.7 Å resolution. We show that PepElm and PepEdr lack the Asp-X dipeptidase activity. Our analyses suggest that absence of P1 pocket in the active site could be the main reason for this lack of typical activity. Sequence and structural data reveal that the PepE homologs can be divided into long and short PepEs based on presence or absence of a C-terminal tail which adopts a β-hairpin conformation in the canonical PepE from Salmonella enterica. A long PepE from Bacillus subtilis with Ser-His-Asp catalytic triad exhibits Asp-X dipeptidase activity. Whereas the three long PepEs enzymatically characterized till date have been found to possess the Asp-X dipeptidase activity, the three enzymatically characterized short PepEs lack this activity irrespective of the nature of their catalytic triads. This study illuminates the structural and functional heterogeneity in the S51 family and also provides structural basis for the functional variability among PepE homologs.  相似文献   

11.
The structure of peptidase T, or tripeptidase, was determined by multiple wavelength anomalous dispersion (MAD) methodology and refined to 2.4 A resolution. Peptidase T comprises two domains; a catalytic domain with an active site containing two metal ions, and a smaller domain formed through a long insertion into the catalytic domain. The two metal ions, presumably zinc, are separated by 3.3 A, and are coordinated by five carboxylate and histidine ligands. The molecular surface of the active site is negatively charged. Peptidase T has the same basic fold as carboxypeptidase G2. When the structures of the two enzymes are superimposed, a number of homologous residues, not evident from the sequence alone, could be identified. Comparison of the active sites of peptidase T, carboxypeptidase G2, Aeromonas proteolytica aminopeptidase, carboxypeptidase A and leucine aminopeptidase reveals a common structural framework with interesting similarities and differences in the active sites and in the zinc coordination. A putative binding site for the C-terminal end of the tripeptide substrate was found at a peptidase T specific fingerprint sequence motif.  相似文献   

12.
The role of the HELLGH (residues 450-455) motif in the sequence of rat dipeptidyl peptidase III (EC 3.4.14.4) was investigated by replacing Glu451 with an alanine or an aspartic acid residue and by replacing His450 and His455 with a tyrosine residue by site-directed mutagenesis. Mutated cDNAs were expressed three or four times in Escherichia coli, and the resulting proteins were purified to apparent homogeneity. None of the expressed mutated proteins exhibited DPP III activity. The mutants of Glu451 contained 1 mol of zinc per mole of protein, but mutants His450 and His455 did not contain significant amounts of zinc as determined by atomic absorption spectrometry. The Leu453-deleted enzyme (having the zinc aminopeptidase motif HExxH-18-E) had almost the same order of binding affinity (for Arg-Arg-2-naphthylamide) as the wild-type enzyme, but the specificity constant was about 10%. These results provide evidence that the suitable number of amino acids included between Glu451 and His455 is three residues for the enzyme activity and confirm that residues His450, His455, and Glu451 are involved in zinc coordination and catalytic activity.  相似文献   

13.
Kim J  Raushel FM 《Biochemistry》2001,40(37):11030-11036
Carbamoyl phosphate synthetase (CPS) from Escherichia coli is allosterically regulated by the metabolites ornithine, IMP, and UMP. Ornithine and IMP function as activators, whereas UMP is an inhibitor. CPS undergoes changes in the state of oligomerization that are dependent on the protein concentration and the binding of allosteric effectors. Ornithine and IMP promote the formation of an (alphabeta)4 tetramer while UMP favors the formation of an (alphabeta)2 dimer. The three-dimensional structure of the (alphabeta)4 tetramer has unveiled two regions of molecular contact between symmetry-related monomeric units. Identical residues within two pairs of allosteric domains interact with one another as do twin pairs of oligomerization domains. There are thus two possible structures for an (alphabeta)2 dimer: an elongated dimer formed at the interface of two allosteric domains and a more compact dimer formed at the interface between two oligomerization domains. Mutations at the two interfacial sites of oligomerization were constructed in an attempt to elucidate the mechanism for assembly of the (alphabeta)4 tetramer through disruption of the molecular binding interactions between monomeric units. When Leu-421 (located in the oligomerization domain) was mutated to a glutamate residue, CPS formed an (alphabeta)2 dimer in the presence of ornithine, UMP, or IMP. In contrast, when Asn-987 (located in the allosteric binding domain) was mutated to an aspartate, an (alphabeta) monomer was formed regardless of the presence of any allosteric effectors. These results are consistent with a model for the structure of the (alphabeta)2 dimer that is formed through molecular contact between two pairs of allosteric domains. Apparently, the second interaction, between pairs of oligomerization domains, does not form until after the interaction between pairs of allosteric domains is formed. The binding of UMP to the allosteric domain inhibits the dimerization of the (alphabeta)2 dimer, whereas the binding of either IMP or ornithine to this same domain promotes the dimerization of the (alphabeta)2 dimer. In the oligomerization process, ornithine and IMP must exert a conformational alteration on the oligomerization domain, which is approximately 45 A away from their site of binding within the allosteric domain. No significant dependence of the specific catalytic activity on the protein concentration could be detected, and thus the effects induced by the allosteric ligands on the catalytic activity and the state of oligomerization are unlinked from one another.  相似文献   

