首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some polysaccharides isolated from natural sources show various important biological activities, such as antitumor, immunomodulatory, and anti-inflammatory effects, which are strongly affected by their chemical structures and chain conformations. This article attempts to review the current development on structural and conformational characterization of some importantly bioactive polysaccharides isolated from natural sources. The chemical structures were analyzed by FTIR, liquid-state NMR (one and two dimensions), solid-sate NMR, Raman spectroscopy, gas chromatography (GC), GC–Mass (GC–MS), and high-performance liquid chromatography (HPLC). The chain conformations of polysaccharides in solutions were investigated using static and dynamic light scattering, viscosity analysis based on the theory of dilute polymer solution, circular dichroism analysis, atomic force microscopy (AFM) including single molecular AFM and AFM-based single-molecule force spectroscopy, fluorescence correlation spectroscopy and NMR spectroscopy.  相似文献   

2.
The large number of available HIV-1 protease structures provides a remarkable sampling of conformations of the different conformational states, which can be viewed as direct structural information about the dynamics of the HIV-1 protease. After structure matching, we apply principal component analysis (PCA) to obtain the important apparent motions for both bound and unbound structures. There are significant similarities between the first few key motions and the first few low-frequency normal modes calculated from a static representative structure with an elastic network model (ENM), strongly suggesting that the variations among the observed structures and the corresponding conformational changes are facilitated by the low-frequency, global motions intrinsic to the structure. Similarities are also found when the approach is applied to an NMR ensemble, as well as to molecular dynamics (MD) trajectories. Thus, a sufficiently large number of experimental structures can directly provide important information about protein dynamics, but ENM can also provide similar sampling of conformations.  相似文献   

3.
The affinity and selectivity of protein-protein interactions can be fine-tuned by varying the size, flexibility, and amino acid composition of involved surface loops. As a model for such surface loops, we study the conformational landscape of an octapeptide, whose flexibility is chemically steered by a covalent ring closure integrating an azobenzene dye into and by a disulfide bridge additionally constraining the peptide backbone. Because the covalently integrated azobenzene dyes can be switched by light between a bent cis state and an elongated trans state, six cyclic peptide models of strongly different flexibilities are obtained. The conformational states of these peptide models are sampled by NMR and by unconstrained molecular dynamics (MD) simulations. Prototypical conformations and the free-energy landscapes in the high-dimensional space spanned by the phi/psi angles at the peptide backbone are obtained by clustering techniques from the MD trajectories. Multiple open-loop conformations are shown to be predicted by MD particularly in the very flexible cases and are shown to comply with the NMR data despite the fact that such open-loop conformations are missing in the refined NMR structures.  相似文献   

4.
Kurihara Y  Ueda K 《Carbohydrate research》2006,341(15):2565-2574
The interconversion pathways of the pyranose ring conformation of alpha-L-idose from a (4)C1 chair to other conformations were investigated using density functional calculations. From these calculations, four different ring interconversion paths and their transition state structures from the (4)C1 chair to other conformations, such as B(3,O), and (1)S3, were obtained. These four transition-state conformations cover four possible combinations of the network patterns of the hydroxyl group hydrogen bonds (clockwise and counterclockwise) and the conformations of the primary alcohol group (tg and gg). The optimized conformations, transition states, and their intrinsic reaction coordinates (IRC) were all calculated at the B3LYP/6-31G** level. The energy differences among the structures obtained were evaluated at the B3LYP/6-311++G** level. The optimized conformations indicate that the conformers of (4)C1, (2)S(O), and B(3,O) have similar energies, while (1)S3 has a higher energy than the others. The comparison of the four transition states and their ring interconversion paths, which were confirmed using the IRC calculation, suggests that the most plausible ring interconversion of the alpha-L-idopyranose ring occurs between (4)C1 and B(3,O) through the E3 envelope, which involves a 5.21 kcal/mol energy barrier.  相似文献   

