首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used antibody to chicken gizzard alpha-actinin to identify and localize this molecule in chicken intestinal epithelium. The antibody binds only to alpha-actinin when tested against a crude extract of chicken gizzard. Extracts of purified epithelial cells contain a molecule which has a subunit molecular weight of 100,000 on sodium dodecyl sulphate gels and which is able to inhibit the interaction of alpha-actinin antibody and 125I-labeled chicken gizzard alpha-actinin. By indirect immunofluorescence, alpha-actinin is localized in the apical portion of chicken intestinal epithelial cells. Ethanol-fixed cryostat sections of intestine taken through the apical portion of the epithelial cells and in a plane perpendicular to the long axis of the cells show that alpha-actinin is organized in a polygonal pattern which corresponds to the outlines of the polygonally packed epithelial cells. We interpret the data as indicating that alpha-actinin is a component of the tight junction (zonula occludens) and/or the belt desmosome (zonula adherens), both of which are membrane structures known to encircle the cell and to be confined to its apical portion.  相似文献   

2.
INTESTINAL TRANSPORT OF ANTIBODIES IN THE NEWBORN RAT   总被引:25,自引:11,他引:14       下载免费PDF全文
Evidence has been reported that the proximal small intestine of the neonatal rat selectively transports antibodies into the circulation. This study describes the morphology of the absorptive epithelial cells in this region of the intestine and their transport of several immunoglobulin tracers: ferritin-conjugated immunoglobulins (IgG-Ft) and antiperoxidase antibodies. Cells exposed to rat IgG-Ft bound the tracer on the membrane of tubular invaginations of the apical cell surface. Tubular and coated vesicles within the cell also contained the tracer, as did the intercellular spaces. Uptake of tracer was highly selective and occurred only with rat or cow IgG-Ft; when cells were exposed to chicken IgG-Ft, ferritin-conjugated bovine serum albumin, or free ferritin, tracer did not enter the cell or appear in the intercellular spaces. Experiments with rat and chicken antiperoxidase showed a similar selective uptake and transport of only the homologous antibody. When cells from the distal small intestine were exposed to the tracers, all tracers were absorbed nonselectively but none were released from the cells. Cells from the proximal small intestine of the 22-day-old rat failed to absorb even rat IgG-Ft. A model is presented for selective antibody transport in proximal cells of the neonatal rat in which antibodies are selectively absorbed at the apical cell surface by pinocytosis within tubular vesicles. The antibodies are then transferred to the intercellular space within coated vesicles. Distal cells function only to digest proteins nonselectively.  相似文献   

3.
This report describes an immunoferritin labeling study of mouse H-2 histocompatibility antigens on epithelial cells dissociated from the small intestine by EDTA and trypsin. Before cell dissociation, the intestine was prefixed in paraformaldehyde or periodate-lysine-paraformaldehyde in order to preserve the shape of the cells and to immobilize H-2 antigens in their native positions. The results demonstrated the presence of H-2 antigens on the lateral and basal cell membranes at about the same high density that was observed at the surface of mouse monocytes. No H-2 antigens could be detected at the apical surface of dissociated or undissociated epithelial cells. It is unlikely that the fuzzy coat masked H-2 antigens at the apical surface because it was essentially absent from the apical membranes of dissociated cells. These observations extend our knowledge of the cellular distribution of transplantation antigens, and provide further evidence of a discontinuity in the expression of membrane components at the junctional complex of epithelial cells.  相似文献   

4.
With light and electron microscopy structure and composition of the small intestine parietal mucous layer of rat, chicken, and man were studied. It has been shown that parietal layer is complicated and multicomponent system includes mucous glycoproteins, vesicular and membrane structures, epithelial cells fragments, food substrates particles and bacteria. It is assumed that subepithelial mucous layer components may be of significance in premembrane digestion and absorption.  相似文献   