14.
Two well-characterized enzymes in Salmonella enterica serovar Typhimurium and Escherichia coli are able to hydrolyze N-terminal aspartyl (Asp) dipeptides: peptidase B, a broad-specificity aminopeptidase, and peptidase E, an Asp-specific dipeptidase. A serovar Typhimurium strain lacking both of these enzymes, however, can still utilize most N-terminal Asp dipeptides as sources of amino acids, and extracts of such a strain contain additional enzymatic activities able to hydrolyze Asp dipeptides. Here we report two such activities from extracts of pepB pepE mutant strains of serovar Typhimurium identified by their ability to hydrolyze Asp-Leu. Although each of these activities hydrolyzes Asp-Leu at a measurable rate, the preferred substrates for both are N-terminal isoAsp peptides. One of the activities is a previously characterized isoAsp dipeptidase from E. coli, the product of the iadA gene. The other is the product of the serovar Typhimurium homolog of E. coli ybiK, a gene of previously unknown function. This gene product is a member of the N-terminal nucleophile structural family of amidohydrolases. Like most other members of this family, the mature enzyme is generated from a precursor protein by proteolytic cleavage and the active enzyme is a heterotetramer. Based on its ability to hydrolyze an N-terminal isoAsp tripeptide as well as isoAsp dipeptides, the enzyme appears to be an isoAsp aminopeptidase, and we propose that the gene encoding it be designated iaaA (isoAsp aminopeptidase). A strain lacking both IadA and IaaA in addition to peptidase B and peptidase E has been constructed. This strain utilizes Asp-Leu as a leucine source, and extracts of this strain contain at least one additional, as-yet-uncharacterized, peptidase able to cleave Asp dipeptides.  相似文献   

15.
Wang TY  Chen YC  Kao LW  Chang CY  Wang YK  Liu YH  Feng JM  Wu TK 《The FEBS journal》2008,275(20):5007-5020
The biofilm-related and carnosine-hydrolyzing aminoacylhistidine dipeptidase (pepD) gene from Vibrio alginolyticus was cloned and sequenced. The recombinant PepD protein was produced and biochemically characterized and the putative active-site residues responsible for metal binding and catalysis were identified. The recombinant enzyme, which was identified as a homodimeric dipeptidase in solution, exhibited broad substrate specificity for Xaa-His and His-Xaa dipeptides, with the highest activity for the His-His dipeptide. Sequence and structural homologies suggest that the enzyme is a member of the metal-dependent metallopeptidase family. Indeed, the purified enzyme contains two zinc ions per monomer. Reconstitution of His.Tag-cleaved native apo-PepD with various metal ions indicated that enzymatic activity could be optimally restored when Zn2+ was replaced with other divalent metal ions, including Mn2+, Co2+, Ni2+, Cu2+ and Cd2+, and partially restored when Zn2+ was replaced with Mg2+. Structural homology modeling of PepD also revealed a 'catalytic domain' and a 'lid domain' similar to those of the Lactobacillus delbrueckii PepV protein. Mutational analysis of the putative active-site residues supported the involvement of His80, Asp119, Glu150, Asp173 and His461 in metal binding and Asp82 and Glu149 in catalysis. In addition, individual substitution of Glu149 and Glu150 with aspartic acid resulted in the partial retention of enzymatic activity, indicating a functional role for these residues on the catalysis and zinc ions, respectively. These effects may be necessary either for the activation of the catalytic water molecule or for the stabilization of the substrate-enzyme tetrahedral intermediate. Taken together, these results may facilitate the design of PepD inhibitors for application in antimicrobial treatment and antibody-directed enzyme prodrug therapy.  相似文献   

