首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously cloned a panel of peanut allergens by phage display technology. Examination of the codons used in these sequences indicated that most of the cDNAs contain an excess of the least used codons in Escherichia coli, namely AGG/AGA, that correspond to a minor tRNA, the product of the dnaY gene. To achieve high-level expression of the peanut allergens, the cDNAs were subcloned into an expression vector of the pET series (Novagen) in order to produce (His)(10)-tagged fusion proteins in conventional E. coli BL21(DE3) cells. The peanut allergens Ara h 1, Ara h 2, and Ara h 6 with an AGG/AGA codon content of 8-10% were only marginally expressed, whereas the peanut profilin Ara h 5, with an AGG/AGA codon content of only 0.8%, was efficiently expressed in these cells. Hence, by using modified BL21(DE3) E. coli cells, namely BL21-CodonPlus(DE3)-RIL cells (Stratagene) with extra copies of E. coli argU, ileY, and leuW tRNA genes, it was possible to attain high-level expression of the proteins affected by rare codon usage. IPTG-induced expression of several recombinant peanut allergens, such as Ara h 1, Ara h 2, and Ara h 6, was greatly increased in these special cells compared to the expression yield achieved by conventional E. coli hosts. The purification of the soluble and the insoluble fraction of Ara h 2 was performed by metal-affinity chromatography and yielded a total of about 30 mg (His)(10)-tagged recombinant protein per liter of culture of transformed BL21(DE3)CodonPlus-RIL cells. This is over 100 times more than achieved by production of Ara h 2 in conventional BL21(DE3) cells.  相似文献   

2.
The herbicide-inducible, soluble cytochrome P450s CYP105A1 and CYP105B1 and their adjacent ferredoxins, Fd1 and Fd2, of Streptomyces griseolus were expressed in Escherichia coli to high levels. Conditions for high-level expression of active enzyme able to catalyze hydroxylation have been developed. Analysis of the expression levels of the P450 proteins in several different E. coli expression hosts identified E. coli BL21 Star(DE3)pLysS as the optimal host cell to express CYP105B1 as judged by CO difference spectra. Examination of the codons used in the CYP1051A1 sequence indicated that it contains a number of codons corresponding to rare E. coli tRNA species. The level of its expression was improved in the modified forms of E. coli BL21(DE3), which contain extra copies of rare codon E. coli tRNA genes. The activity of correctly folded cytochrome P450s was further enhanced by cloning a ferredoxin reductase from Streptomyces coelicolor downstream of CYP105A1 and CYP105B1 and their adjacent ferredoxins. Expression of CYP105A1 and CYP105B1 was also achieved in Streptomyces lividans 1326 by cloning the P450 genes and their ferredoxins into the expression vector pBW160. S. lividans 1326 cells containing CYP105A1 or CYP105B1 were able efficiently to dealkylate 7-ethoxycoumarin.  相似文献   

3.
We previously cloned a panel of peanut allergens by phage display technology. Examination of the codons used in these sequences indicated that most of the cDNAs contain an excess of the least used codons in Escherichia coli, namely AGG/AGA, that correspond to a minor tRNA, the product of the dnaY gene. To achieve high-level expression of the peanut allergens, the cDNAs were subcloned into an expression vector of the pET series (Novagen) in order to produce (His)10-tagged fusion proteins in conventional E. coli BL21(DE3) cells. The peanut allergens Ara h 1, Ara h 2, and Ara h 6 with an AGG/AGA codon content of 8–10% were only marginally expressed, whereas the peanut profilin Ara h 5, with an AGG/AGA codon content of only 0.8%, was efficiently expressed in these cells. Hence, by using modified BL21(DE3) E. coli cells, namely BL21-CodonPlus(DE3)-RIL cells (Stratagene) with extra copies of E. coli argU, ileY, and leuW tRNA genes, it was possible to attain high-level expression of the proteins affected by rare codon usage. IPTG-induced expression of several recombinant peanut allergens, such as Ara h 1, Ara h 2, and Ara h 6, was greatly increased in these special cells compared to the expression yield achieved by conventional E. coli hosts. The purification of the soluble and the insoluble fraction of Ara h 2 was performed by metal-affinity chromatography and yielded a total of about 30 mg (His)10-tagged recombinant protein per liter of culture of transformed BL21(DE3)CodonPlus-RIL cells. This is over 100 times more than achieved by production of Ara h 2 in conventional BL21(DE3) cells.  相似文献   