5.
Summary Glucose is actively absorbed in the intestine by the action of the Na+-dependent glucose transporter. Using an antibody against the rabbit intestinal Na+-dependent glucose transporter (SGLT1), we examined the localization of SGLT1 immunohistochemically along the rat digestive tract (oesophagus, stomach, duodenum, jejunum, ileum, colon and rectum). SGLT1 was detected in the small intestine (duodenum, jejunum and ileum), but not in the oesophagus, stomach, colon or rectum. SGLT1 was localized at the brush border of the absorptive epithelium cells in the small intestine. Electron microscopical examination showed that SGLT1 was localized at the apical plasma membrane of the absorptive epithelial cells. SGLT1 was not detected at the basolateral plasma membrane. Along the crypt-villus axis, all the absorptive epithelial cells in the villus were positive for SGLT1, whose amount increased from the bottom of the villus to its tip. On the other hand, cells in the crypts exhibited little or no staining for SGLT1. Goblet cells scattered throughout the intestinal epithelium were negative for SGLT1. These observations show that SGLT1 is specific to the apical plasma membrane of differentiated absorptive epithelial cells in the small intestine, and suggest that active uptake of glucose occurs mainly in the absorptive epithelial cells in the small intestine.  相似文献   

6.
Summary The occurrence of microbodies in the epithelial cells of the intestine and gallbladder of the stickleback, Gasterosteus aculeatus L., is described. In the intestine the organelles are predominantly located in the apical and perinuclear zone of the cells and may contain small crystalline cores. In gallbladder epithelial cells the microbodies are distributed randomly. The latter organelles are characterized by the presence of large crystalloids. Cytochemical and biochemical experiments show that catalase and D-amino acid oxidase are main matrix components of the microbodies in both the intestinal and gallbladder epithelia. These organelles therefore are considered peroxisomes. In addition, in intestinal mucosa but not in gallbladder epithelium a low activity of palmitoyl CoA oxidase was detected biochemically. Urate oxidase and L- hydroxy acid oxidase activities could not be demonstrated.  相似文献   

7.
The rab subfamily of small GTPases has been demonstrated to play an important role in the regulation of membrane traffic in eukaryotic cells. Compared with nonpolarized cells, epithelial cells have distinct apical and basolateral transport pathways which need to be separately regulated. This raises the question whether epithelial cells require specific rab proteins. However, all rab proteins identified so far were found to be equally expressed in polarized and nonpolarized cells. Here we report the identification of rab17, the first epithelial cell- specific small GTPase. Northern blot analysis on various mouse organs, revealed that the rab17 mRNA is present in kidney, liver, and intestine but not in organs lacking epithelial cells nor in fibroblasts. To determine whether rab17 is specific for epithelial cells we studied its expression in the developing kidney. We found that rab17 is absent from the mesenchymal precursors but is induced upon their differentiation into epithelial cells. In situ hybridization studies on the embryonic kidney and intestine revealed that rab17 is restricted to epithelial cells. By immunofluorescence and immunoelectron microscopy on kidney sections, rab17 was localized to the basolateral plasma membrane and to apical tubules. Rab proteins associated with two distinct compartments have been found to regulate transport between them. Therefore, our data suggest that rab17 might be involved in transcellular transport.  相似文献   

8.
Suíçmez M  Ulus E 《Folia biologica》2005,53(1-2):95-100
The anatomy, histology and ultrastructure of the digestive tract of Orthrias angorae (Steindachner, 1897) were investigated using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The histological structure consists of four layers: mucosa, submucosa, muscularis and serosa. The esophageal mucosa consists of undifferentiated basal epithelial cells, mucous cells and surface epithelial cells. It was observed that the J-shaped stomach had a meshwork of folds in the cardiac region, and longitudinal folds in the fundic and pyloric regions. A single layer of columnar cells, PAS positive only in their apical portions, forms the epithelium. The convoluted tube-shape intestine is lined by simple columnar epithelial cells, which have microvilli at the apical surface. The wall of the esophagus and stomach are thicker than that of the intestine because of the thick muscle layer. There were numerous goblet cells in the intestine. There were numerous gastric glands in the submucosa layer ofthe cardiac stomach, but none were present in the pyloric region of the stomach. There were no pyloric caeca between the stomach and intestine. The enterocytes with microvilli contained rough endoplasmic reticulum, ribosomes and rounded bodies, and the gastric cells contained a well-developed Golgi apparatus.  相似文献   