16.
4-alpha-Glucanotransferase (GTase) is an essential enzyme in alpha-1,4-glucan metabolism in bacteria and plants. It catalyses the transfer of maltooligosaccharides from an 1,4-alpha-D-glucan molecule to the 4-hydroxyl group of an acceptor sugar molecule. The crystal structures of Thermotoga maritima GTase and its complex with the inhibitor acarbose have been determined at 2.6A and 2.5A resolution, respectively. The GTase structure consists of three domains, an N-terminal domain with the (beta/alpha)(8) barrel topology (domain A), a 65 residue domain, domain B, inserted between strand beta3 and helix alpha6 of the barrel, and a C-terminal domain, domain C, which forms an antiparallel beta-structure. Analysis of the complex of GTase with acarbose has revealed the locations of five sugar-binding subsites (-2 to +3) in the active-site cleft lying between domain B and the C-terminal end of the (beta/alpha)(8) barrel. The structure of GTase closely resembles the family 13 glycoside hydrolases and conservation of key catalytic residues previously identified for this family is consistent with a double-displacement catalytic mechanism for this enzyme. A distinguishing feature of GTase is a pair of tryptophan residues, W131 and W218, which, upon the carbohydrate inhibitor binding, form a remarkable aromatic "clamp" that captures the sugar rings at the acceptor-binding sites +1 and +2. Analysis of the structure of the complex shows that sugar residues occupying subsites from -2 to +2 engage in extensive interactions with the protein, whereas the +3 glucosyl residue makes relatively few contacts with the enzyme. Thus, the structure suggests that four subsites, from -2 to +2, play the dominant role in enzyme-substrate recognition, consistent with the observation that the smallest donor for T.maritima GTase is maltotetraose, the smallest chain transferred is a maltosyl unit and that the smallest residual fragment after transfer is maltose. A close similarity between the structures of GTase and oligo-1,6-glucosidase has allowed the structural features that determine differences in substrate specificity of these two enzymes to be analysed.  相似文献   

17.
Ma JJ  Zhao MW  Wang ED 《Biochemistry》2006,45(49):14809-14816
Leucyl-tRNA synthetase (LeuRS) from Aquifex aeolicus is the only known heterodimer synthetase. It is named LeuRS alphabeta;, and its alpha and beta subunits contain 634 and 289 residues, respectively. Like Thermus thermophilus LeuRS, LeuRS alphabeta has a large extra domain, the leucine-specific domain, inserted into the catalytic domain. The subunit split site is exactly in the middle of the leucine-specific domain and may have a unique function. Here, a series of mutants of LeuRS alphabeta consisting of either mutated alpha subunits and wild-type beta subunits or wild-type alpha subunits and mutated beta subunits were constructed and purified. ATP-PPi exchange and aminoacylation activities and the ability of the mutants to charge minihelix(Leu) were assayed. Interaction of the mutants with the tRNA was assessed by gel shift. Two peptides of eight and nine amino acid residues in the domain located in the alpha subunit were found to be essential for the enzyme's activity. We also showed that the domain in LeuRS alphabeta plays an important role in minihelix(Leu) recognition. Additionally, the domain was found to have little impact on the assembly of the heterodimer, to play a role in the thermal stability of the whole enzyme, and to interact with the cognate tRNA in the predicted manner.  相似文献   