4.
B型肉毒毒素保护性抗原Hc在大肠杆菌中的可溶性高表达   总被引:2,自引:1,他引:1  
目的:通过序列优化及表达条件改进,在大肠杆菌中高效可溶性表达B型肉毒毒素保护性抗原He(Bont/B-He)。方法:对Bont/B-He基因片段优化,用大肠杆菌常用密码子替换稀有密码子,并将(C+C)含量由76.2%降至56-3%;人工合成多条具有重叠互补序列的寡核苷酸片段,采用重叠延伸PCR方法获得了Bont/B-He的全长基因,并构建了原核可溶性表达载体;将经酶切和测序鉴定正确的重组质粒转化大肠杆菌B121(DE3)感受态细胞,用IPTC诱导Bont/B-He的表达并进行纯化及Western印迹鉴定。结果和结论:目的蛋白在大肠杆菌B121(DE3)中获得了可溶性高表达,占菌体裂解液上清总蛋白的26.7%,表达量达到30mg/L,是目前国内外已知表达的最高水平;经Ni柱一步纯化后,目的蛋白纯度可达到80.3%,为肉毒毒素中和抗体的制备及亚单位疫苗的研究奠定了基础。  相似文献   

5.
Spinach ACP isoform I was overexpressed in Escherichia coli BL21(DE3) using a gene synthesized from codons associated with high-level expression in E. coli. The synthetic gene has extensive changes in codon usage (23 of 77 total codons) relative to that of the originally synthesized plant gene (P. D. Beremand et al., 1987, Arch. Biochem. Biophys. 256, 90-100). After expression of the new synthetic gene, purified ACP and ACP-His6 were obtained in yields of up to 70 mg L-1 of culture medium, compared to approximately 1-6 mg L-1 of purified ACP obtained from the gene composed of predicted spinach codons. In either shaken flask or fermentation culture, approximately 15% conversion to holo-ACP or holo-ACP-His6 was obtained regardless of the level of protein expression. However, coexpression of ACP-His6 with E. coli holo-ACP synthase in E. coli BL21(DE3) during pH- and dissolved O2-controlled fermentation routinely yielded greater than 95% conversion to holo-ACP-His6. Electrospray ionization mass spectrometric analysis of the purified recombinant ACPs revealed that the amino terminal Met was efficiently removed, but only if the bacterial cell lysates were prepared in the absence of EDTA. This observation is consistent with the inhibition of endogenous Met-aminopeptidase by removal of catalytically essential Co(II) and introduces the importance of considering the catalytic properties of host enzymes providing ad hoc posttranslational modification of recombinant proteins. Stearoyl-ACP-His6 was shown to be indistinguishable from stearoyl-ACP as a substrate for enzymatic acylation and desaturation. In combination, these studies provide a coordinated scheme to produce and characterize quantities of acyl-ACPs sufficient to support expanded biophysical and structural studies.  相似文献   

6.
人B淋巴细胞刺激因子C端肽的免疫增强作用   总被引:4,自引:1,他引:4  
用套式PCR从人胎脑cDNA文库中克隆了B淋巴细胞刺激因子C端肽 (C terminalpeptideofBlymphocytestimulator,C BLyS)的cDNA。在大肠杆菌BL2 1CodonPlus (DE3)RIL中以包含体形式表达了C BLyS。对包含体的复性条件进行了摸索 ,建立了C BLyS的透析复性与纯化方法。经复性和纯化的C BLyS可结合其受体B细胞成熟抗原 (Bcellmaturationantigen ,BCMA) 人IgG1Fc融合蛋白 ,刺激体外培养的小鼠脾脏细胞增殖 ,并且可明显增强小鼠对溶菌酶的免疫应答水平。  相似文献   

