首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbohydrate-binding modules (CBMs) are the most common non-catalytic modules associated with enzymes active in plant cell-wall hydrolysis. Despite the large number of putative CBMs being identified by amino acid sequence alignments, only few representatives have been experimentally shown to have a carbohydrate-binding function. Caldicellulosiruptor strain Rt8B.4 Man26 is a thermostable modular glycoside hydrolase beta-mannanase which contains two non-catalytic modules in tandem at its N terminus. These modules were recently shown to function primarily as beta-mannan-binding modules and have accordingly been classified as members of a novel family of CBMs, family 27. The N-terminal CBM27 (CsCBM27-1) of Man26 from Caldicellulosiruptor Rt8B.4 displays high-binding affinity towards mannohexaose with a Ka of 1 x 10(7) M(-1). Accordingly, the high-resolution crystal structures of CsCBM27-1 native and its mannohexaose complex were solved at 1.55 angstroms and 1.06 angstoms resolution, respectively. In the crystal, CsCBM27-1 shows the typical beta-sandwich jellyroll fold observed in other CBMs with a single metal ion bound, which was identified as calcium. The crystal structures reveal that the overall fold of CsCBM27-1 remains virtually unchanged upon sugar binding and that binding is mediated by three solvent-exposed tryptophan residues and few direct hydrogen bonds. Based on binding affinity and thermal unfolding experiments this structural calcium is shown to play a role in the thermal stability of CsCBM27-1 at high temperatures. The higher binding affinity of CsCBM27-1 to mannooligosaccharides when compared to other members of CBM family 27 might be explained by the different orientation of the residues forming the "aromatic platform" and by differences in the length of loops. Finally, evidence is presented, on the basis of fold similarities and the retention of the position of conserved motifs and a calcium ion, for the consolidation of related CBM families into a superfamily of CBMs.  相似文献   

2.
The microbial degradation of the plant cell wall is an important biological process, representing a major component of the carbon cycle. Enzymes that mediate the hydrolysis of this composite structure are modular proteins that contain non-catalytic carbohydrate binding modules (CBMs) that enhance catalytic activity. CBMs are grouped into sequence-based families, and in a previous study we showed that a family 6 CBM (CBM6) that interacts with xylan contains two potential ligand binding clefts, designated cleft A and cleft B. Mutagenesis and NMR studies showed that only cleft A in this protein binds to xylan. Family 6 CBMs bind to a range of polysaccharides, and it was proposed that the variation in ligand specificity observed in these proteins reflects the specific cleft that interacts with the target carbohydrate. Here the biochemical properties of the C-terminal cellulose binding CBM6 (CmCBM6-2) from Cellvibrio mixtus endoglucanase 5A were investigated. The CBM binds to the beta1,4-beta1,3-mixed linked glucans lichenan and barley beta-glucan, cello-oligosaccharides, insoluble forms of cellulose, the beta1,3-glucan laminarin, and xylooligosaccharides. Mutagenesis studies, informed by the crystal structure of the protein (presented in the accompanying paper, Pires, V. M. R., Henshaw, J. L., Prates, J. A. M., Bolam, D., Ferreira, L. M. A. Fontes, C. M. G. A., Henrissat, B., Planas, A., Gilbert, H. J., Czjzek, M. (2004) J. Biol. Chem. 279, 21560-21568), show that both cleft A and B can accommodate cello-oligosaccharides and laminarin displays a preference for cleft A, whereas xylooligosaccharides exhibit absolute specificity for this site, and the beta1,4,-beta1,3-mixed linked glucans interact only with cleft B. The binding of CmCBM6-2 to insoluble cellulose involves synergistic interactions between cleft A and cleft B. These data show that CmCBM6-2 contains two binding sites that display differences in ligand specificity, supporting the view that distinct binding clefts with different specificities can contribute to the variation in ligand recognition displayed by family 6 CBMs. This is in sharp contrast to other CBM families, where variation in ligand binding is a result of changes in the topology of a single carbohydrate-binding site.  相似文献   