18.
Enzymes capable of converting L-asparagine to L-aspartate can be classified as bacterial-type or plant-type L-asparaginases. Bacterial-type L-asparaginases are further divided into subtypes I and II, defined by their intra-/extra-cellular localization, substrate affinity, and oligomeric form. Plant-type L-asparaginases are evolutionarily and structurally distinct from the bacterial-type enzymes. They function as potassium-dependent or -independent Ntn-hydrolases, similar to the well characterized aspartylglucosaminidases with (alphabeta)2 oligomeric structure. The review discusses the structural aspects of both types of L-asparaginases and highlights some peculiarities of their catalytic mechanisms. The bacterial-type enzymes are believed to have a disordered active site which gets properly organized on substrate binding. The plant-type enzymes, which are more active as isoaspartyl aminopeptidases, pose a chemical challenge common to other Ntn-hydrolases, which is how an N-terminal nucleophile can activate itself or cleave its own alpha-amide bond before the activation is even possible. The K+ -independent plant-type L-asparaginases show an unusual sodium coordination by main-chain carbonyl groups and have a key arginine residue which by sensing the arrangement at the oligomeric (alphabeta)-(alphabeta) interface is able to discriminate among substrates presented for hydrolysis.  相似文献   

19.
Amylomaltase is involved in the metabolism of starch, one of the most important polysaccharides in nature. A unique feature of amylomaltase is its ability to catalyze the formation of cyclic amylose. In contrast to the well studied cyclodextrin glucanotransferases (CGTases), which synthesize cycloamylose with a ring size (degree of polymerization or DP) of 6-8, the amylomaltase from Thermus aquaticus produces cycloamyloses with a DP of 22 and higher. The crystal structure of amylomaltase from Thermus aquaticus was determined to 2.0 A resolution. It is a member of the alpha-amylase superfamily of enzymes, whose core structure consists of a (beta, alpha)(8) barrel. In amylomaltase, the 8-fold symmetry of this barrel is disrupted by several insertions between the barrel strands. The largest insertions are between the third and fifth barrel strands, where two insertions form subdomain B1, as well as between the second and third barrel strands, forming the alpha-helical subdomain B2. Whereas part of subdomain B1 is also present in other enzyme structures of the alpha-amylase superfamily, subdomain B2 is unique to amylomaltase. Remarkably, the C-terminal domain C, which is present in all related enzymes of the alpha-amylase family, is missing in amylomaltase. Amylomaltase shows a similar arrangement of the catalytic side-chains (two Asp residues and one Glu residue) as in previously characterized members of the alpha-amylase superfamily, indicating similar mechanisms of the glycosyl transfer reaction. In amylomaltase, a conserved loop of around eight amino acid residues is partially shielding the active center. This loop, which is well conserved among other amylomaltases, may sterically hinder the formation of small cyclic products.  相似文献   

20.
Signal peptidase, which removes signal peptides from preproteins, has a substrate specificity for small uncharged residues at -1 (P1) and small or larger aliphatic residues at the -3 (P3) position. Structures of the catalytic domain with a 5S-penem inhibitor and a lipopeptide inhibitor reveal candidate residues that make up the S1 and S3 pockets that bind the P1 and P3 specificity residues of the preprotein substrate. We have used site-directed mutagenesis, mass spectrometric analysis, and in vivo and in vitro activity assays as well as molecular modeling to examine the importance of the substrate pocket residues. Generally, we find that the S1 and S3 binding sites can tolerate changes that are expected to increase or decrease the size of the pocket without large effects on activity. One residue that contributes to the high fidelity of cleavage of signal peptidase is the Ile-144 residue. Changes of the Ile-144 residue to cysteine result in cleavage at multiple sites, as determined by mass spectrometry and Edman sequencing analysis. In addition, we find that signal peptidase is able to cleave after phenylalanine at the -1 residue in a double mutant in which both Ile-86 and Ile-144 were changed to an alanine. Also, alteration of the Ile-144 and Ile-86 residues to the corresponding residues found in the homologous Imp1 protease changes the specificity to promote cleavage following a -1 Asn residue. This work shows that Ile-144 and Ile-86 contribute to the signal peptidase substrate specificity and that Ile-144 is important for the accuracy of the cleavage reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号