9.
Toll-like receptors (TLRs) are known to recognize pathogen-associated molecular patterns and might function as receptors to detect microbes. In this study, the distribution of TLR-2, -4 and -9 were immunohistochemically investigated in the rat small intestine. As a result, TLR-2 was detected in the striated borders of villous columnar epithelial cells throughout the small intestine, except for the apices of a small number of intestinal villi. TLR-4 and -9 were detected in the striated borders of the villous columnar epithelial cells only in the duodenum. TLR-4-immunopositive minute granules were found in the apical cytoplasms of epithelial cells, subepithelial spaces and blood capillary lumina. TLR-2 and -4 were detected in the striated borders of undifferentiated epithelial cells and in the luminal substances of the intestinal crypts throughout the small intestine, but TLR-9 was not detected in the crypts throughout the small intestine. Only TLR-4 was detected in the secretory granules of Paneth cells in both the jejunal and ileal intestinal crypts. These findings suggest that duodenal TLRs might monitor indigenous bacteria proliferation in the upper alimentary tract, that TLR-2 might also monitor the proliferation of colonized indigenous bacteria throughout the small intestine, that the lack of TLR-2 at the villous apices might contribute to the settlement of indigenous bacteria, and that TLR-2 and -4 are secreted from intestinal crypts.  相似文献   

10.
The intestinal mucosa was examined in twelve 2–5-week-old calves with a spontaneous intestinal disorder, 8 with diarrhea and 4 convalescents. The calves were fed a defined milk replacer. Light microscopy including morphometry, showed villous atrophy and crypt elongation. Villous epithelial cells had decreased height, and epithelial cells of the posterior small intestine contained an increased amount of fat droplets. Accumulation of neutrophils in crypts was frequent. Scanning electron microscopy revealed blunt villi with increased numbers of necrotic cells in the extrusion zone at the tips of the villi. The convalescents had generally milder changes, particularly in the anterior small intestine. The probable etiological factors included a rotavirus and chlamydial infection, and it is concluded that these agents together with other possible noxious influences were responsible for the increased necrobiosis of apical senescent villous epithelial cells, resulting in villous atrophy and crypt hyperplasia.  相似文献   

11.
We performed tissue recombination experiments to discover the mesenchymal influences on differentiation of epithelia in chicken digestive organs. Epithelia and mesenchymes were taken from the lung, esophagus, proventriculus, gizzard, small intestine and large intestine of 6-day chicken embryos and recombined in various associations and cultivated in vitro for 6 days. Rather unexpectedly, embryonic chicken pepsinogen (ECPg) gene, a marker of the proventricular epithelium, was induced in the gizzard epithelium, which does not express ECPg in normal development, by the proventricular and lung mesenchymes. In the second half of this study, we investigated the mode of action of mesenchymal cells on ECPg expression in gizzard epithelial cells more precisely using the cell aggregate culture system, in which gizzard epithelial cells were mixed with proventricular, gizzard or lung mesenchymal cells. We found that supporting action of lung mesenchymal cells on ECPg expression was even stronger than that of proventricular mesenchymal cells, and suggest that the action of lung mesenchyme may be due partly to the enhancement of epithelial cell proliferation. According to the results of this study, together with many facts obtained so far, we will discuss a new model for restricted expression of ECPg in the proventricular epithelium in normal development.  相似文献   