3.
Modular glycoside hydrolases that attack recalcitrant polymers generally contain noncatalytic carbohydrate-binding modules (CBMs), which play a critical role in the action of these enzymes by localizing the appended catalytic domains onto the surface of insoluble polysaccharide substrates. Type B CBMs, which recognize single polysaccharide chains, display ligand specificities that are consistent with the substrates hydrolyzed by the associated catalytic domains. In enzymes that contain multiple catalytic domains with distinct substrate specificities, it is unclear how these different activities influence the evolution of the ligand recognition profile of the appended CBM. To address this issue, we have characterized the properties of a family 11 CBM (CtCBM11) in Clostridium thermocellum Lic26A-Cel5E, an enzyme that contains GH5 and GH26 catalytic domains that display beta-1,4- and beta-1,3-1,4-mixed linked endoglucanase activity, respectively. Here we show that CtCBM11 binds to both beta-1,4- and beta-1,3-1,4-mixed linked glucans, displaying K(a) values of 1.9 x 10(5), 4.4 x 10(4), and 2 x 10(3) m(-1) for Glc-beta1,4-Glc-beta1,4-Glc-beta1,3-Glc, Glc-beta1,4-Glc-beta1,4-Glc-beta1,4-Glc, and Glc-beta1,3-Glc-beta1,4-Glc-beta1,3-Glc, respectively, demonstrating that CBMs can display a preference for mixed linked glucans. To determine whether these ligands are accommodated in the same or diverse sites in CtCBM11, the crystal structure of the protein was solved to a resolution of 1.98 A. The protein displays a beta-sandwich with a concave side that forms a potential binding cleft. Site-directed mutagenesis revealed that Tyr(22), Tyr(53), and Tyr(129), located in the putative binding cleft, play a central role in the recognition of all the ligands recognized by the protein. We propose, therefore, that CtCBM11 contains a single ligand-binding site that displays affinity for both beta-1,4- and beta-1,3-1,4-mixed linked glucans.  相似文献   

4.
The optimal ligands for many carbohydrate-binding proteins are often oligosaccharides comprising two, three, or more monosaccharide units. The binding affinity for these sugars is increased incrementally by contributions from binding subsites on the protein that accommodate the individual monosaccharide residues of the oligosaccharide. Here, we use CsCBM6-1, a xylan-specific type B carbohydrate-binding module (CBM) from Clostridium stercorarium falling into amino acid sequence family CBM6, as a model system to investigate the structural and thermodynamic contributions of binding subsites in this protein to carbohydrate recognition. The three-dimensional structures of uncomplexed CsCBM6-1 (at 1.8 A resolution) and bound to the oligosaccharides xylobiose, xylotriose, and xylotetraose (at 1.70 A, 1.89 A, and 1.69 A resolution, respectively) revealed the sequential occupation of four subsites within the binding site in the order of subsites 2, 3, 4 then 1. Overall, binding to all of the xylooligosaccharides tested was enthalpically favourable and entropically unfavourable, like most protein-carbohydrate interactions, with the primary subsites 2 and 3 providing the bulk of the free energy and enthalpy of binding. In contrast, the contributions to the changes in entropy of the non-primary subsites 1 and 4 to xylotriose and xylotetraose binding, respectively, were positive. This observation is remarkable, in that it shows that the 10-20-fold improvement in association constants for oligosaccharides longer than a disaccharide is facilitated by favourable entropic contributions from the non-primary binding subsites.  相似文献   

5.
Bauhinia purpurea lectin (BPA) is one of the beta-galactose-binding leguminous lectins. Leguminous lectins contain a long metal-binding loop, part of which determines their carbohydrate-binding specificities. Random mutations were introduced into a portion of the cDNA coding BPA that corresponds to the carbohydrate-binding loop of the lectin. An library of the mutant lectin expressed on the surface of lambda foo phages was screened by the panning method. Several phage clones with an affinity for mannose or N-acetylglucosamine were isolated. These results indicate the possibility of making artificial lectins (so-called "cyborg lectins") with distinct and desired carbohydrate-binding specificities.  相似文献   

6.
The TIGR4 and SP3-BS71 strains of Streptococcus pneumoniae each produce family 98 glycoside hydrolases, called Sp4GH98 and Sp3GH98, respectively, which have different modular architectures and substrate specificities. Sp4GH98 degrades the LewisY antigen and possesses three C-terminal family 47 carbohydrate-binding modules (CBMs) that bind to this substrate. Sp3GH98 degrades the blood group A/B antigens and has two N-terminal family 51 CBMs that are of unknown function. Here, we examine the complex carbohydrate-binding specificity of the family 51 CBMs from Sp3GH98 (referred to as CBM51-1 and CBM51-2), the structural basis of this interaction, and the overall solution conformations of both Sp3GH98 and Sp4GH98, which are shown to be fully secreted proteins. Through glycan microarray binding analysis and isothermal titration calorimetry, CBM51-1 is found to bind specifically to the blood group A/B antigens. However, due to a series of relatively small structural rearrangements that were revealed in structures determined by X-ray crystallography, CBM51-2 appears to be incapable of binding carbohydrates. Analysis of small-angle X-ray scattering data in combination with the available high-resolution X-ray crystal structures of the Sp3GH98 and Sp4GH98 catalytic modules and their CBMs yielded models of the biological solution structures of the full-length enzymes. These studies reveal the complex architectures of the two enzymes and suggest that carbohydrate recognition by the CBMs and the activity of the catalytic modules are not directly coupled.  相似文献   