5.
Conformational energy calculations have been used to explore the conformations which may be realized for the sugar moiety of murein and pseudomurein. For the building blocks of the pseudomurein sugar strands, i.e. for the monosaccharides beta-D-N-acetylglucosamine (NAG) and alpha-L-N-acetyltalosaminuronic acid (NAT), both in C1 ring conformation, as well as for their 1,3 and 1,4 linked disaccharides, the favoured conformations were obtained. The helical parameters of sugar strands of both linkage types, which describe the regular structure of the corresponding polysaccharides, poly-(1,3-NAT-NAG) and poly-(1,4-NAT-NAG), were calculated. Both types of polysaccharides poly-(NAG-NAT) considered in this study favoured extended conformations, which in the case of 1,3 linked polymers showed less gain of length per saccharide unit compared to 1,4 linked poly-(NAG-NAT) residues. For a 1,3 linked sugar moiety of pseudomurein every pair of neighbouring peptides attached to glycan chain pointed in favoured conformations approximately to opposite sides of the strands, whereas in a 1,4 linked poly-(NAG-NAT) the peptides protruded approximately to the same side of the glycan moiety. A comparison between pseudomurein and murein revealed that the sugar moieties of both peptidoglycans have similar features in respect to their overall structure, i.e. both favoured more or less extended structures. In contrast to these data the shapes of the resulting polysaccharide moieties were remarkably different. In poly-(1,3-NAG-NAT) the glycan chains possessed a zig-zag-like arrangement, whereas for glycan chains of the murein type relatively flat structures were preferred. These remaining differences in the conformational arrangement between both peptidoglycans depend strongly on the C1 chair conformation of NAT. It is, therefore, attractive to speculate about an hypothetical pseudomurein sugar chain configuration comprising beta-L-N-acetyltalosaminuronic acid in its 1C conformation.  相似文献   

6.
Damm KL  Carlson HA 《Biophysical journal》2006,90(12):4558-4573
Many proteins contain flexible structures such as loops and hinged domains. A simple root mean square deviation (RMSD) alignment of two different conformations of the same protein can be skewed by the difference between the mobile regions. To overcome this problem, we have developed a novel method to overlay two protein conformations by their atomic coordinates using a Gaussian-weighted RMSD (wRMSD) fit. The algorithm is based on the Kabsch least-squares method and determines an optimal transformation between two molecules by calculating the minimal weighted deviation between the two coordinate sets. Unlike other techniques that choose subsets of residues to overlay, all atoms are included in the wRMSD overlay. Atoms that barely move between the two conformations will have a greater weighting than those that have a large displacement. Our superposition tool has produced successful alignments when applied to proteins for which two conformations are known. The transformation calculation is heavily weighted by the coordinates of the static region of the two conformations, highlighting the range of flexibility in the overlaid structures. Lastly, we show how wRMSD fits can be used to evaluate predicted protein structures. Comparing a predicted fold to its experimentally determined target structure is another case of comparing two protein conformations of the same sequence, and the degree of alignment directly reflects the quality of the prediction.  相似文献   

7.
The alpha-aminoisobutyric (Aib) residue has generally been considered to be a strongly helicogenic residue as evidenced by its ability to promote helical folding in synthetic and natural sequences. Crystal structures of several peptide natural products, peptaibols, have revealed predominantly helical conformations, despite the presence of multiple helix-breaking Pro or Hyp residues. Survey of synthetic Aib-containing peptides shows a preponderance of 3(10)-, alpha-, and mixed 3(10)/alpha-helical structures. This review highlights the examples of Aib residues observed in nonhelical conformations, which fall 'primarily' into the polyproline II (P(II)) and fully extended regions of conformational space. The achiral Aib residue can adopt both left (alpha(L))- and right (alpha(R))-handed helical conformations. In sequences containing chiral amino acids, helix termination can occur by means of chiral reversal at an Aib residue, resulting in formation of a Schellman motif. Examples of Aib residues in unusual conformations are illustrated by surveying a database of Aib-containing crystal structures.  相似文献   

8.
Backbone mimicry by the formation of closed-loop C7, C10 and C13 (mimics of gamma-, beta- and alpha-turns) conformations through side chain-main chain hydrogen bonds by polar groups is a frequent observation in protein structures. A data set of 250 non-homologous and high-resolution protein crystal structures was used to analyze these conformations for their characteristic features. Seven out of the nine polar residues (Ser, Thr, Asn, Asp, Gln, Glu and His) have hydrogen bonding groups in their side chains which can participate in such mimicry and as many as 15% of all these polar residues engage in such conformations. The distributions of dihedral angles of these mimics indicate that only certain combinations of the dihedral angles involved aid the formation of these mimics. The observed examples were categorized into various classes based on these combinations, resulting in well defined motifs. Asn and Asp residues show a very high capability to perform such backbone secondary structural mimicry. The most highly mimicked backbone structure is of the C10 conformation by the Asx residues. The mimics formed by His, Ser, Thr and Glx residues are also discussed. The role of such conformations in initiating the formation of regular secondary structures during the course of protein folding seems significant.  相似文献   

9.
Comparison of super-secondary structures in proteins   总被引:36,自引:0,他引:36  
A method of comparing the conformations of different, but structurally related proteins is described. Local variations, such as the systematic translation of a helix, or the position of deletions and insertions can be detected, and the correspondence of only marginally similar structures can be measured. The occurrence of larger continuous folds (“super-secondary structures”) has been detected in the comparison of lactate dehydrogenase with itself and with other protein structures.  相似文献   