12.
Epithelial tubes perform functions that are essential for the survival of multicellular organisms. Understanding how their polarised features are maintained is therefore crucial. By analysing the function of the clathrin adaptor AP-1 in the C. elegans intestine, we found that AP-1 is required for epithelial polarity maintenance. Depletion of AP-1 subunits does not affect epithelial polarity establishment or the formation of the intestinal lumen. However, the loss of AP-1 affects the polarised distribution of both apical and basolateral transmembrane proteins. Moreover, it triggers de novo formation of ectopic apical lumens between intestinal cells along the lateral membranes later during embryogenesis. We also found that AP-1 is specifically required for the apical localisation of the small GTPase CDC-42 and the polarity determinant PAR-6. Our results demonstrate that AP-1 controls an apical trafficking pathway required for the maintenance of epithelial polarity in vivo in a tubular epithelium.  相似文献   

13.
The structural and biochemical changes of cytoskeletal components of retinal pigmented epithelial cells were studied during the development of chicken eyes. When the cytoskeletal components of the pigmented epithelial cells from various stages of development were examined by SDS PAGE, actin contents in the cells markedly increased between the 15-d-old and hatching stages. Immunofluorescence microscopy showed that chicken pigmented epithelial cells have two types of actin bundles. One is the circumferential bundle associated with the zonula adherens region as previously reported (Owaribe, K., and H. Masuda, 1982, J. Cell Biol., 95:310-315). The other is the paracrystalline bundle forming the core of the apical projections. The increase in actin contents after the 15-d-old stage is accompanied by the formation and elongation of core filaments of apical projections in the cells. During this period the apical projections extend into extracellular space among outer and inner segments of photoreceptor cells. Accompanying this change is an elongation of the paracrystalline bundles of actin filaments in the core of the projection. By electron microscopy, the bundles decorated with muscle heavy meromyosin showed unidirectional polarity, and had transverse striations with approximately 12-nm intervals, as determined by optical diffraction of electron micrographs. Since the shape of these bundles was not altered in the presence or absence of Ca2+, they seemed not to have villin-like proteins. Unlike the circumferential bundles, the paracrystalline bundles did not contract when exposed to Mg-ATP. These observations indicate that the paracrystalline bundles are structurally and functionally different from the circumferential actin bundles.  相似文献   

14.
Musashi-1 (Msi-1) is an RNA-binding protein that plays key roles in the maintenance of neural stem cell states and in their differentiation into neural cells. Msi-1 has also been proposed as a candidate marker gene of mammalian intestinal stem cells and their immediate lineages. In this study, we examined Msi-1 expression in the small intestine and the stomach of both chicken and mouse during embryonic, fetal and postnatal development. In addition, we analyzed the expression of c-hairy-1, a chicken homologue of mouse Hes1, and assessed the proliferative activity of the cells expressing both of these factors. Significantly, during the development of these digestive organs in both species Msi-1 expression showed dynamic changes, suggesting that it is important for digestive organ development, particularly for epithelial differentiation. Based on our observations of the expression patterns of Msi-1 and c-hairy-1 in the adult small intestine, we speculate that Msi-1 is also a stem cell marker of the chicken small intestinal epithelium.  相似文献   

15.
The enteric serotonin transporter (SERT) plays a critical role in modulating serotonin availability and thus has been implicated in the pathogenesis of various intestinal disorders. To date, SERT expression and function in the human intestine have not been investigated. Current studies were designed to characterize the function, expression, distribution, and membrane localization of SERT in the native human intestine. Real-time PCR studies showed relatively higher SERT mRNA expression in the human small intestine compared with colon (ileum > duodenum > jejunum). Northern blot analysis revealed three mRNA hybridizing species encoding SERT (3.0, 4.9, and 6.8 kb) in the human ileum. Consistent with SERT mRNA expression, SERT immunostaining was mainly detected in the epithelial cells of human duodenal and ileal resected tissues. Notably, SERT expression was localized predominantly to the apical and intracellular compartments and was distributed throughout the crypt-villus axis. Immunoblotting studies detected a prominent protein band ( approximately 70 kDa) in the ileal apical plasma membrane vesicles (AMVs) isolated from mucosa obtained from organ-donor intestine. Functional studies showed that uptake of [(3)H]serotonin (150 nM) in human ileal AMVs was 1) significantly increased in the presence of both Na(+) and Cl(-); 2) inhibited ( approximately 50%) by the neuronal SERT inhibitor, fluoxetine (10 microM) and by unlabeled 5-HT; and 3) exhibited saturation kinetics indicating the presence of a carrier-mediated process. Our studies demonstrated differential expression of SERT across various regions of the human intestine and provide evidence for the existence of a functional SERT capable of removing intraluminal serotonin in human ileal epithelial cells.  相似文献   