7.
PTEN是具有蛋白质和酯类双重特异性磷酸酶活性的抑癌蛋白,在肿瘤治疗中具有广阔的应用前景。鉴于原核表达PTEN蛋白并用于抑癌实验的研究尚未见报道,因此尝试利用大肠杆菌表达有活性的PTEN蛋白,检测其抑癌效果。利用本室克隆的PTEN基因cDNA和原核表达载体pET44a( )分别构建带6×His和Nus标签的两种诱导型原核融合表达载体pETPTEN和pETNusPTEN,在不同的大肠杆菌表达宿主BL21(DE3)(简写为BL)和Rosettagami(DE3)pLysS(简写为RG)中诱导表达。SDSPAGE和Westernblot检测表明:在可溶性组分和包涵体中均含有目的蛋白,在BL中目的蛋白的表达量较高(18.7%)而在RG中可溶性蛋白的比例较高(6.6%)。经纯化和包涵体蛋白复性处理后,重组融合蛋白经Chariot转运入小鼠实体瘤及人前列腺癌DU145细胞。抑癌实验表明:与对照组相比,重组PTEN蛋白对小鼠实体瘤的生长抑制率为58.76%;对癌细胞DU145的生长抑制率可达46.16%;并可导致明显的G0G1期阻滞,其中在宿主RG中表达的重组蛋白抑癌效果明显高于BL宿主中表达的目的蛋白。证实在原核系统中表达的重组PTEN蛋白具有抑癌活性,同时制备了PTEN的高效价腹水多抗,为深入研究PTEN蛋白在癌症治疗中的应用打下了良好的基础。  相似文献   

8.
An indigenously isolated strain of Bacillus thuringiensis subsp. kenyae exhibited toxicity against lepidopteran as well as dipteran insects. The lepidopteran active cry1Ac protoxin gene coding sequence of 3.5 kb from this strain was cloned into vector pET28a(+). However, it could not be expressed in commonly used Escherichia coli expression hosts, BL21(DE3) and BL21(DE3)pLysS. This gene is classified as cry1Ac17 in the B. thuringiensis toxic nomenclature database. The coding sequence of this gene revealed that it contains about 3% codons, which are not efficiently translated by these expression hosts. Hence, this gene was expressed in a modified expression host, Epicurian coli BL21-Codonplus (DE3)-RIL. The expression of gene yielded a 130-kDa Cry1Ac17 protein. The protein was purified and its toxicity was tested against economically important insect pests, viz., Helicoverpa armigera and Spodoptera litura. LC50 values obtained against these insects were 0.1 ng/cm3 and 1231 ng/cm2, respectively. The higher toxicity of Cry1Ac17 protein, compared to other Cry1Ac proteins, toward these pests demonstrates the potential of this isolate as an important candidate in the integrated resistance management program in India.  相似文献   

9.
Epstein-Barr virus nuclear antigen 1 (EBNA-1) is a multi-functional protein of the Epstein-Barr virus (EBV). Due to its low abundance in EBV-transformed cells, overproduction in a foreign host is preferred to obtain purified EBNA-1 protein. The EBNA-1 gene possesses a large number of Escherichia coli rare codons (23%). By using E. coli BL21(DE3)Rosetta2 cells that augment the low-abundance tRNA genes, the expression level of EBNA-1 in E. coli was greatly enhanced. EBNA-1 was then purified by applying the whole cell extract soluble fraction to a Ni-NTA Superflow column and eluting with an imidazole gradient. The improved overexpression in E. coli followed by a one-step Ni-NTA purification resulted in a sufficient amount of pure EBNA-1 protein to test DNA binding activity, and prepare and test EBNA-1-specific monoclonal antibodies (mAbs).  相似文献   