10.
The potent mutagen/carcinogen benzo[a]pyrene (B[a]P) is metabolically activated to (+)-anti-B[a]PDE, which induces a full spectrum of mutations (e.g. GC-->TA, GC-->AT, etc.). One hypothesis for this complexity is that different mutations are induced by different conformations of its major adduct [+ta]-B[a]P-N2-dG when bypassed during DNA replication (probably by different DNA polymerases). Previous molecular modeling studies suggested that B[a]P-N2-dG adducts can in principle adopt at least 16 potential conformational classes in ds-DNA. Herein we report on molecular modeling studies with the eight conformations most likely to be relevant to base substitution mutagenesis in 10 cases where mutagenesis has been studied in ds-DNA plasmids in E. coli with B[a]P-N2-dG adducts of differing stereoisomers and DNA sequence contexts, as well as in five cases where the conformation is known by NMR. Of the approximately 11,000 structures generated in this study, the computed lowest energy structures are reported for 120 cases (i.e. eight conformations and 15 examples), and their conformations compared. Of the eight conformations, four are virtually always computed to be high in energy. The remaining four lower energy conformations include two with the BP moiety in the minor groove (designated: BPmi5 and BPmi3), and two base-displaced conformations, one with the dG moiety in the major groove (designated: Gma5) and one with the dG in the minor groove (designated: Gmi3). Interestingly, these four are the only conformations that have been observed for B[a]P-N2-dG adducts in NMR studies. Independent of sequence contexts and adduct stereochemistry, BPmi5 structures tend to look reasonably similar, as do BPmi3 structures, while the base-displaced structures Gma5 and BPmi3 tend to show greater variability in structure. A correlation was sought between modeling and mutagenesis results in the case of the low energy conformations BPmi5, BPmi3, Gma5 and Gma3. Plots of log[(G-->T)/(G-->A)] versus energy[(conformation X)-(conformation Y)] were constructed for all six pairwise combinations of these four conformations, and the only plot giving a straight line involved Gma5 and Gmi3. While this finding is striking, its significance is unclear (as discussed).  相似文献   

11.
Modules, defined as stable, compact structure units in a globular protein, are good candidates for the construction of novel foldable proteins by permutation. Here we decomposed barnase into six modules (M1-M6) and constructed 23 barnase mutants containing permutations of the internal four (M2-M5) out of six modules. Globular proteins can also be subdivided into secondary structure units based on the extended structures that control the mutual relationships of the modules. We also decomposed barnase into six secondary structure units (S1-S6) and constructed 21 barnase mutants containing permutations of the internal four (S2-S5) out of six secondary structure units. Foldability of these two types of mutants was assessed by means of circular dichroism, fluorescence, and 1H-NMR measurements. A total of 15 of 23 module mutants and 15 of 21 secondary structure unit mutants formed definite secondary structures, such as alpha-helix and beta-sheet, at 20 microM owing to intermolecular interactions, but most of them converted to random coil structures at a lower concentration (1 microM). Of the 44 mutants, only two, M3245 and S2543, gave distinct near-UV CD spectra. S2543 especially showed definite signal dispersion in the amide and methyl regions of the 1H-NMR spectrum, though M3245 did not. Furthermore, urea-induced unfolding of S2543 monitored by far-UV CD and fluorescence measurements showed a distinct cooperative transition. These results strongly suggest that S2543 takes partially folded conformations in aqueous solution. Our results also suggest that building blocks such as secondary structure units capable of taking different stable conformations by adapting themselves to the surrounding environment, rather than building blocks such as modules having a specified stable conformation, are required for the formation of foldable proteins. Therefore, the use of secondary structure units for the construction of novel globular proteins is likely to be an effective approach.  相似文献   