7.
Ding SY  Xu Q  Ali MK  Baker JO  Bayer EA  Barak Y  Lamed R  Sugiyama J  Rumbles G  Himmel ME 《BioTechniques》2006,41(4):435-6, 438, 440 passim
The innate binding specificity of different carbohydrate-binding modules (CBMs) offers a versatile approach for mapping the chemistry and structure of surfaces that contain complex carbohydrates. We have employed the distinct recognition properties of a double His-tagged recombinant CBM tagged with semiconductor quantum dots for direct imaging of crystalline cellulose at the molecular level of resolution, using transmission and scanning transmission electron microscopy. In addition, three different types of CBMs from families 3, 6, and 20 that exhibit different carbohydrate specificities were each fused with either green fluorescent protein (GFP) or red fluorescent protein (RFP) and employed for double-labeling fluorescence microscopy studies of primary cell walls and various mixtures of complex carbohydrate target molecules. CBM probes can be used for characterizing both native complex carbohydrates and engineered biomaterials.  相似文献   

8.
Molecular engineering of ligand-binding proteins is commonly used for identification of variants that display novel specificities. Using this approach to introduce novel specificities into CBMs (carbohydrate-binding modules) has not been extensively explored. Here, we report the engineering of a CBM, CBM4-2 from the Rhodothermus marinus xylanase Xyn10A, and the identification of the X-2 variant. As compared with the wild-type protein, this engineered module displays higher specificity for the polysaccharide xylan, and a lower preference for binding xylo-oligomers rather than binding the natural decorated polysaccharide. The mode of binding of X-2 differs from other xylan-specific CBMs in that it only has one aromatic residue in the binding site that can make hydrophobic interactions with the sugar rings of the ligand. The evolution of CBM4-2 has thus generated a xylan-binding module with different binding properties to those displayed by CBMs available in Nature.  相似文献   

9.
The family 2a carbohydrate-binding module (CBM), Cel5ACBM2a, from the C-terminus of Cel5A from Cellulomonas fimi, and Xyn10ACBM2a, the family 2a CBM from the C-terminus of Xyn10A from C. fimi, were compared as fusion partners for proteins produced in the methylotrophic yeast Pichia pastoris. Gene fusions of murine stem-cell factor (SCF) with both CBMs were expressed in P. pastoris. The secreted SCF-Xyn10ACBM2a polypeptides were highly glycosylated and bound poorly to cellulose. In contrast, fusion of SCF to Cel5ACBM2a, which lacks potential N-linked glycosylation sites, resulted in the production of polypeptides which bound tightly to cellulose. Cloning and expression of these CBM2a in P. pastoris without a fusion partner confirmed that N-linked glycosylation at several sites was responsible for the poor cellulose binding. The nonglycosylated CBMs produced in E. coli had very similar cellulose-binding properties.  相似文献   

10.
Enzymes that hydrolyze complex polysaccharides into simple sugars are modular in architecture and consist of single or multiple catalytic domains fused to targeting modules called carbohydrate-binding modules (CBMs). CBMs bind to their ligands with high affinity and increase the efficiency of the catalytic components by targeting the enzymes to its substrate. Here we utilized a multidisciplinary approach to characterize each of the two family 16 carbohydrate-binding domain components of the highly active mannanase from the thermophile Thermoanaerobacterium polysaccharolyticum. These represent the first crystal structures of family 16 CBMs. Calorimetric analysis showed that although these CBMs demonstrate high specificity toward beta-1,4-linked sugars, they can engage both cello- and mannopolysaccharides. To elucidate the molecular basis for this specificity and selectivity, we have determined high resolution crystal structures of each of the two CBMs, as well as of binary complexes of CBM16-1 bound to either mannopentaose or cellopentaose. These results provide detailed molecular insights into ligand recognition and yield a framework for rational engineering experiments designed to expand the natural repertoire of these targeting modules.  相似文献   