16.
Immunoblotting studies with antisera against Z-protein, desmin, and alpha-actinin showed that Z-protein is clearly distinguishable from desmin and alpha-actinin. Z-protein is not a proteolytic product of another protein but is an intrinsic component of chicken breast muscle myofibrils. In these experiments, an SDS extract of intact muscle was first electrophoresed in a polyacrylamide gel, and then proteins were transferred to a nitrocellulose paper sheet. Detection of each protein on the sheet was made possible by the application of the indirect immunofluorescence technique with the respective antiserum. Immunofluorescence microscope studies using these antisera revealed that Z-protein has the same distribution as alpha-actinin in isolated Z- disk sheets. Anti-Z-protein antiserum and anti-alpha-actinin antiserum stained the interior of Z-disks. On the other hand, antiserum against desmin stained the periphery of Z-disks in isolated Z-disk sheets.  相似文献   

17.
Using routine transmission electron microscopy and light and electron microscopic techniques for the histologic demonstration (localization) of catalase (a peroxisomal enzyme), peroxisomes in chick duodenal epithelial cells were identified and studied. In these cells, peroxisomes were seen to be small, ovoid structures, delimited by a single unit membrane. They were concentrated in the supranuclear cytoplasm in initimate association with the smooth endoplasmic reticulum. As demonstrated histochemically, the heterogeneous matrix of these organelles was catalase positive. In addition, most of the larger peroxisomes revealed central nucleoids; however, the smaller peroxisomes were generally anucleoid. It thus appears that two classes of peroxisomes exist in chick intestinal absorptive cells: (1) small, anucleoid microperoxisomes, and (2) larger, nucleoid-containing peroxisomes. In addition to the above morphological characteristics, both peroxisome types were numerous in normal and vitamin-D-replete tissues, but were conspicuously decreased or absent from the apical cytoplasm of rachitic epithelial cells. From these observations it is hypothesized that these organelles may be involved in the overall vitamin-D response of the small intestine.  相似文献   

18.
This report describes an immunoferritin labeling study of mouse H-2 histocompatibility antigens on epithelial cells dissociated from stomach, duodenum-jejunum, ileum, trachea, diestrus uterus, gall bladder, and vas deferens. Before cell dissociation, most of the organs were prefixed in periodate-lysine-paraformaldehyde to preserve the shape of the cells and to immobilize H-2 antigens in their native positions. Five kinds of epithelial cells expressed H-2 antigens on lateral and basal membranes but not on apical membranes. These were the lining cells of the upper intestine, ileum, gall gladder, uterus, and the tracheal brush cell. The antigens were continuously distributed on the lateral and basal membranes of these cells and appeared to be absent from the apical membranes, rather than masked by the fuzzy coat. On four other epithelial cell types H-2 antigens could not be detected. These were the lining cells of the vas deferens, parietal and chief cells from the stomach, and ciliated tracheal cells. It does not seem to be uncommon for normal nucleated cells to lack H-2 antigens. On fixed and labeled epithelial cells from the upper intestine the zonula occludens membranes were unlabeled, while the zonula adherens and desmosome membranes were labeled as densely as the remainder of the lateral membranes. The zonula occludens membrane thus constituted the boundary betewen the unlabeled apical membrane and the labeled lateral membrane of these cells. Intestinal epithelial cells dissociated without prefixation showed a patchy distribution of H-2 antigens on their lateral membranes after indirect labeling, indicating antigen mobility in this membrane. On the same unfixed dissociated cells the antigens were able to migrate from lateral to apical membranes, a movement which appears to be prevented in the intact epithelial layer by the occluding junction. The absence of H-2 antigens from apical membranes and their inability to migrate through an intact zonula occludens suggest that these molecules must reach the lateral membranes of epithelial cells by a pathway which is distinct from that followed by apical membrane components.  相似文献   