10.
The Gram positive bacterium, Streptococcus pneumoniae, has two genes, designated ssbA and ssbB, which are predicted to encode single-stranded DNA binding proteins (SSB proteins). We have shown previously that the SsbA protein is similar in size and in biochemical properties to the well-characterized SSB protein from Escherichia coli. The SsbB protein, in contrast, is a smaller protein and has no counterpart in E. coli. This report describes the development of an expression system and purification procedure for the SsbB protein. The ssbB gene was amplified from genomic S. pneumoniae DNA and cloned into the E. coli expression vector, pET21a. Although, we had shown previously that the SsbA protein is strongly expressed from pET21a in the E. coli strain BL21(DE3)pLysS, no expression of the SsbB protein was detected in these cells. However, the SsbB protein was strongly expressed from pET21a in the Rosetta(DE3)pLysS strain, a derivative of BL21(DE3)pLysS which supplies the tRNAs for six codons that are used infrequently in E. coli. The differential expression of the two SSB proteins in the parent BL21(DE3)pLysS strain was apparently due to the presence of two rare codons in the ssbB gene sequence that are not present in the ssbA sequence. Using the Rosetta(DE3)pLysS/pETssbB expression system, a protocol was developed in which the SsbB protein was purified to apparent homogeneity. DNA binding assays confirmed that the purified SsbB protein had single-stranded DNA binding activity. The expression and purification procedures reported here will facilitate further investigations into the biological role of the SsbB protein.  相似文献   

11.
Human beta-defensin-2 (hBD2) is a small antimicrobial peptide with potential as a therapeutic agent. The effect of codon usage on the expression of hBD2 in Escherichia coli was studied. Two coding sequences encoding the same hBD2 precursor were both expressed as fusion protein with thioredoxin in E. coli BL21 (DE3). One is the wild-type human cDNA and the other is a gene synthesized by a PCR-based method in which rare codons were altered to those frequently used in E. coli. The expression level of recombinant hBD2 was over 50% of the total cellular protein when the synthetic gene with preferential codons was employed which was a 9-fold enhancement over the wild-type cDNA. The result shows the codon bias of the host was a major barrier in high-level expression of recombinant hBD2 and suggests a similar approach may be used in the expression of other defensins in E. coli.  相似文献   

12.
You J  Cohen RE  Pickart CM 《BioTechniques》1999,27(5):950-954
The arginine codon AGA is rarely used in E. coli but is common in eukaryotic genes. Prior studies have shown that the low level of tRNA(UCUArg) can lead to low expression and misincorporation of lysine for arginine, during expression of genes containing AGA codons in E. coli. The chloramphenicol-selectable plasmid pJY2 is designed to facilitate the expression of such genes cloned into pET vectors: it encodes T7 lysozyme (to depress constitutive expression of the cloned gene) and tRNA(UCUArg) (to suppress lysine misincorporation at AGA codons). Using pJY2, we observed robust and translationally faithful expression of mutant ubiquitin genes in which 14% (11 out of 76) of the total codons were AGA. Competent BL21(DE3)pJY2 cells can be used to suppress lysine misincorporation and achieve high-level expression of pET-encoded target genes without modification of AGA codons in the target gene sequence.  相似文献   

13.
目的:构建PET-28a-SPA原核表达载体,在大肠杆菌BL21(DE3)中实现其高效可溶性表达,测定对肿瘤细胞的凋亡效果。方法:本实验在获得凋亡蛋白融合基因的基础上,成功地构建了重组表达质粒PET-28a-SPA,将阳性重组质粒转化表达受体菌BL21(DE3)感受态细胞中,经IPTG诱导表达,表达产物经聚丙烯酰胺凝胶电泳检测和Western blot检测,并采用MTT法检测其对肿瘤细胞的增殖抑制。结果:表达产物经聚丙烯酰胺凝胶电泳检测,凋亡蛋白融合基因获得高效表达,软件分析表明表达蛋白占菌体蛋白20%左右。上清表达量约为10%。上清蛋白经纯化后,Western blot结果显示,利用凋亡蛋白单克隆抗体可以很好地和所表达的蛋白带特异性结合,并且对A549肺癌细胞及Hela细胞具有一定的凋亡作用。结论:所获凋亡蛋白以高效胞质可溶形式表达,为其研制有效的肿瘤免疫治疗靶向药物提供一定的基础。  相似文献   