12.
Higher-order interactions are important for protein folding and assembly. We introduce the concept of interhelical three-body interactions as derived from Delaunay triangulation and alpha shapes of protein structures. In addition to glycophorin A, where triplets are strongly correlated with protein stability, we found that tight interhelical triplet interactions exist extensively in other membrane proteins, where many types of triplets occur far more frequently than in soluble proteins. We developed a probabilistic model for estimating the value of membrane helical interaction triplet (MHIT) propensity. Because the number of known structures of membrane proteins is limited, we developed a bootstrap method for determining the 95% confidence intervals of estimated MHIT values. We identified triplets that have high propensity for interhelical interactions and are unique to membrane proteins, e.g. AGF, AGG, GLL, GFF and others. A significant fraction (32%) of triplet types contains triplets that may be involved in interhelical hydrogen bond interactions, suggesting the prevalent and important roles of H-bond in the assembly of TM helices. There are several well-defined spatial conformations for triplet interactions on helices with similar parallel or antiparallel orientations and with similar right-handed or left-handed crossing angles. Often, they contain small residues and correspond to the regions of the closest contact between helices. Sequence motifs such as GG4 and AG4 can be part of the three-body interactions that have similar conformations, which in turn can be part of a higher-order cooperative four residue spatial motif observed in helical pairs from different proteins. In many cases, spatial motifs such as serine zipper and polar clamp are part of triplet interactions. On the basis of the analysis of the archaeal rhodopsin family of proteins, tightly packed triplet interactions can be achieved with several different choices of amino acid residues.  相似文献   

13.
Metabotropic glutamate receptors (mGluRs) are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects--enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%), the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%), the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86%) and 8/9 (89%) for ArgusLab and 10/14 (71%) and 7/9 (78%) for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by photochemical isomerization of the retinal ligand--despite the extensive differences in sequences between mGluRs and rhodopsin.  相似文献   

14.
An algorithm has been developed that permits one to find all possible conformations of the sugar-phosphate backbone for any given disposition of DNA base pairs. For each of the conformations thus obtained, the energy of the helix was calculated by the method of atom-atom potentials. Several isolated regions in the space of the bases′ parameters (Arnott's parameters) have been found for energetically favorable helical structures. Two parameters, the distance of a base pair from the helix axis, D, and the windling angle, τ, allow one to subdivide possible conformations into the families of closely related forms. Two regions (ravines) on the (D, τ) map correspond to the know A and B families. In the B family a continuous transition has been obtained in which the double helix undergoes increasing winding, while the base pairs are moving toward the major (nonglycosidic) groove. Interrelationships between the variables, characterizing the spatial structure of the double helix, D, τ, TL and χ, when going along the bottom of the B ravine, were also obtained. Besides the Known A and B families, several new ones were found to be energetically possible. Among these the strongly underwound helices with the negative D values, as well as the forms with the C4-C5 angle in a trans position, should be mentioned. Biological roles of the different double-stranded conformations, in particular, in protein-nuclei acid interaction are discussed.  相似文献   

15.
Contact order and ab initio protein structure prediction   总被引:1,自引:0,他引:1       下载免费PDF全文
Although much of the motivation for experimental studies of protein folding is to obtain insights for improving protein structure prediction, there has been relatively little connection between experimental protein folding studies and computational structural prediction work in recent years. In the present study, we show that the relationship between protein folding rates and the contact order (CO) of the native structure has implications for ab initio protein structure prediction. Rosetta ab initio folding simulations produce a dearth of high CO structures and an excess of low CO structures, as expected if the computer simulations mimic to some extent the actual folding process. Consistent with this, the majority of failures in ab initio prediction in the CASP4 (critical assessment of structure prediction) experiment involved high CO structures likely to fold much more slowly than the lower CO structures for which reasonable predictions were made. This bias against high CO structures can be partially alleviated by performing large numbers of additional simulations, selecting out the higher CO structures, and eliminating the very low CO structures; this leads to a modest improvement in prediction quality. More significant improvements in predictions for proteins with complex topologies may be possible following significant increases in high-performance computing power, which will be required for thoroughly sampling high CO conformations (high CO proteins can take six orders of magnitude longer to fold than low CO proteins). Importantly for such a strategy, simulations performed for high CO structures converge much less strongly than those for low CO structures, and hence, lack of simulation convergence can indicate the need for improved sampling of high CO conformations. The parallels between Rosetta simulations and folding in vivo may extend to misfolding: The very low CO structures that accumulate in Rosetta simulations consist primarily of local up-down beta-sheets that may resemble precursors to amyloid formation.  相似文献   