19.
Summary Retinal pigmented epithelial cells of chicken have circumferential microfilament bundles (CMBs) at the zonula adherens region. Isolated CMBs are polygons filled with a meshwork composed primarily of intermediate filaments; they show three major components of 200000, 55000, and 42000 daltons in SDS-gel electrophoresis. Here we have characterized the 55000-dalton protein immunochemically and ultrastructurally. Immunoblotting and immunofluorescence microscopy have shown that the 55000-dalton protein is an intermediate filament protein, vimentin.Vimentin filaments changed their distribution during differentiation of pigmented epithelial cells in culture. The protein in the elongated cells showed a fibroblast-type pattern of intermediate filaments. During epithelium formation, the filaments were uniformly distributed and formed a finer meshwork at the apical level. In pigmented epithelial cells that differentiated and matured in culture, vimentin and actin exhibited their characteristic behavior after treatment with colcemid. In the central to basal region of the cell, intermediate filaments formed thick perinuclear bundles. In the apical region, however, intermediate filaments changed in organization from a nonpolarized meshwork to a polarized bundle-like structure. Simultaneously, new actin bundles were formed, running parallel to the intermediate filaments. This suggests that there is some interaction between microfilaments and intermediate filaments in the apical region of these cells.  相似文献   

20.
Intercalated epithelial cells exist in a spectrum of phenotypes; at one extreme, beta cells secrete HCO3 by an apical Cl/HCO3 exchanger and a basolateral H+ ATPase. When an immortalized beta cell line is seeded at high density it deposits in its extracellular matrix (ECM) a new protein, hensin, which can reverse the polarity of several proteins including the Cl/HCO3 exchanger (an alternately spliced form of band 3) and the proton translocating ATPase. When seeded at low density and allowed to form monolayers these polarized epithelial cells maintain the original distribution of these two proteins. Although these cells synthesize and secrete hensin, it is not retained in the ECM, but rather, hensin is present in a large number of intracellular vesicles. The apical cytoplasm of low density cells is devoid of actin, villin, and cytokeratin19. Scanning electron microscopy shows that these cells have sparse microvilli, whereas high density cells have exuberant apical surface infolding and microvilli. The apical cytoplasm of high density cells contains high levels of actin, cytokeratin19, and villin. The cell shape of these two phenotypes is different with high density cells being tall with a small cross-sectional area, whereas low density cells are low and flat. This columnarization and the remodeling of the apical cytoplasm is hensin-dependent; it can be induced by seeding low density cells on filters conditioned by high density cells and prevented by an antibody to hensin. The changes in cell shape and apical cytoskeleton are reminiscent of the processes that occur in terminal differentiation of the intestine and other epithelia. Hensin is highly expressed in the intestine and prostate (two organs where there is a continuous process of differentiation). The expression of hensin in the less differentiated crypt cells of the intestine and the basal cells of the prostate is similar to that of low density cells; i.e., abundant intracellular vesicles but no localization in the ECM. On the other hand, as in high density cells hensin is located exclusively in the ECM of the terminally differentiated absorptive villus cells and the prostatic luminal cell. These studies suggest that hensin is a critical new molecule in the terminal differentiation of intercalated cell and perhaps other epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号