14.
抗菌肽GK1在大肠杆菌中的融合表达   总被引:1,自引:1,他引:1  
为高效表达抗菌肽GK1并避免GK1的高抗菌活性对大肠杆菌宿主菌的致命影响, 将经改造后的人胰岛素原(mhPI)与GK1的融合基因(mhPI-GK1)克隆到表达载体pET28a中, 构建出表达质粒pET28a-mhPI-GK1, 转化至大肠杆菌BL21(DE3)中进行表达。融合蛋白在大肠杆菌中以包涵体形式表达, 表达量占菌体总蛋白的20%。经CNBr裂解、阳离子交换层析和RP-HPLC纯化后, 每升发酵液可获得5.7 mg纯度大于97%的重组GK1。质谱检测显示重组GK1的分子量为2794.0 D, 抑菌活性实验表明纯化后的重组GK1和化学合成GK1具有相同的抗菌活性。为利用基因工程方法大规模生产GK1奠定了基础。  相似文献   

15.
Interleukin 15 (IL-15) has shown remarkable biological properties of promoting NK- and T-cell activation and proliferation, as well as enhancing antitumor immunity of CD8(+) T cells in preclinical models. Here, we report the development of an E. coli cell line to express recombinant human Interleukin-15 (rhIL-15) for clinical manufacturing. Human IL-15 cDNA sequence was inserted into a pET28b plasmid and expressed in several E. coli BL21 strains. Through product quality comparisons among several E. coli strains, including E. coli BL21(DE3), BL21(DE3)pLysS, BLR(DE3)pLysS, and BL21-AI, E. coli BL21-AI was selected for clinical manufacturing. Expression optimization was carried out at shake flask and 20-L fermenter scales, and the product was expressed as inclusion bodies that were solubilized, refolded, and purified to yield active rhIL-15. Stop codons of the expression construct were further investigated after 15-20% of the purified rhIL-15 showed an extraneous peak corresponding to an extra tryptophan residue based on peptide mapping and mass spectrometry analysis. It was determined that the presence of an extra tryptophan was due to a stop codon wobble effect, which could be eliminated by replacing TGA (opal) stop codon with TAA (ochre). As a novel strategy, a simple method of demonstrating lack of tRNA suppressors in the production host cells was developed to validate the cells in this study. The E. coli BL21-AI cells containing the rhIL-15 coding sequence with a triplet stop codon TAATAATGA were banked for further clinical manufacturing.  相似文献   

16.
经同源性比较,链霉菌139(Streptomycessp.139)产生胞外多糖依博素的生物合成基因簇中ste19基因编码的蛋白Ste19与UDP_葡萄糖_4_差向异构酶有较高同源性。将ste19基因克隆至质粒pET30a,在大肠杆菌BL21(DE3)中进行了异源表达。产生的可溶性Ste19重组蛋白,占细胞总蛋白的26%,说明该基因高GC含量(73.8%)及第三位碱基偏向使用GC(96.2%)并未影响其高效表达。SDS_PAGE结果显示重组蛋白的分子量约37kD,与理论推测值基本相同。经亲和层析纯化后得到了较高纯度的重组蛋白,经HPLC分析纯度为92.9%。酶活性分析表明:Ste19蛋白可将UDP_葡萄糖转化为UDP_半乳糖,因此,Ste19蛋白是UDP_葡萄糖_4_差向异构酶,它可能参与了依博素的生物合成。  相似文献   

17.
重组人β防御素3在大肠杆菌中的表达和活性分析   总被引:11,自引:0,他引:11  
防御素是生物界广泛分布的一类低分子短肽,具有广谱高效的杀菌、抗肿瘤作用,并且不易使微生物产生抗药性,具有很高的应用价值,其中最引人注目的是β防御素[1,2].人β防御素3(humanβ-defensin3,hBD3)是最近发现的第3种人源性β防御素,与其它人防御素相比,在抗菌活性等方面具有明显优势,是所有防御素中抗菌能力最强的之一[3~7],具有独特的研究和开发价值.为了得到高效表达hBD3的工程菌株,本实验按照细菌对密码子的偏爱,人工合成了hBD3的寡核苷酸片段,构建了其表达载体.经IPTG诱导、分离纯化和肠激酶切割,得到了与天然hBD3活性基本相同的…  相似文献   