16.
Advances in structure determination have made possible the analysis of large macromolecular complexes (some with nearly 10,000 residues, such as GroEL). The large‐scale conformational changes associated with these complexes require new approaches. Historically, a crucial component of motion analysis has been the identification of moving rigid blocks from the comparison of different conformations. However, existing tools do not allow consistent block identification in very large structures. Here, we describe a novel method, RigidFinder, for such identification of rigid blocks from different conformations—across many scales, from large complexes to small loops. RigidFinder defines rigidity in terms of blocks, where inter‐residue distances are conserved across conformations. Distance conservation, unlike the averaged values (e.g., RMSD) used by many other methods, allows for sensitive identification of motions. A further distinguishing feature of our method, is that, it is capable of finding blocks made from nonconsecutive fragments of multiple polypeptide chains. In our implementation, we utilize an efficient quasi‐dynamic programming search algorithm that allows for real‐time application to very large structures. RigidFinder can be used at a dedicated web server ( http://rigidfinder.molmovdb.org ). The server also provides links to examples at various scales such as loop closure, domain motions, partial refolding, and subunit shifts. Moreover, here we describe the detailed application of RigidFinder to four large structures: Pyruvate Phosphate Dikinase, T7 RNA polymerase, RNA polymerase II, and GroEL. The results of the method are in excellent agreement with the expert‐described rigid blocks. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Double-stranded DNA bacteriophage genomes are packaged into their icosahedral capsids at the highest densities known so far (about 50 % w:v). How the molecule is folded at such density and how its conformation changes upon ejection or packaging are fascinating questions still largely open. We review cryo-TEM analyses of DNA conformation inside partially filled capsids as a function of the physico-chemical environment (ions, osmotic pressure, temperature). We show that there exists a wide variety of DNA conformations. Strikingly, the different observed structures can be described by some of the different models proposed over the years for DNA organisation inside bacteriophage capsids: either spool-like structures with axial or concentric symmetries, or liquid crystalline structures characterised by a DNA homogeneous density. The relevance of these conformations for the understanding of DNA folding and unfolding upon ejection and packaging in vivo is discussed.  相似文献   

18.
Secondary structure formation and stability are essential features in the knowledge of complex folding topology of biomolecules. To better understand the relationships between preferred conformations and functional properties of beta-homo-amino acids, the synthesis and conformational characterization by X-ray diffraction analysis of peptides containing conformationally constrained Calpha,alpha-dialkylated amino acid residues, such as alpha-aminoisobutyric acid or 1-aminocyclohexane-1-carboxylic acid and a single beta-homoamino acid, differently displaced along the peptide sequence have been carried out. The peptides investigated are: Boc-betaHLeu-(Ac6c)2-OMe, Boc-Ac6c-betaHLeu-(Ac6c)2-OMe and Boc-betaHVal-(Aib)5-OtBu, together with the C-protected beta-homo-residue HCl.H-betaHVal-OMe. The results indicate that the insertion of a betaH-residue at position 1 or 2 of peptides containing strong helix-inducing, bulky Calpha,alpha-disubstituted amino acid residues does not induce any specific conformational preferences. In the crystal state, most of the NH groups of beta-homo residues of tri- and tetrapeptides are not involved in intramolecular hydrogen bonds, thus failing to achieve helical structures similar to those of peptides exclusively constituted of Calpha,alpha-disubstituted amino acid residues. However, by repeating the structural motifs observed in the molecules investigated, a beta-pleated sheet secondary structure, and a new helical structure, named (14/15)-helix, were generated, corresponding to calculated minimum-energy conformations. Our findings, as well as literature data, strongly indicate that conformations of betaH-residues, with the micro torsion angle equal to -60 degrees, are very unlikely.  相似文献   

19.
The question of whether distinct self-propagating structures could be formed within the same amino acid sequence in the absence of external cofactors or templates has important implications for a number of issues, including the origin of prion strains and the engineering of smart, self-assembling peptide-based biomaterials. In the current study, we showed that chemically identical prion protein can give rise to conformationally distinct, self-propagating amyloid structures in the absence of cellular cofactors, post-translational modification, or PrP(Sc)-specified templates. Even more surprising, two self-replicating states were produced under identical solvent conditions, but under different shaking modes. Individual prion conformations were inherited by daughter fibrils in seeding experiments conducted under alternative shaking modes, illustrating the high fidelity of fibrillation reactions. Our study showed that the ability to acquire conformationally different self-propagating structures is an intrinsic ability of protein fibrillation and strongly supports the hypothesis that conformational variation in self-propagating protein states underlies prion strain diversity.  相似文献   

20.
The preferred conformations of N-acetyl-N′-methyl amides of some dialkylglycines have been determined by empirical conformational-energy calculations; minimum-energy conformations were located by minimizing the energy with respect to all the dihedral angles of the molecules. The conformational space of these compounds is sterically restricted, and low-energy conformations are found only in the regions of fully extended and helical structures. Increasing the bulkiness of the substituents on the Cα, the fully extended conformation becomes gradually more stable than the helical structure preferred in the cases of dimethylglycine. This trend is, however, strongly dependent on the bond angles between the substituents on the Cα atom: In particular, helical structures are favored by standard values (111°) of the N-Cα-C′ angle, while fully extended conformations are favored by smaller values of the same angle, as experimentally observed, for instance, in the case of α,α-di-n-propylglycine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号