11.
We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.  相似文献   

12.
Cellulase Cel5A from alkalophilic Bacillus sp. 1139 contains a family 17 carbohydrate-binding module (BspCBM17) and a family 28 CBM (BspCBM28) in tandem. The two modules have significantly similar amino acid sequences, but amino acid residues essential for binding are not conserved. BspCBM28 was obtained as a discrete polypeptide by engineering the cel5A gene. BspCBM17 could not be obtained as a discrete polypeptide, so a family 17 CBM from endoglucanase Cel5A of Clostridium cellulovorans, CcCBM17, was used to compare the binding characteristics of the two families of CBM. Both CcCBM17 and BspCBM28 recognized two classes of binding sites on amorphous cellulose: a high affinity site (K(a) approximately 1 x 10(6) M(-1)) and a low affinity site (K(a) approximately 2 x 10(4) M(-1)). They did not compete for binding to the high affinity sites, suggesting that they bound at different sites on the cellulose. A polypeptide, BspCBM17/CBM28, comprising the tandem CBMs from Cel5A, bound to amorphous cellulose with a significantly higher affinity than the sum of the affinities of CcCBM17 and BspCBM28, indicating cooperativity between the linked CBMs. Cel5A mutants were constructed that were defective in one or both of the CBMs. The mutants differed from the wild-type enzyme in the amounts and sizes of the soluble products produced from amorphous cellulose. This suggests that either the CBMs can modify the action of the catalytic module of Cel5A or that they target the enzyme to areas of the cellulose that differ in susceptibility to hydrolysis.  相似文献   

13.
Enzymes that hydrolyze insoluble complex polysaccharide structures contain non-catalytic carbohydrate binding modules (CBMS) that play a pivotal role in the action of these enzymes against recalcitrant substrates. Family 6 CBMs (CBM6s) are distinct from other CBM families in that these protein modules contain multiple distinct ligand binding sites, a feature that makes CBM6s particularly appropriate receptors for the beta-1,3-glucan laminarin, which displays an extended U-shaped conformation. To investigate the mechanism by which family 6 CBMs recognize laminarin, we report the biochemical and structural properties of a CBM6 (designated BhCBM6) that is located in an enzyme, which is shown, in this work, to display beta-1,3-glucanase activity. BhCBM6 binds beta-1,3-glucooligosaccharides with affinities of approximately 1 x 10(5) m(-1). The x-ray crystal structure of this CBM in complex with laminarihexaose reveals similarity with the structures of other CBM6s but a unique binding mode. The binding cleft in this protein is sealed at one end, which prevents binding of linear polysaccharides such as cellulose, and the orientation of the sugar at this site prevents glycone extension of the ligand and thus conferring specificity for the non-reducing ends of glycans. The high affinity for extended beta-1,3-glucooligosaccharides is conferred by interactions with the surface of the protein located between the two binding sites common to CBM6s and thus reveals a third ligand binding site in family 6 CBMs. This study therefore demonstrates how the multiple binding clefts and highly unusual protein surface of family 6 CBMs confers the extensive range of specificities displayed by this protein family. This is in sharp contrast to other families of CBMs where variation in specificity between different members reflects differences in the topology of a single binding site.  相似文献   

14.
Surfactant protein (SP)-A is a member of the collectin family of proteins and plays a role in innate host defense of the lung. SP-A binds to the carbohydrates of lung pathogens via its calcium-dependant carbohydrate-binding domain. Native human alveolar SP-A consists of two distinct gene products: SP-A1 and SP-A2; however, only SP-A2 is expressed in the submucosal glands of the conducting airways. The function of the isolated SP-A2 protein is unknown. We hypothesized that SP-A1 and SP-A2 might have different carbohydrate-binding properties. In this study, we characterized the carbohydrate-binding specificities of native human alveolar SP-A and recombinant human SP-A1 and SP-A2 in the presence of either 1 or 5 mM Ca(2+). We found that all of the SP-A proteins bind carbohydrates but with different affinities. All of the SP-A proteins bind to fucose with the greatest affinity. SP-A2 binds with a higher affinity to a wider variety of sugars than SP-A1 at either 1 or 5 mM Ca(2+). These findings are suggestive that SP-A2 may interact with a greater variety of pathogens than native SP-A.  相似文献   

15.
Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1–1 and 1–2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL’s CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB.  相似文献   

16.
Affinity electrophoresis was used to identify and quantify the interaction of carbohydrate-binding modules (CBMs) with soluble polysaccharides. Association constants determined by AE were in excellent agreement with values obtained by isothermal titration calorimetry and fluorescence titration. The method was adapted to the identification, study and characterization of mutant carbohydrate-binding modules with altered affinities and specificities. Competition affinity electrophoresis was used to monitor binding of small, soluble mono- and disaccharides to one of the modules.  相似文献   