18.
The VP1 gene of enterovirus 70 (EV70) possesses a large number of Escherichia coli low-usage codons (11.0%) and a bacterial ribosome binding site complementary sequence (RBSCS) 5'-UGUCUCCUUUUC-3' flanking the codon 139. Plasmids containing EV70 cDNA encoding the full-length VP1 failed to express in E. coli (BL21(DE3), Rosetta 2(DE3) or Rosetta (DE3)pLysS). High expression (>8% of total protein) of recombinant VP1 (rVP1m) in E. coli required engineering of the encoding cDNA (conserved modification of the native cDNA) by simultaneous substitution of a rare-codon cluster located between codons 103 and 132, and replacement of the RBSCS-TCCTTT sequence. The rare-codon frequencies of the cDNAs encoding VP1 non-overlapping terminal fragments N138 (1-138 aa) and C170 (141-310 aa) are similar (10.9 and 11.2%, respectively). However, in E. coli, high expression of recombinant C170 (rC170) required no modification of the native cDNA whereas high expression of recombinant N138 (rN138m) required minimal synonymous substitution of the above rare-codon cluster. The rare-codon cluster of EV70 VP1 gene has five least-usage arginine codons (AGG/AGA) and three tandem rare-codon pairs (AGGAGG, CUAAGG, and AGACUA). Our results suggest that the rare-codon cluster (its rare codon arrangement per se and/or its related mRNA secondary structure(s)) and the RBSCS in EV70 VP1 gene, not the rare-codon frequency, constitute the key elements that suppress its expression in E. coli.  相似文献   

19.
We have previously reported that a variety of solid human tumor cell lines express a large number of receptors for interleukin-13 (IL-13). These receptors could be targeted with a chimeric fusion protein consisting of human IL-13 and a truncated form of Pseudomonas exotoxin (PE). We describe here optimization of critical steps involved in high yield expression of two recombinant chimeric fusion proteins for obtaining highly purified and biologically active cytotoxins in Escherichia coli. The chimeric constructs of human IL-13 and two 38 kDa truncated PEs: (i) PE38 and (ii) PE38QQR, (three lysine residues in PE38 at 590, 606, and 613 substituted with two glutamine and one arginine) were used for protein expression in pET prokaryotic expression vector system with kanamycin as a selection antibiotic. Our results suggest that fresh transformation of E. coli and induction by isopropyl-beta-D-thiogalactopyranoside (IPTG) for 6 h resulted in maximum protein expression. To further improve the yield, we used a genetically modified E. coli strain, BL21(DE3)pLysS, which carries a plasmid for lysozyme with a weak promoter that inhibits T7 RNA polymerase and minimizes protein production in the absence of IPTG. Use of this strain eliminated the need for lysozyme digestion of the induced bacteria to release inclusion bodies, which resulted in expression of purer protein as compared to the conventional BL21(DE3) strain. Additional protocol optimizations included 16 h solubilization of inclusion bodies, constitution of refolding buffer, and timing of dialysis. These proteins were finally purified by Q-Sepharose, mono-Q, and gel filtration chromatography. Between 14-22 and 21-28 mg highly purified and biologically active protein was obtained from 1L of BL21 (DE3) and BL21 (DE3) pLysS bacteria culture, respectively. As IL-13R targeting for brain tumor therapy offers an exciting treatment option, optimization of production of IL-13PE will enhance production of clinical grade material for Phase III clinical trials.  相似文献   

20.
High-level production of recombinant glucose isomerase (rGI) is desirable for lactulose synthesis. In this study, the xylA gene encoding glucose isomerase from Actinoplanes missouriensis CICIM B0118(A) was cloned and expressed in E. coli BL21(DE3), and high-level production was performed by optimization of the medium composition. rGI was purified from a recombinant E. coli BL21(DE3) and characterized. The optimum pH value of the purified enzyme was 8.0 and it was relatively stable within the pH range of 7.0-9.0. Its optimum temperature was around 85 degrees C, and it exhibited good thermostability when the temperature was lower than 90 degrees C. The maximum enzyme activity required the presence of both Co2+ and Mg2+, at the concentrations of 200 microM and 8 mM, respectively. With high-level expression and the simple one-step chromatographic purification of the His-tagged recombinant enzyme, this GI could be used in industrial production of lactulose as a potential economic tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号