17.
A novel Eubacterium cellulosolvens 5 gene encoding an endoglucanase (Cel5A) was cloned and expressed in Escherichia coli, and its enzymatic properties were characterized. The cel5A gene consists of a 3,444-bp open reading frame and encodes a 1,148-amino-acid protein with a molecular mass of 127,047 Da. Cel5A is a modular enzyme consisting of an N-terminal signal peptide, two glycosyl hydrolase family 5 catalytic modules, two novel carbohydrate-binding modules (CBMs), two linker sequences, and a C-terminal sequence with an unknown function. The amino acid sequences of the two catalytic modules and the two CBMs are 94% and 73% identical to each other, respectively. Two regions that consisted of one CBM and one catalytic module were tandemly connected via a linker sequence. The CBMs did not exhibit significant sequence similarity with any other CBMs. Analyses of the hydrolytic activity of the recombinant Cel5A (rCel5A) comprising the CBMs and the catalytic modules showed that the enzyme is an endoglucanase with activities with carboxymethyl cellulose, lichenan, acid-swollen cellulose, and oat spelt xylan. To investigate the functions of the CBMs and the catalytic modules, truncated derivatives of rCel5A were constructed and characterized. There were no differences in the hydrolytic activities with various polysaccharides or in the hydrolytic products obtained from cellooligosaccharides between the two catalytic modules. Both CBMs had the same substrate affinity with intact rCel5A. Removal of the CBMs from rCel5A reduced the catalytic activities with various polysaccharides remarkably. These observations show that CBMs play an important role in the catalytic function of the enzyme.  相似文献   

18.
SP 28-36, a major protein of pulmonary surfactant, has striking amino acid sequence homology with soluble mannose-binding proteins isolated from rat liver and contains residues common to the carbohydrate-binding domains of other mammalian lectins. We have used carbohydrate-affinity chromatography to investigate carbohydrate-binding properties of SP 28-36 isolated from canine and human (alveolar proteinosis patients) lung lavage. SP 28-36 binds to immobilized D-mannose, L-fucose, D-galactose, and D-glucose. The protein binds only weakly to N-acetyl-D-galactosamine and N acetyl-D-glucosamine. Binding is Ca2+-dependent. The threshold Ca2+ concentration is 0.6 mM and maximal binding occurs with 1 mM Ca2+. Bound protein is quantitatively recovered by elution with 2 mM EDTA. Ba2+, Sr2+, and Mn2+, but not Mg2+, can substitute for Ca2+. Unlike some other mammalian lectins, SP 28-36 binds to carbohydrate at pH 5.0. Recombinant human SP 28-36 isolated from the media of Chinese hamster ovary cells, transfected with a DNA construct encoding SP 28-36, has similar carbohydrate-binding activity to the native proteins. Mannose affinity chromatography of the culture medium of Chinese hamster ovary cells results in an efficient purification of the secreted recombinant human SP 28-36.  相似文献   

19.
The hydrolysis of the plant cell wall by microbial glycoside hydrolases and esterases is the primary mechanism by which stored organic carbon is utilized in the biosphere, and thus these enzymes are of considerable biological and industrial importance. Plant cell wall-degrading enzymes in general display a modular architecture comprising catalytic and non-catalytic modules. The X4 modules in glycoside hydrolases represent a large family of non-catalytic modules whose function is unknown. Here we show that the X4 modules from a Cellvibrio japonicus mannanase (Man5C) and arabinofuranosidase (Abf62A) bind to polysaccharides, and thus these proteins comprise a new family of carbohydrate-binding modules (CBMs), designated CBM35. The Man5C-CBM35 binds to galactomannan, insoluble amorphous mannan, glucomannan, and manno-oligosaccharides but does not interact with crystalline mannan, cellulose, cello-oligosaccharides, or other polysaccharides derived from the plant cell wall. Man5C-CBM35 also potentiates mannanase activity against insoluble amorphous mannan. Abf62A-CBM35 interacts with unsubstituted oat-spelt xylan but not substituted forms of the hemicellulose or xylo-oligosaccharides, and requires calcium for binding. This is in sharp contrast to other xylan-binding CBMs, which interact in a calcium-independent manner with both xylo-oligosaccharides and decorated xylans.  相似文献   

20.
The O-glycosylated domains of mucins and mucin-type glycoproteins contain 50-80% of carbohydrate and possess expanded conformations. Herein, we describe a flow cytometry (FCM) method for determining the carbohydrate-binding specificities of lectins to mucin. Biotinylated mucin was immobilized on streptavidin-coated beads, and the binding specificities of the major mucin sugar chains, as determined by GC-MS and MALDI-ToF, were monitored using fluorescein-labeled lectins. The specificities of lectins toward specific biotinylated glycans were determined as controls. The advantage of flexibility, multiparametric data acquisition, speed, sensitivity, and high-throughput capability makes flow cytometry a valuable tool to study diverse interactions between glycans and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号